
1

SERIMI: Class-based Matching for Instance
Matching Across Heterogeneous Datasets

Samur Araujo, Duc Thanh Tran, Arjen P. de Vries and Daniel Schwabe

Abstract—Based on a detailed analysis, we observed that state-of-the-art instance matching approaches do not perform well when
used for matching instances across heterogeneous datasets. This is because they are built upon direct matching, which involves a direct
comparison of a source dataset with a target dataset. This is not suitable when the overlap between the datasets is too small. Aiming
at this problem, we propose a new paradigm called class-based matching. Given a class of instances from the source dataset, called
the class of interest, and a set of candidate matches retrieved from the target, class-based matching helps to refine the candidates
by filtering out those that do not belong to the class of interest. For this refinement, only data in the target is used, i.e., no direct
comparison between source and target is involved. Based on extensive experiments using public benchmarks, we show our approach
greatly improves the results of state-of-the-art systems especially on hard matching tasks.

Index Terms—Data integration, Class-based matching, Direct matching, Instance matching, Semantic Web.

F

1 INTRODUCTION

A large amount of datasets have been made available
on the Web as a result of initiatives such as Linking
Open Data. As a general graph-structured data model,
RDF1 is widely used especially for publishing Web
datasets. In RDF, an entity, also called an instance, is
represented via 〈subject, predicate, object〉 statements
(called triples). Predicates and objects capture attributes
and values of an instance, respectively (terms that are
used interchangeably here). Fig. 1 shows an example
of a RDF graph representing two instances (Belmont in
France and Belmont in California) by the four triples:
〈db:Belmont_France, rdfs:label, ’Belmont’〉,
〈db:Belmont_France, db:country, db:France〉,
〈db:Belmont_California, rdfs:label, ’Belmont’〉
and 〈db:Belmont_California, db:country,
db:Usa〉.

db:Belmont_France 

‘Belmont’

rdfs:label

db:country
db:France 

db:Belmont_California  rdfs:label
db:country db:Usa 

Fig. 1. An Example of a RDF Graph.

Besides RDF, OWL2 is another standard language for
knowledge representation, especially for capturing the
“same-as” semantics of instances. Using owl:sameas,
data providers can make explicit that two distinct URIs
actually refer to the same real world entity. The task of

1. http://www.w3.org/RDF/
2. http://www.w3.org/TR/owl-features/

establishing these same-as links is known under various
names such as entity resolution and instance matching.

There are semantic-driven approaches that uses specific
OWL semantics, such as explicit owl:sameas state-
ments, to allow the same-as relations to be inferred via
logical reasoning. Complementary to this, there are data-
driven approaches that derive same-as relations mainly
based on attribute values of instances. Namely, two
instances are considered the same when they have many
attribute values in common. While they vary with re-
spect to the selection and weighting of features, all data-
driven approaches are built upon the same paradigm
of direct matching, namely they directly compare the
instance representations. Hence, they produce only high
quality results when there is sufficient overlap between
instance representations. Overlaps however, might be
small in heterogeneous datasets; especially, because the
same instance represented in two distinct datasets may
not use the same schema.

nyt:5962 

‘Belmont’ rdfs:label

’37.52’ geo:lat

Fig. 2. Another Example of a RDF Graph.

For example, the instances nyt:5962 (from Fig. 2),
db:Belmont_France and db:Belmont_California
(from Fig. 1) shares the same rdfs:label value (i.e.,
the string ’Belmont’). However, rdfs:label is the
only attribute in which overlaps can be found as the
source and target graphs use distinct schemas. This
overlap alone is not sufficient to determine whether
nyt:5962 is the same than db:Belmont_France (or
db:Belmont_California). In this scenario of instance
matching across heterogeneous datasets, direct matching

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

alone often cannot deliver high quality results.
Contributions. We provide a (1) detailed analysis of

many datasets and matching tasks investigated in the
OAEI 2010 and 2011 [1] instance matching benchmarks.
We show that tasks greatly vary in their complexity.
There are difficult tasks with a small overlap between
datasets that cannot be effectively solved using state-
of-the-art direct matching approaches. Aiming at these
tasks, we propose to use direct matching in combination
with (2) class-based matching.

Given a class of instances from the source dataset,
called the class of interest, and a set of candidate matches
retrieved from the target via direct matching, class-based
matching helps to refine the candidates by filtering out
those that do not map to the class of interest. However,
it does not assume that the class semantics is explicitly
given so that a direct matching at the class level is
possible between the source (e.g. Drugs) and target (e.g.
Medication). Instead, class-based matching uses the idea
that the correct matches to a set of source instances that
form a class, should also form a class, i.e. should be
similar among themselves (e.g. share some data attribute
/ value). Then, by comparing the candidates in a non-
trivial way, class-based matching can leverage a subset of
target candidates that are more likely to be the positive
matches to the source instances. During this process,
there is no comparison between source and target but
only data from the target is used for matching.

For example, in Table 1, the instances nyt:2223
and nyt:5962 from the source dataset belong
to the (implicit) class “cities in California”. The
candidates matches from the target dataset are
db:San_Francisco, db:Belmont_France and
db:Belmont_ California, as depicted in Fig. 3.

db:Belmont_California 

db:Belmont_California 
db:Belmont_France 

Candidates for nyt:2223 Candidates for nyt:5962

Fig. 3. Candidates for nyt:2223 and nyt:5962.

In this example, class-based matching would select
db:Belmont_California and db:San_ Francisco
as correct matches because this subset of instances are
the most similar among the candidates. In this example,
they have the predicate db:country and value db:Usa
in common, as shown in Table 1.

This matching does not involve any direct com-
parison between instances in the source and target
datasets. Also, it does not assume the class to which
db:Belmont_California and db:San_Francisco
belong to is explicitly given, so that it can be directly
compared with “cities in California”. Instead, a latent
instance-based representation is inferred from the three
candidates retrieved from the target in this example.

TABLE 1
Instances represented as RDF triples.

Source Dataset
Subject Predicate/Attribute Object/Value
nyt:2223 rdfs:label ’San Francisco’
nyt:5962 rdfs:label ’Belmont’
nyt:5962 geo:lat ’37.52’
nyt:5555 rdfs:label ’San Jose’
nyt:4232 nyt:prefLabel ’Paris’
geo:525233 rdfs:label ’Belmont’
geo:525233 in:country geo:887884
geo:525233 geo:lat ’37.52’

Target Dataset
Subject Predicate/Attribute Object/Value
db:Usa owl:sameas geo:887884
db:Paris rdfs:label ’Paris’
db:Paris db:country db:France
db:Belmont France rdfs:label ’Belmont’
db:Belmont France db:country db:France
db:Belmont California rdfs:label ’Belmont’
db:Belmont California db:country db:Usa
db:San Francisco rdfs:label ’San Francisco’
db:San Francisco db:country db:Usa
db:San Francisco db:locatedIn db:California
db:San Jose California rdfs:label ’San Jose’
db:San Jose California db:locatedIn db:California
db:San Jose Costa Rica rdfs:label ’San Jose’
db:San Jose Costa Rica db:country db:Costa Rica

We (3) evaluated this approach called SERIMI using
data from OAEI 2010 and 2011, two reference bench-
marks in the field, and compared the results with OAEI
results as well as those obtained from other state-of-
the-art systems. These extensive experiments show that
SERIMI yields superior results. Class-based matching
achieved competitive results when compared to the di-
rect matching; most importantly, it was complementary
to it; i.e. achieved good performance when direct match-
ing’s performance was bad. Thus, using only a simple
combination of the two, our approach could greatly
improve the results of existing systems. Considering all
tasks in OAEI 2010, it increases average F1 result of
the second best by 0.21 (from 0.76 to 0.97). For 2011
data, SERIMI also greatly improves the results of re-
cently proposed approaches (PARIS [2] and SIFI-Hill [3]).
Compared to the best system participated at OAEI 2011,
SERIMI achieved the same performance. However, while
that system leverages domain knowledge and assumes
manually engineered mappings, our approach is generic,
completely automatic and does not assume any training
data.

Outline. This paper is organized as follows: In Section
2, we introduce some preliminary definitions. In Section
3, we provide an overview of the instance matching
process implemented by SERIMI. In Section 4, we dis-
cuss class-based matching problem and in Section 5 we
propose a solution. In Section 6, we present a measure
of complexity and a detailed analysis of matching tasks
based on this measure. This section also contains the
results of our experiments, where we compare SERIMI
with state-of-the-art approaches. In Section 7, we discuss
related works. Finally, we conclude in Section 8.

2 PRELIMINARY DEFINITIONS
In this section, we present some important definitions.

3

Data. We use an RDF-based graph-structured model
to accommodate different kinds of structured data.

Definition 1 (Data Graph): The data is conceived as a
set of graphs G. Let U denote the set of Uniform
Resource Identifiers (URIs) and L the set of literals, every
G ∈ G is a set of triples of the form 〈s, p, o〉, where s ∈ U
(called subject), p ∈ U (predicate) and o ∈ U ∪L (object).

Every instance (set of instances) is represented as a set
of triples.

Definition 2 (Instance Representation): It is defined as:
IR(G,S) = {〈s, p, o〉 |〈s, p, o〉 ∈ G, s ∈ S}, where G is
a graph and S a set of instances in G. It yields a set
of triples in which s ∈ S appears as the subject. We
denote the set of objects associated with an instance s
over the predicate p in G as O(s, p,G), with O(s, p,G) =
{o|〈s, p, o〉 ∈ G}.

The representation of a single instance s is IR(G, {s}).
Features. First, we introduce the concept of features

of a set of instances X , and then, we define a class, an
important concept used throughout this paper.

Definition 3 (Features): Let G be a dataset and X be a
set of instances in G. The features of X are:
• A(X) = {p|(s, p, o) ∈ IR(G,X) ∧ s ∈ X},
• D(X) = {o|(s, p, o) ∈ IR(G,X) ∧ s ∈ X ∧ o ∈ L},
• O(X) = {o|(s, p, o) ∈ IR(G,X) ∧ s ∈ X ∧ o ∈ U},
• T (X) = {(p, o)|(s, p, o) ∈ IR(G,X) ∧ s ∈ X}.
The combined set of features of X is

F (X) = A(X) ∪D(X) ∪O(X) ∪ T (X)

Intuitively, A(X) is the set of predicates, D(X) the set
of literals, O(X) the set of URIs, and T (X) is the set of
predicate-object pairs that appear in the representation
of X .

Considering X ={db:Belmont_California},
its features would be: A(x) ={rdfs:label,
db:country}, D(x) = { ’Belmont’}, O(x) ={db:Usa},
and T (x) ={(rdfs: label, ’Belmont’), (db:country,
db:Usa)}. Consequently, F (X) ={ rdfs:label,
db:country, ’Belmont’, db:Usa (rdfs: label,
’Belmont’), (db:country, db:Usa)}.

To avoid misconception, we define a class such as:
Definition 4 (Class): Let G be a dataset and X a set of

instances in G, X is a class if ∀x ∈ X : F ({x}) ∩ F (X −
{x}) 6= ∅.

A class should be understood as a set of instances
where each instance in this set must share at least one
feature in common to any other instance in this set. This
definition considers any feature relevant because we can-
not assume that instances (in the heterogeneous setting)
will share any class-related feature (A(•)). For example,
in a heterogeneous dataset, two distinct instances in the
same class may have different predicates with the same
semantics. One may have the predicate locatedIn with
value ”UK” and another the predicate placedIn with
value ”UK”. In this case, A(•) features does not define
their syntax similarity (our approach only consider the
syntactical similarities), but still we can consider they

are similar based only on the value ”UK”. Especially in
heterogeneous data, this definition is important because
instances of a class may not necessarily share the same
predicates but at least their values.

In addition, one purpose of class-based matching is to
find a set of instances (among all candidates) that form
a concise class, i.e. where the similarity (w.r.t. to F (•)) of
its constituent instances is maximized. Also, class-based
matching tries to maximize the number of instances in
the class that matches to the source instances. In this
process, only the candidate instances are considered.

3 OVERVIEW OF THE APPROACH

In this section, we present an overview of SERIMI, our
solution for instance matching.

S={si,…,sn}, T={ti,…,tn}

Candidate  
Selec,on 

SERIMI 

C(S)={C(si),…,C(sn)}
Direct 

 Matching 
Class‐Based 
 Matching 

M(S)={M(si), …, M(sn)}

Fig. 4. The instance matching in SERIMI.

The process of instance matching performed by SER-
IMI is illustrated in Fig. 4. SERIMI focuses on the prob-
lem of instance matching across heterogeneous datasets. In
particular, the inputs are conceived to be partitioned
into two datasets, the source S and target T . For every
instance in s ∈ S, the goal is to find matching instances
t ∈ T , i.e. s and t refer to the same real-world object.
This matching is performed in two main steps, candidate
selection and match refinement.

Candidate Selection. For each s ∈ S, we firstly
perform a low cost candidate selection step to obtain a
candidate set C(s) ⊂ T . The union of all candidate sets
is denoted as C(S) = {C(s)|s ∈ S}. This step reduces the
number of comparisons needed to find matches between
the source and target, i.e., from a maximum of |S| × |T |
comparisons to |S| × |C(s)max|, where C(s)max is the
set with the largest number of candidates among all
candidate sets in C(S).

Existing blocking techniques [4], [5], [6] can be used
to quickly select candidates. Typically, a predicate
(a combination of predicates) that is useful in
distinguishing instances is chosen, and its values
are used as blocking keys. In this setting of cross-
dataset matching, a predicate in the source is chosen
(e.g. rdfs:label) and its values (e.g. ’San Francisco’.)
are used to find target candidate instances that have
similar values in their predicates. Using the current
example, the candidates matches for S ={nyt:2223,
nyt:5962, nyt:5555} would be C(nyt:2223) =
{db:San_Francisco} , C(nyt:5962) =
{db:Belmont_California, db:Belmont_ France}
and C(nyt:5555) = {db:San_Jose_ California,
db:San_Jose_Costa_Rica}, in all sets the candidates

4

share the same value of the predicate rdfs:label
with the source instance.

Particularly in this work, to generate the candidates,
we used Boolean queries over the tokens of candidate
labels, where the tokens of the source labels where key-
words in the queries. Standard data processing was used
(e.g. to make tokens lowercase) and stop words were
removed (e.g. the, an, a, etc.). These Boolean queries
guarantees that candidates are retrieved when at least
one token in the source and target values are the same.
Although effective, this method can be improved even
further, for example, by using techniques of [7].

After the candidates are determined, a more refined
matching step is performed to find correct matches,
M(s) ⊆ C(s). For this, it is applied state-of-the-art
approaches that perform more complex direct matching.
Usually, instead of a simple blocking key, they use a
combination of weighted similarity functions defined
over several predicate values [3], [2].

Direct Matching. In direct matching, two given in-
stances s and t are directly compared. They are consid-
ered as a match when their similarity, sim(s, t), exceeds a
threshold δ. Typically, sim(s, t) is captured by an instance
matching scheme, which is a weighted combination of
similarity functions (Edit Distance, Jaccard, ect.) defined
over the predicate values of s and t [3], [2]:

sim(s, t) =
∑
p∈P

wp · sim(O(s, p, S), O(t, p, T)) > δ (1)

The above scheme assumes that s and t have some
common predicates p based on which they can be di-
rectly compared (e.g. rdfs:label, db:incountry). In
the heterogeneous setting, S and T may exhibit differ-
ences in their schemas. Instead of assuming p, more gen-
erally, we can define the instance matching problem in
this setting based on the notion of comparable predicates
〈ps, pt〉. The predicate ps is a predicate in S, whose values
can be compared with those of pt, a predicate in T .

For example, the instance nyt:4232 does not share
any predicate with the target instances but we can
assume that the predicate nyt:prefLabel (ps) is com-
parable to the predicate rdfs:label (pt) because they
have a similar range of values. Solutions, which specif-
ically target this setting of cross-datasets matching, em-
ploy automatic schema matching or manually find the
pairs of comparable predicates [2], [8], [9]. Let Pst be
the set of all comparable predicates, we can define the
instance matching scheme for this setting as follows:

sim(s, t) =
∑

〈ps,pt〉∈Pst

w〈ps,pt〉sim(O(s, ps, S), O(t, pt, T)) > δ (2)

The direct matching paradigm has proven to be use-
ful in the homogeneous setting where instances share
some common predicates p. In the heterogeneous setting,
we showed above that this paradigm would require
some pairs of comparable predicates. Since these direct

overlaps at the level of predicates (or values) between
instances may be too small to perform matching in the
heterogeneous setting, we propose class-based matching.

In combination with direct-matching, class-based
matching can be applied on top of the candidate se-
lection step. As illustrated in Fig. 4, candidate selection
yields a set of candidates C(S), which is then further
refined by a module that combines class-based and direct
matching to obtain M(S) = {M(si), ...,M(sn)}, where
∀i.M(si) ⊆ C(si) ∈ C(S).

Considering our example, the set M(S) for those
candidate sets would be: M(S) ={M (nyt:2223),
M (nyt:5962), M (nyt:5555)}.

With:
• M (nyt:2223) = {db:San_Francisco},
• M (nyt:5962) = {db:Belmont_California} and
• M (nyt:5555) = {db:San _Jose_California}.
SERIMI. This paper focuses on class-based matching.

Existing works are adopted for the candidate selection
and direct matching components of SERIMI. As dis-
cussed before, the candidate sets C(s) ∈ C(S) are deter-
mined for each instance s ∈ S using a predicate value of
s as key. The predicate is selected automatically based on
the notion of coverage and discriminative power of pred-
icates, also employed by [9]. Then, for direct matching,
we use simple schema matching to compute comparable
predicates Pst. The matching between a source instance s
and a target instance t is then performed using values of
predicates in Pst. As sim(s, t), we use Jaccard similarity.
The main difference to existing works lies in the selection
of the threshold: for this, we use the same method that
we propose for class-based matching.

We observe in the experiments that a simple combina-
tion of direct- and class-based matching was sufficient
to produce good results. In SERIMI, they are treated as
black boxes that yield two scores. SERIMI multiplies and
normalizes these scores to obtain a value in [0,1].

4 CLASS-BASED MATCHING: THE PROBLEM

4.1 The problem
Given the source instances S and their candidate sets
C(S), class-based matching it the problem of finding
the correct matches M∗(S) to S when s ∈ S and
t ∈ C(s) ∈ C(S) cannot be directly compared because
they do not share any common feature (syntactically or
semantically). Departing from this, the only information
that is considered to find correct matches to s ∈ S are
the candidate instances t ∈ C(s) ∈ C(S).

Particularly, class-based matching is build upon the
observation that matching is performed for a class of
source instances. That is, all s ∈ S belongs to a specific
class3. Our assumption is that if S is a class (they
share common features), then the set M∗(S) of correct
matches for s ∈ S should also belong to a class, i.e.,

3. Notice that when the input S captures different classes, it can be
partitioned into sets of instances representing specific classes [10].

5

the target correct matches M∗(S) should share some
common features among themselves.

Using this assumption, the challenge of finding M∗(S)
sums up to find a subset M(S) of the instances t ∈
C(s) ∈ C(S) that forms the most concise class, i.e. where
the similarities of the instances in M(S) is maximized or
in the optimal case, M(S) =M∗(S).

In the current example, the set
{db:Belmont_California, db:San_Francisco
and db:San_Jose_California} form
a more concise class than the set
{db:Belmont_France, db:San_Francisco and
db:San_Jose_California}. Precisely, the candidate
db:Belmont_California shares the predicate
db:country and value db:Usa with the instance
db:San_Francisco, which shares the predicate
db:locatedIn and value db:California with the
instance db:San_Jose_California. Consequently,
class-based matching would consider the former set as
more likely to contain the correct matches for the source
instances than the latter set.

At this point, should be clear that class-based match-
ing does not directly compare s with a candidate t ∈
C(s). Rather, it determines whether t is a match or not
based on its class membership, i.e. whether it “belongs
to” M∗(S). Here, M∗(S) acts as an idealized instance-
based representation of the target class of interest. In
practice, M∗(S) is not given but stands for the actual
result to be determined by instance matching.

4.2 Formal Definition

The class-based matching resembles the unweighted set-
cover problem. They have substantial differences but in
the core, class-based matching also wants to find a set
that minimize (or maximize) some criteria, subject to
some constraints.

In the unweighted set cover problem, given a set E =
{e1, . . . , en}, some subsets of those elements B1, . . . , Bm
where each Bj ⊆ E. The goal is to find a collection of
subsets that covers all E; that is, we wish to find an I ⊆
{1, . . . ,m} that minimizes

∑
j∈I 1 subject to

⋃
j∈I Bj =

E.
In our case, we assume E = C = (M∗(S) ∪M∗(S)−),

C is the set of candidates, which is the union of M∗(S)
(the set of matches to S) and M∗(S)− (the set of non-
matches to S). Also, we assume Bj =M(sj) where each
M(sj) ⊆ C(sj) ⊆ C and C(sj) ∈ C(S). The goal is to
find a collection of subsets that cover only M∗(S), that
is, we wish to find an I ⊆ {1, . . . ,m} that minimizes∑
j∈I 1, subject to

⋃
j∈I Bj =M∗(S).

This problem can be rephrased into the maximization
problem: the goal is to find a collection of subsets
that cover only M∗(S), that is, we wish to find an
I ⊆ {1, . . . ,m} that maximizes

∑
j∈I |M(sj) ∩ M∗(S)|,

subject to
⋃
j∈IM(sj) ∩M∗(S)− = ∅.

Differently from the set-cover problem, the universe
that we want to cover (M∗(S)) is undefined. It is a

subset of the entire universe E. Then, to accommodate
the fact that M∗(S) is undefined but we have a heuristics
that approximates M(S)∗, the maximization problem
consists entirely in finding this approximation, i.e. in
finding M∗(S). Therefore, the main idea behind class-
based matching can be formalized as follows:

Definition 5 (Class-based Matching): To find the solu-
tion for the class-based matching problem consists of
computing

M∗(S) ≈ argmax
M(S)∈M

∑
M(s)∈M(S)

∑
t∈M(s) Sim(t,M(S))∑

M(s)∈M(S) |M(s)|
+ Z(S)

Subject to:
Sim(t,M(S)) > δ and
M(S) = {M(s)|s ∈ S :M(s) ⊆ C(s) ∈ C(S)}

(3)

where M is the set containing all possible M(S)
as elements. The term Sim(t,M(S)) > δ captures the
heuristic that avoid non-matches, which would map to
the initial constraint

⋃
j∈IM(sj)∩M∗(S)− = ∅. Precisely,

Sim(t,M(S)) is an arbitrary function (e.g., Jaccard) that
returns the similarity between an instance t and an
instance-based class representation M(S), δ is a similar-
ity threshold and

Z(S) =

∑
s∈S H(s)

|S|
, with H(s) =

{
0 if |M(s)| = 0
1 otherwise (4)

Note that Sim(t,M(S)) operates over features extracted
from the instance t and instances in the sets in M(S).
This will be detail further, in our proposed solution to
this problem.

Also note Z(S) is simply an auxiliary term introduced
to deal with the general case where M(s) might be
empty. It helps to score higher a solution set M(S) ∈M
where the majority of M(s) ∈ M(S) has cardinality
higher than zero; therefore, avoiding solution sets with
many empty matches. This term is not needed in the
setting where there always exists at least one candidate
for a given source instance s. In this case, we can simplify
Eq. 3 removing Z(S) and adding the constraint that
|M(s)| > 0.

Intuitively, the idea is to find an approximate solution
M∗(S) ∈ M, which contains at least one candidate for
every source instance s (considering |M(s)| > 0 in Eq.
3). Comparing to all the other candidate solutions in M,
M∗(S) is the most similar to the instances it consists of
(c.f. Sim(t,M(S)) in Eq. 3). That is, M∗(S) is not only
the result but at the same time, acts as the class that is
compared with the candidates instances t ∈ C(s) ∈ C(S).

Solving this problem requires finding the threshold δ,
enumerating of all possible sets M, and determining the
optimal M∗(S). Since this enumeration could be very
large, i.e., |M| = 2

∑
s∈S |C(s)| (because |M(S)| = |S|),

we propose an approximate solution to this that does
not require a full enumeration. Also, we show how to
obtain a more compact representation of M∗(S) and to
automatically choose δ.

6

5 CLASS-BASED MATCHING: A SOLUTION

We will first present the main idea and then discuss
extensions to this basic solution.

5.1 Basic Solution

Class-based Matching. Given a set of instances S and
the candidate sets C(S) = {C(s1), . . . , C(sn)}, we for-
mulate class-based matching as the one of finding the
instances t from each candidate set (i.e. t ∈ C(s) ∈ C(S))
that are similar to the candidate sets C(S).

Our method starts computing a score of similarity
between t ∈ C(s) and C(S) itself, i.e., Sim({t}, C(S)).
In this process C(S) is considered the class of interest
but not the solution set M(S); differently from the
formal problem definition where M(S) is both the class
of interest and a solution set. In this approximation,
we depart from C(S) to obtain the solution set M(S),
therefore avoiding to enumerate all possible M(S) ∈M,
as discussed before.

Intuitively, given t and any candidate set C(s) ∈ C(S),
if F ({t}) does not share any feature with F (C(s)), then
t is not similar to any instance in this candidate set. If t
is not similar to any candidate set C(s) ∈ C(S), it cannot
form a class with any candidate instance; therefore,
based on our assumption, it cannot be a correct match
for s. Contrarily, a candidate t that are more similar to
other candidate sets are more likely to be form a class to
other candidates, and therefore, can be a correct match.
This heuristic is implemented as follows.

The computation of Sim({t}, C(S)) obtains a score for
each individual instance t ∈ C(s) ∈ C(S). Then, the
final solution set M(S) is composed of M(s) ⊆ C(s),
where for all t ∈ M(s), Sim({t}, C(S)) > δ. Below, we
define Sim and further we describe how we compute
the threshold δ.

Sim(t, C(S)) =
∑

C(s′)∈C(S)−

SetSim({t}, C(s′))
|C(s′)|

(5)

where t ∈ C(s) and C(S)− = C(S) \ C(s).
Observe that in Eq. 5, t ∈ C(s) is only compared to the

complement sets of C(s). This avoids candidates that are
dissimilar to other candidate sets to obtain larger scores
when their features are abundant in C(s). Intuitively,
Eq. 5 captures the comparisons between t and candidate
sets in C(S)− where the individual score SetSim({t},
C(s′)) is weighted by the cardinality of C(s′) such that
a C(s′) with high cardinality has a smaller impact on
the aggregated similarity measure. We do this to capture
the intuition that small sets containing only a few rep-
resentative instances (captured by only a few features)
represent better the class of interest.

We further normalize the result of Eq. 5 by the maxi-
mum score among all instances in C(s) as

Sim(t, C(s), C(S)) =
Sim(t, C(S))

MaxScore(C(s), C(S))
(6)

t11 

t12 

t13 

t14 

t21 

t22 

t23 

t31 

t32 

t33 

C(s1) C(s2) C(s3)

0.98 

t12 

t13 

t14 

t21 

t22 

t23 

t31 

t32 

t33 

C(s1) C(s2) C(s3)

0.98 

0.5 

0.33 

0.07 

0.23 

0.12 

0.22 

1.0 

0.68 

0.24 

C(s1) C(s2) C(s3)
a) b) c)

Fig. 5. (a) Class-based similarity score for the candidate
t11 is obtained by comparing it with C(s2) and C(s3), (b)
the score for t11 and (c) the scores for all other candidates.

where

MaxScore(C(s), C(S)) =

MAX{Sim(t′, C(S))|t′ ∈ C(s) ∈ C(S)} (7)

This yields a class-based similarity score that is in
[0, 1]. Using this function, an instance t is considered as
a correct match for s, if Sim(t, C(s), C(S)) is higher than
a threshold δ or when it is the top-1 result. We will refer
to these two variants as the Threshold and the Top-1
approach, respectively.

The Top-1 approach makes sense for those cases in the
heterogeneous scenario, where datasets are duplicate-
free or one-to-one mapping between a source and a
target instance can be guaranteed. In this case, as every
instance in every dataset stands for a distinct real-world
entity, there exist at most only one correct match in the
target for every instance in the source (i.e. likely the
top-1). In the other cases where there are one-to-many
matches, the Threshold approach is used. Notice that the
Threshold approach can also be used in the one-to-one
matching scenario. As we will show empirically, it yields
competitive accuracy to the Top-1 in these cases.

Class-based matching is illustrated in Fig. 5 for the
instance t11, where it is compared to the candidate sets
C(s2) and C(s3), where C(S)− = {C(s2), C(s3)}. Notice
that, in the end, Sim(t11, C(S)) compares the features of
F ({t11}) to F (C(s2)) and to F (C(s3)). This is done for
all instances in C(s1) and the one with the highest score
Sim is assumed to be the correct match for s1. Notice that
for C(s2), C(S)− is defined as C(S)− = {C(s1), C(s3)}.
Alg. 1 illustrates the computation of Sim.

Similarity Function. Now, we introduce
SetSim(X1, X2), from Eq. 5, which captures the
similarity between two sets of instances X1 and X2

based on their set of features F (X1) and F (X2):

SetSim(X1, X2) = FSSim(F (X1), F (X2)) (8)

where FSSim(F (X1), F (X2)) is the function captur-
ing the similarity between the two sets of features F (X1)
and F (X2).

Early work such as the one by Tversky [11] shows that
the similarity of a pair of items depends both on their
commonalities and differences. This intuition is applied
in similarity functions used for instance matching, which

7

Algorithm 1 SimScores(C(S)).
1: scores← ∅
2: for c(s) ∈ C(S) do
3: C(S)− ← C(S) \ C(s)
4: scorec(s) ← ∅
5: for t ∈ C(s) do
6: scoret ← 0
7: for c(s)′ ∈ C(S)− do

8: scoret ← scoret +
SetSim({t},C(s)′)

|c(s)′|
9: end for
10: scorec(s) ← scorec(s) ∪ scoret
11: end for
12: scores← scores ∪ scorec(s)
13: end for
14: maxscore← max(scores)
15: for scorec(s) ∈ scores do
16: for i in 1..|scorec(s)| do
17: scorec(s)[i]←

scorec(s)[i]

maxscore
18: end for
19: end for
20: return scores

like Jaccard similarity, gives the same weight to com-
monalities and differences. This is suitable for matching
instances because commonalities help to infer that two
instances might be the same while differences support
the conclusion that they are not.

For class-based matching, we depart from this to give
a greater emphasis on commonalties. We do so because
the amount of features that a class of instances have
in common is typically small compared the amount of
features that are specific to individual instances. For
deciding whether an instance belong to a class or not, we
consider the common features to be more characteristic
for the class. Also, they are more distinctive due to their
scarcity. Features that are specific to individual instances
are less representative for the class, and also convey
more noise, due to their abundance. We propose the
following function to support this intuition:

FSSim(f1, f2) =

{
0 if |f1 ∩ f2| = 0

|f1 ∩ f2| − (
|f1−f2|+|f2−f1|

2|f1∪f2|
) otherwise

(9)
where f1 and f2 stand for F (X1) and F (X2), re-
spectively. FSSim(f1, f2) only considers f1 and f2 to
be similar when there exist some commonalities (i.e.
FSSim(f1, f2)=0 if |f1 ∩ f2| = 0). The first term |f1 ∩
f2| has a much larger influence, capturing common-
alities as the number of overlaps between f1 and f2,
which is always larger than 1. While the second term
(|f1−f2|+|f2−f1|2|f1∪f2|), capturing the differences, is always
smaller than 1. In fact, given tj and tk that have n
and n − 1 features in common with ti, respectively,
FSSim always returns a higher score for tj . Notice that
FSsim does not aim to capture any class semantics, it
is a simple set similarity function tailored towards the
commonalities, for the reason that we discussed.

For example, assuming f1 =
F ({db:Belmont_California}), f2 =
F ({db:Belmont_France}) and f3 = F (C(nyt:5555));
then, FSSim(f1, f3) = 3.65, while FSSim(f2, f3) = 1.5.
The scores reflect the fact that f1 has 4 features in

common with f3, while f2 only 2.
This bias towards commonalities is captured by the

following theorem, which does not hold for the Jaccard
function (see Appendix A):

Theorem 1: If |fi ∩ fj | > |fi ∩ fk| then FSSim(fi, fj) >
FSSim(fi, fk).

Note the proposed function does not completely ne-
glect the role of differences. In particular, when two
instances have the same number of overlaps with a class,
their differences to that class decide which ones is a
better match.

Importantly, to avoid to bias the solution towards a
specific feature set, we considered all features (A(·), D(·),
O(·) and T (·)) equally determinant in our setting. As we
observed empirically, on average, this strategy produced
better results than the settings where we removed any
feature set. We acknowledge that a fine-grained weight-
ing of the features may improve the method; however,
this requires an non-trivial solution, to be consider as
future research.

5.2 Reducing the Number of Comparisons

In order to compute a score for every instance in each
candidate set C(s) ∈ C(S), our class-based matching
approach requires a maximum of |C(S)|×|C(s)max| com-
parisons, where C(s)max ∈ C(S) denotes the candidate
set with the largest number of instances. Since |C(S)| can
be large, we propose to reduce the number of compar-
isons by reducing C(S) to a minimal subset C(S)∗ such
that the feature distribution of C(S)∗ differs only within
an error margin ε from the feature distribution of C(S).
Then, C(S)∗ is used in the line 3 of Alg. 1 instead of
C(S), i.e., C(S)− = C(S)∗\C(s). We define the feature set
and the distribution over elements in that set as follows:

Definition 6 (Feature Set): The feature set of C(S) is
F (C(S)) =

⋃
C(s)∈C(S) F (C(s)).

Definition 7 (Feature Distribution): A distribution over
the feature set X = F (C(S)), denoted by Pr(X), assigns
a probability p(x) to every feature x, i.e. the probability
of observing a feature x through the repeated sampling
of features from X :

p(x) = Pr{X = x} =
∑
C(s)∈C(S) |{x} ∩ F (C(s))|
|F (C(S))| × |C(S)|

where

1) p(x) ≥ 0 for all x ∈ X and
2)

∑
x∈X p(x) = 1.

In the ideal case, C(S)∗ contains a much smaller
amount of candidate sets compare to C(S), i.e.
|C(S)∗| << |C(S)|, while carrying the same amount
of information such that the similarity scores computed
for C(S)∗ and C(S) are the same. In order to capture
the differences in the provided information content, we
use the z-test, which is a standard method for analyzing
the similarity/difference between the distribution of a

8

sample and the distribution of the original population:

z-test =
(µ(sample)− µ(population))

(σ(population)√
size(sample)

)

where µ(·), σ(·) and size(·) denote the mean, the
standard deviation and the size, and population =
Pr(F (C(S))) and sample = Pr(F (C(S)∗)).

A brute force algorithm to solve this problem is to
enumerate all possible subsets of C(S), i.e., its power set
2C(S). Then, for each set in 2C(S), it picks the minimal
set C(S)∗ that has a distribution equivalent to the one
of C(S). In the worse case, this algorithm takes O(2C(S))
verifications to find C(S)∗, which is prohibitive even for
small C(S).

We note the attempt to find an optimal solution to this
problem may goes against our goal. We need to find the
set C(S)∗ ⊆ C(S) at very low cost so that the time spent
is smaller than the gain that can be achieved by using
C(S)∗ instead of C(S). We thus use an efficient greedy
algorithm that exploits the following intuition: a sample
is more similar to its population when it contains more
data from the population. Without enumerating and
evaluating each subset, it iteratively extracts and adds a
subset C(s) ∈ C(S) to the sample C(S)∗ until the z-test
between Pr(F (C(S))) and Pr(F (C(S)∗))) approach the
confidence value commonly used in the literature,4 or all
C(s) ∈ C(S) is added to C(S)∗. For faster convergence,
only features that occur more than once in the data are
considered in F (C(S)).

The procedure to obtain C(S)∗ is summarized in Alg.
2. In Sec. 6, we compare the time performance and
accuracy of Alg. 1 with and without this procedure.

Algorithm 2 CandidateSetsReduction(C(S)).
1: C(S)∗ ← ∅
2: µ← mean(p(C(S)))
3: σ ← stdv(p(C(S)))
4: for all C(s) ∈ C(S) do
5: C(S)∗ ← C(S)∗ ∪ C(s)
6: n← |C(S)∗|
7: M ← mean(p(C(S)∗))
8: SE ← σ√

n

9: z ← (M−µ)
SE

10: if z is in the confidence interval then
11: return C(S)∗

12: end if
13: end for
14: return C(S)∗

5.3 Selecting the Threshold
As discussed, the Top-1 approach can be used when the
datasets are duplicate-free. In all other cases, a threshold
selection method should be employed. Then, only in-
stances with similarity score above the computed thresh-
old δ are selected as matches. State-of-the-art methods
[3], [12] are supervised, relying on training data to find
the best threshold. We propose an unsupervised method,

4. which, under our assumption of normal distribution, is in
[−1.96, 1.96]

which only uses statistics that can be derived from
the computed scores. We cast the problem of threshold
selection as the one of finding the statistical outliers
among the similarity scores. In particular, we use two
bags of scores, one containing only the maximum scores
and the other contain all scores.

Definition 8 (Bag of Scores): Given the candidates C(S)
and the CoI C(S), the bag of all scores contains a score
for every t ∈ C(s) ∈ C(S), i.e., Scoresall = {Sim(t, C(S))
|t ∈ C(s), C(s) ∈ C(S)}. The bag of maximum scores
contains a score for every C(s) ∈ C(S), i.e., Scoresmax =
{MaxScore(C(s), C(S))|C(s) ∈ C(S)}.

The maximum scores constitute the starting point for
threshold selection. Intuitively speaking, two cases can
be distinguished: First, (1) we have maximum scores that
all are close to 1, and differences among them are small.
(2) In the second case, there are large variations among
scores. Some of them are low, approaching 0.

Note the first case corresponds to the setting where
correct matches are easy to find, i.e., at least one can-
didate with score close to 1 could be found for every
source instance. In this case, δ is simply defined based
on the minimum score in Scoremax. In this way, all
candidates with score in Scoremax are selected. This
strategy works for this “easy setting” because due to
the use of set-based similarity in class-based matching,
score differences among correct matches tend to be small
while differences between correct and incorrect ones
are much larger. Thus, incorrect matches typically have
scores much lower than the minimum score in Scoremax.

In the second “harder setting”, “bad” candidates were
detected, i.e., those with low scores in Scoremax. This
indicates that for some source instances, no correct can-
didates exist or could be found. However, we cannot
use the minimum score as before to filter these “bad”
candidates. It could be too low, or generally, not precise
enough to separate correct from incorrect matches. To
find δ in this case, we propose to detect outlier scores.
For finding outliers more precisely, we use the bag of all
scores, Scoreall, instead of Scoremax. Intuitively, candi-
dates that have an outlier score share fewer features in
common with the class of interest, thus can be regarded
as incorrect.

As a mechanism to implement the ideas discussed
above, we propose to use a method based on the Chau-
venet’s criterion [13], a statistical technique for outlier
detection.

Definition 9 (Chauvenet’s Criterion): Given the
mean µ and the standard deviation σ of the scores
in Scoreall, a score x ∈ Scoreall is an outlier if
Chauvenet(x) < c1, where

Chauvenet(x) = p(
µ− x
σ

)× |Scoreall|,

c1 is a confidence level5 and p(µ−xσ) is the probability6

of observing a data point x that is µ−x
σ times standard

5. Typically, it is set to 0.5 when using Chauvenet’s criterion.
6. We assume a normal distribution.

9

deviations away from the mean.
According to the Chauvenet’s criterion, there are no

outliers when σ < c2, another confidence level that is
typically set close to 0.7

Our procedure for threshold selection first extracts the
maximum score of each candidate set C(s) ∈ C(S) to
form Scoremax. When there are no outliers according to
the Chauvenet’s criterion, we set the threshold as the
minimum score in Scoremax. Otherwise, we iteratively
apply the Chauvenet’s criterion over Scoreall until no
further outliers can be detected: in every iteration, if
outliers are found and δ is the highest score among all
outliers, we remove all scores that are smaller than δ
from Scoreall; this pruned bag of scores is then used in
the next iteration. The maximum δ found during this
process is used as the threshold. Alg. 3 describes this
algorithm.

Algorithm 3 ThresholdBasedSelection(C).
1: Y ← getMaxScores(C)
2: L← getAllScores(C)
3: δ ← Array
4: if Y.standardDeviation < c2 then
5: return Y.min
6: end if
7: for all x ∈ L do
8: if L.mean− x < 0 then
9: continue;
10: end if
11: if chauvenet(L, x) then
12: C′ ← remove all scores ≤ x from C
13: δ.add(x)
14: δ.add(ThresholdBasedSelection(C′))
15: return δ.max
16: end if
17: end for
18: return 0

For example, for the scores in Fig. 5, the list of maxi-
mum scores Scoremax={0.98, 0.23, 1.0} has a standard
deviation much higher than the confidence level c2;
therefore, the algorithm is applicable. Considering all
scores Scoreall= {0.98, 0.5, 0.33, 0.07, 0.23, 0.12, 0.22, 1.0,
0.68, 0.24 }, this algorithm would select as threshold
δ = 0.68; therefore, all instances with scores smaller than
0.68 would be automatically rejected as a correct match.
Notice that 0.68 is much higher than 0.22, the minimal
of Scoremax.

6 EVALUATION

Our experiments are based on the OAEI 2010 and 2011
instance-matching track. We observed that SERIMI with
the proposed candidate set reduction algorithm was 20%
faster than SERIMI without it. Also, class-based match-
ing was useful and complementary to direct matching.
For OAEI 2010, this combination increased average F1
result of the second best by 0.21; and, for OAEI 2011
data, SERIMI improves the results of recently proposed
approaches, PARIS [2] and SIFI-Hill [3], by 0.44 and 0.09,
respectively. Compared to the best system participated
at OAEI 2011, SERIMI achieved the same performance.

7. In literature, σ < 0.011 is typically used.

However, as opposed to that, SERIMI does not assume
domain knowledge and manually engineered mappings.

Evaluation Metrics. We used the standard metrics
precision (proportion of correct matches among matches
found), recall (proportion of matches identified among
all actual matches) and F1 (harmonic mean between
precision and recall) to measure the result accuracy
(also employed by OAEI). To compute these metrics, the
provided reference mappings were used as the ground
truth.

F1 = 2× Recall × Precision
Recall + Precision

(10)

Data. We used all the OAEI 2010 data employed by
participants, which include the life science (LS) collection
containing DBPedia, Sider, Drugbank, Dailymed, Tcm
and Diseasome and the Person-Restaurant (PR) dataset.
From OAEI 2011, the datasets used were New York
Times (Nyt), DBPedia, Geonames and Freebase. Given
a pair of datasets, the task was to match instances in
one dataset to instances in the other. The source class
of instances for each dataset was defined by the OAEI.
Detailed information can be found in their website 8.
Table 2 and 3 show some relevant statistics related to
the datasets and matching tasks, respectively.

TABLE 2
Number of triples in each dataset.

Dataset Triples Dataset Triples
Nyt 350.349 Person11 9.000

Freebase 3.554.824 Person12 7.270
DBPedia >10.000.000 Person21 10.800

Geonames >10.000.000 Person22 5.944
Sider 96.204 Rest1 1.130
Tcm 111.021 Rest2 7.520

Dailymed 131.068 Drugbank 507.500
Diseasome 69.545 - -

Systems. All computed results were done using an
Intel Core 2 Duo, 2.4 GHz, 4 GB RAM, using a FUJITSU
MHZ2250BH FFS G1 248 GB hard disk. The SERIMI
implementation used in these experiments is available
for download9 at GitHub. It was implemented in Ruby.
Except for SIFI and PARIS, we copied all available results
as published in the OAEI benchmarks. We used the
available authors implementation10 for PARIS, and the
best effort implementation in Java for SIFI-Hill (SIFI).

6.1 Task Analysis
The suitability of direct matching and class-based match-
ing for a task is related to the complexity of the matching
task itself. So far, there is no method that suits all
kinds of matching tasks, because data are imperfect in
this heterogeneous setting. As we will show, the widely
employed assumption that attributes between datasets
largely overlaps is not true for all matching tasks, or for

8. http://oaei.ontologymatching.org
9. https://github.com/samuraraujo/SERIMI-RDF-Interlinking
10. http://webdam.inria.fr/paris/

10

all instances within a matching task. We observed the
accuracy of each matching technique largely depends
on the distribution of the predicates and values in the
source and target dataset. In order to obtain a better
understanding of how these distributions affect the ac-
curacy of a matching technique, below we propose the
use of coverage (Cov) and discriminative power (Disc)
as measures for analyzing the task complexity.

Cov(p, S,G) =
|{s|〈s, p, o〉 ∈ G ∧ s ∈ S}|

|S|
(11)

Disc(p, S,G) =
|{o|〈s, p, o〉 ∈ G ∧ s ∈ S}|
|{t|t = 〈s, p, o〉 ∈ G ∧ s ∈ S}|

(12)

where S is the given set of instances in the dataset G.
The coverage of a predicate p measures the number of

instances in S that p occurs as a predicate. A predicate
p with low coverage indicates that p occurs in a few in-
stances; therefore, when utilizing values of p for finding
matches, we may miss some candidates. The discrimi-
native power measures the diversity of predicate values.
A predicate p has low discriminative power when many
instances have the same values for p; therefore, using
values of p for matching, results in larger candidate sets.
Consequently, datasets with many predicates that have
low coverage and low discriminative power are harder
to match.

Using these two measures, we introduce a task com-
plexity measure TC that defines the complexity of
matching a set of instances S with T , where T =⋃
c∈C(S) c. First, we introduce the predicate complexity mea-

sure (PCM) that measures the complexity of matching a
set of instances X based on coverage and discriminative
power of a set of predicates P in G.

PCM(P,X,G) =

∑
a∈P Cov(a,X,G) +Disc(a,X,G)

2|P |
(13)

The size of the candidates sets in C(S) is also an
indication of complexity because sets with more candi-
dates may have more ambiguous candidates to filter out.
Therefore, we define the function Card(S). Smaller val-
ues for Card(S) indicate that C(S) has bigger candidate
sets.

Card(S) =
|C(S)|∑
c∈C(S) |c|

(14)

Finally, we introduce TC, defined as:

TC = 1− PCM(Ps, S,Gs)× PCM(Pt, T,Gt)× Card(S) (15)

where TC is a value in the interval [0,1], where 0 is
less complex and 1 more complex. Table 3 shows the
characteristics of each matching task. Fig. 9 shows the
tasks ordered by TC. With respect to that, Nyt-Geonames
is the most complex task, which on average has around
six candidate matches per instance. In this table, some
tasks are easier tasks because most of the candidate

sets contain only correct matches, or one instance per
candidate set (e.g. Sider-Tcm).

TABLE 3
Dataset pairs representing matching tasks, number of
comparable predicates (CP) for every task, number of

correct matches (Match), number of candidate matches
obtained from candidate selection (Cand), mean (MEAN)

and standard deviation (STDV) of the number of
candidates per instance.

Dataset Pairs CP Match Cand MEAN STDV
Nyt-DB-Corp 3 1965 3839 2.0 2.01
Nyt-DB-Geo 4 1920 9246 4.87 7.9
Nyt-DB-Per 5 4977 7937 1.61 1.02

Nyt-Freebase-Corp 2 3044 3398 1.15 0.37
Nyt-Freebase-Geo 3 1920 2234 1.19 0.43
Nyt-Freebase-Per 3 4979 5090 1.04 0.19

Nyt-Geonames 4 1789 10782 6.18 9.21
Dailymed-Sider 8 1592 1591 1.0 0.03
Diseasome-Sider 4 238 163 1.0 0.08
Drugbank-Sider 8 284 283 1.0 0.06
Sider-Dailymed 2 1634 1915 2.93 2.43
Sider-DB-Drugs 2 734 742 1.05 0.22

Sider-DB-SideEffect 2 775 960 1.25 0.56
Sider-Diseasome 4 173 192 1.2 0.57
Sider-Drugbank 8 1140 881 1.04 0.21

Sider-Tcm 2 171 168 1.0 0.08
Person11-Person12 6 500 1501 3.23 2.28
Person21-Person22 6 400 476 5.06 3.2

Rest1-Rest2 2 112 117 1.06 0.5

Fig. 6 shows the coverage and discriminative power
of predicates in the target datasets. In all these datasets,
there exist at least one predicate with 100% coverage
(e.g. drugbank:brandName, freebase:name). How-
ever, only in some cases, their discriminative power is
maximal (e.g. drugbank:brandName). The DBPedia,
Geonames and Freebase datasets seem to be the hardest
to match, as both coverage and discriminative power
of their predicates are the lowest. In these cases, many
predicates have to be used, which is only possible when
there are many corresponding predicates in the source.
Contrarily, the higher the coverage, the easier is the task
because more instances can be covered with fewer pred-
icates (the discriminative power of source predicates is,
however, irrelevant because only target predicate values
are used for finding matches). Fig. 7 shows predicates
in the source datasets that are comparable to target
predicates, and their coverage. It indicates there are
always some comparable predicates that can be used
(Table 3 explicitly shows the number of comparable
predicates for every task), and that their coverage is al-
ways maximal (except for Nyt). In summary, comparable
predicates exist for all the given tasks. However, direct
matching is harder for some tasks such as Nyt-Geonames
and Nyt-DB-Geo as they require using several predi-
cates due to low coverage and discriminative power
of target predicates. As the coverage is different for
different target instances in those tasks, direct matching
may not achieve its full performance due to the lack of
comparable predicates at instance level.

11

0.00 

1.00 

2.00 

rd
fs
:la
be

l 

rd
f‐
sc
he

m
a#
la
be

l 

si
de

r:
dr
ug
N
am

e 

si
de

r:
si
de

Eff
ec
tN
am

e 

rd
fs
:la
be

l 

di
se
as
om

e:
na
m
e 

rd
fs
:la
be

l 

dr
ug
ba
nk
:b
ra
nd

N
am

e 

dr
ug
ba
nk
:g
en

er
ic
N
am

e 

dr
ug
ba
nk
:s
yn
on

ym
 

rd
fs
:la
be

l 

re
st
:p
ho

ne
_n

um
be

r 

re
st
:n
am

e 

pe
rs
on

:s
oc
_s
ec
_i
d 

pe
rs
on

:p
ho

ne
_n

um
er
 

pe
rs
on

:d
at
e_
of
_b

ir
th
 

pe
rs
on

:s
ur
na
m
e 

pe
rs
on

:g
iv
en

_n
am

e 

pe
rs
on

:a
ge
 

pe
rs
on

:s
ur
na
m
e 

pe
rs
on

:g
iv
en

_n
am

e 

pe
rs
on

:d
at
e_
of
_b

ir
th
 

pe
rs
on

:a
ge
 

pe
rs
on

:s
oc
_s
ec
_i
d 

pe
rs
on

:p
ho

ne
_n

um
er
 

fr
ee
ba
se
:n
am

e 

fr
ee
ba
se
:v
al
ue

 

fr
ee
ba
se
:a
lia
s 

fr
ee
ba
se
:t
ex
t 

ge
o:
na
m
e 

ge
o:
al
te
rn
at
eN

am
e 

ge
o:
la
t 

ge
o:
lo
ng
 

ge
o:
la
t 

rd
fs
:la
be

l 

db
:n
am

e 

ge
o:
lo
ng
 

fo
af
:n
am

e 

fo
af
:s
ur
na
m
e 

fo
af
:g
iv
en

N
am

e 

TCM  SIDER  DISEASOME  DRUBANK  DAILYMED  REST2  PERSON12  PERSON22  FREEBASE  GEONAMES  DBPEDIA 

Co
ve
ra
ge
 |
 D
is
cr
im

in
a0

ve
 P
ow

er
 

A4ributes per Dataset 

Fig. 6. Coverage and discriminative power of predicates in the target datasets.

0.00 

0.25 

0.50 

0.75 

1.00 

rd
fs
:la
be

l 

si
de

r:
dr
ug
N
am

e 

rd
fs
:la
be

l 

di
se
as
om

e:
na
m
e 

rd
fs
:la
be

l 

dr
ug
ba
nk
:g
en

er
ic
N
am

e 

dr
ug
ba
nk
:s
yn
on

ym
 

dr
ug
ba
nk
:b
ra
nd

N
am

e 

rd
fs
:la
be

l 

da
ily
m
ed

:fu
llN

am
e 

da
ily
m
ed

:n
am

e 

da
ily
m
ed

:g
en

er
ic
M
ed

ic
in
e 

re
st
1:
ph

on
e_
nu

m
be

r 

re
st
1:
na
m
e 

pe
rs
on

1:
ag
e 

pe
rs
on

1:
so
c_
se
c_
id
 

pe
rs
on

1:
ph

on
e_
nu

m
er
 

pe
rs
on

1:
su
rn
am

e 

pe
rs
on

1:
gi
ve
n_

na
m
e 

pe
rs
on

1:
da
te
_o

f_
bi
rt
h 

co
re
:p
re
fL
ab
el
 

ge
o:
la
t 

ge
o:
lo
ng
 

SIDER  DISEASOME  DRUGBANK  DAILYMED  REST1  PERSON  NYT 

Co
ve
ra
ge
 

Predicates per Dataset 

Fig. 7. Coverage of predicates in the sources.

6.2 SERIMI Configurations

We evaluated 5 different configurations of SERIMI:
(1) We evaluated SERIMI’s performance without and
with candidate set reduction (algorithm in Sec. 5.2),
referred to as S and S+SR, respectively. (2) We removed
different features proposed for class-based matching,
namely predicates (S+SR-P), datatype properties (S+SR-
D), object properties (S+SR-O) and tuples (S+SR-T).
(3) We evaluated SERIMI’s performance with the
top-1 approach (S+SR+TOP1) and the threshold ap-
proach (S+SR+TH). (4) Further, direct matching is used
(DM), which is compared with SERIMI’s performance
(class-based matching) combined with direct matching
(S+SR+DM). (5) Finally, S+SR+DM+J uses Jaccard in-
stead of FSSim (Eq. 9). Except for S+SR+TOP1 and
S+SR+TH, top-1 was used instead of the threshold for
matching tasks with one-to-one matching. We measured
time efficiency and result accuracy for every configura-
tion, using all mentioned data collections in OAEI 2010
and 2011. The results are shown in Table 4 and Table 5,
respectively.

Candidate Set Reduction. We observed that with
candidate set reduction, SERIMI is 20% faster (average
performance of S is 61s vs. 49s for S+SR). The number
of candidate sets used in class-based matching could
be considerably reduced. Consequently S+SR performed
a much smaller number of comparisons. S+SR did not

compromise accuracy as average results for S and S+SR
were almost the same (F1 of 0.89 vs. 0.9).

Feature Removal. We could see that the performance
improvement resulting from using less features (S+SR
vs. S+SR-P, -D, -O and -T) is consistent but small in
most cases. Removing predicates (S+SR-P) has the largest
impact, where performance increased by 20%. This type
of features represented a large part of all features used.
Hence, processing was much faster without them. Re-
moving features, however, also had a small but consis-
tently negative impact on the accuracy. S+SR-P had the
greatest impact on efficiency as well as accuracy; without
predicates, F1 is 0.88 (a 0.02 loss in F1). Thus, while
removing this type of features yielded an efficiency gain
similar to using S+SR, it incurred greater loss in accuracy
(it exhibited lower gain to loss ratio). In general, the
results suggest that all proposed features are useful as
they contributed to higher accuracy.

Top-1 vs. Threshold. There were no significant dif-
ferences in time between the top-1 and the thresh-
old approach (S+SR+TOP1 and S+SR+TH performances
were similar). This suggests that selecting the thresh-
old using the method in Sec. 5.3 requires little effort
and can be done very efficiently. In terms of accuracy,
S+SR+TOP1 had better average performance (86% F1)
than S+SR+TH (84% F1). More specifically, S+SR+TOP1
yielded better results for tasks with one-to-one mappings
between source and target instances, i.e. when there
was only one correct match for every source instance.
However, S+SR+TOP1 exhibited lower performance than
S+SR+TH in two cases (50% F1 for Person21-Person22
and 56% F1 for Sider-Dailymed, compared to 86% and
81%, respectively), in which one-to-many mappings
were needed.

Direct Matching vs. Class-based Matching. The DM
(20s) approach was the fastest, followed by S+SR (50s),
S+SR+DM (55s) and S (61s). Class-based matching as
performed by S was expensive, requiring a much larger
number of comparisons than direct matching (DM). Us-
ing candidate set reduction (S+SR), performance could
be improved; S+SR is only 2.5 times slower than DM.

12

TABLE 4
Time performance for different SERIMI configurations, in seconds.

Datasets S S+SR S+SR+DM S+SR+DM+J DM S+SR+TH S+SR+TOP1 S+SR-P S+SR-D S+SR-O S+SR-T
Dailymed-Sider 22.6 14.57 20.41 29.87 17.34 14.15 14.15 15.33 14.44 14.03 13.93
Diseasome-Sider 1.75 1.38 1.45 1.86 1.71 1.46 1.37 1.36 1.41 1.44 1.36
Drugbank-Sider 8.85 8.12 8.84 10.79 8.33 7.79 7.64 7.67 8.62 7.84 7.56

Nytimes-DB-Corp 64.08 57.52 62.37 73.68 18.03 56.34 58.62 48.06 55.39 52.76 49.74
Nytimes-DB-Geo 606.43 440.71 470.12 435.19 78.63 441.12 437.56 365.62 421.33 430.98 413.31
Nytimes-DB-Per 159.13 167.14 196.53 190.75 96.07 172.58 167.27 145.19 163.92 163.29 162.24

Nytimes-Freebase-Corp 47.43 41.39 47.11 44.86 27.15 40.34 47.19 37.92 37.79 38.97 38.84
Nytimes-Freebase-Geo 33.41 33.34 39.44 38.81 21.99 32.25 35.93 28.38 31.91 34.59 34.05
Nytimes-Freebase-Per 78.76 74.68 91.79 87.95 57.56 75.29 73.65 70.04 77.12 71.94 72.7

Nytimes-Geonames 73.75 47.85 54.13 45.02 15.72 51.51 47.95 35.67 46.28 43.29 35.45
Person11-Person12 3.29 3.11 3.7 3.21 1.34 3.04 3.26 2.58 2.86 2.8 2.45
Person21-Person22 2.73 2.86 3.08 2.38 0.47 2.86 2.84 2.28 2.46 2.51 1.79

Rest1-Rest2 0.32 0.36 0.38 0.31 0.14 0.33 0.34 0.27 0.33 0.29 0.27
Sider-Dailymed 20.53 11.92 13.02 12.72 9.58 12.87 11.64 11.3 12.24 12.72 9.99
Sider-DB-Drugs 9.52 8.3 9.63 8.81 7.89 8.35 8.05 7.55 8.04 7.64 8.51

Sider-DB-SideEffect 4.37 4.1 3.63 3.38 2.3 3.5 3.35 2.42 2.72 2.68 2.67
Sider-Diseasome 1.05 0.56 0.71 0.67 0.48 0.54 0.55 0.48 0.54 0.56 0.52
Sider-Drugbank 22.77 18.05 16.76 17.53 10.84 14.42 14.09 12.94 13.41 14.24 12.99

Sider-Tcm 0.41 0.14 0.17 0.19 0.15 0.14 0.14 0.15 0.13 0.13 0.13
AVERAGE 61.11 49.27 54.91 53.05 19.77 49.41 49.24 41.85 47.42 47.51 45.71

Their combination (S+SR+DM) is slightly slower than
S+SR. In return, S+SR+DM achieved the best F1 per-
formance (93%). That is, SERIMI achieved the highest
accuracy when direct and class-based matching are com-
bined. S+SR+DM improved upon S+SR because DM
could reinforce the similarity between instances when
there was a direct overlap between the source and
target. In fact, overlaps existed in all matching tasks as
there were always some comparable predicates between
source and target. Thus, there were no cases in which
DM performed poorly. However, in some cases such as
Nyt-DB-Geo, S+SR achieved much higher F1 than DM
(81% vs. 69%). The combination of the two, S+SR+DM,
could leverage evidences used by both approaches to
further improve the results (82%). While this simple
combination led to better results on average, there was
one exception where DM yielded better performance
(Person11-Person12), and several cases in which S+SR
produced better results (Sider-Dailymed, Sider-DB- Side-
Effect, Sider-DIASEASOME).

Particularly, S and S+SR performed poorly in
Person11-Person12 (49% and 47%, respectively) because
features of the candidate instances (all of them) were
very similar (e.g. all contained phone, address and were
of the type person). Due to this, the class-based matching
produced similar scores to all candidates, which were
not sufficiently distinct to distinguish the correct matches
from the incorrect ones. In this task, the DM performed
better, because there were sufficient overlapping be-
tween the source and target instances to identify the
correct matches.

Jaccard Similarity vs. Set-based Similarity. Observe
also that the use of Jaccard in S+SR+DM+J as set simi-
larity decreased the average F1 from 93% to 87%. This
confirms our intuition that the commonalities are more
relevant than the differences to define similarity in our
problem setting. Regarding performance, S+SR+DM+J
(53s) was slightly better than S+SR+DM (54s), in average.

Task Complexity. Fig. 8 shows the connection between

time performances for S+SR, S+SR+DM and DM and the
number of triples in the candidate sets, which captures
the amount of data that has to be processed. Clearly,
more time was needed when more candidates and data
have to be processed. Time performance for all 3 config-
urations increased quite linearly with a larger amount
of data. To assess the complexity from the viewpoint
of accuracy, we used the TC measure discussed before.
Fig. 9 shows the connection between F1 performances
for S+SR, S+SR+DM and DM and TC. We observed there
was a trend between complexity and F1: F1 decreased as
complexity increased. Interestingly, we could see many
cases, including Person21-Person22 and Nyt-DB-Geo,
where S+SR and DM are complementary, i.e. S+SR had a
higher performance when DM had a lower performance,
and vice-versa. S+SR+DM was most helpful in these
cases as it could leverage the complementary nature of
these two approaches to improve the results.

0 

100 

200 

300 

400 

500 

SI
D
ER

‐T
CM

 

RE
ST
AU

RA
N
T1
‐R
ES
TA
U
RA

N
T2
 

SI
D
ER

‐D
IS
EA

SO
M
E 

D
IS
EA

SO
M
E‐
SI
D
ER

 

PE
RS
O
N
21

‐P
ER

SO
N
22

 

PE
RS
O
N
11

‐P
ER

SO
N
12

 

SI
D
ER

‐D
BP

ED
IA
‐S
ID
EE
FF
EC

T 

D
RU

G
BA

N
K‐
SI
D
ER

 

SI
D
ER

‐D
BP

ED
IA
‐D
RU

G
S 

SI
D
ER

‐D
A
IL
YM

ED
 

D
A
IL
YM

ED
‐S
ID
ER

  

SI
D
ER

‐D
RU

G
BA

N
K 

N
YT
IM

ES
‐F
RE

EB
A
SE
‐G
EO

 

N
YT
IM

ES
‐F
RE

EB
A
SE
‐C
O
RP

 

N
YT
IM

ES
‐G
EO

N
A
M
ES
 

N
YT
IM

ES
‐D
BP

ED
IA
‐C
O
RP

 

N
YT
IM

ES
‐F
RE

EB
A
SE
‐P
ER

 

N
YT
IM

ES
‐D
BP

ED
IA
‐P
ER

 

N
YT
IM

ES
‐D
BP

ED
IA
‐G
EO

 

Se
co
nd

s 

S+SR  S+SR+DM  DM 

Fig. 8. Time performance; tasks are ordered according to
the number of triples in the candidate sets.

Concluding, the highest accuracy is achieved by com-
bining class-based matching with direct matching. Fur-
ther, candidate set reduction helps to improve time
efficiency. In the following experiments, we will use

13

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

D
A
IL
YM

ED
‐S
ID
ER

 

D
IS
EA

SO
M
E‐
SI
D
ER

 

SI
D
ER

‐T
CM

 

D
RU

G
BA

N
K‐
SI
D
ER

 

SI
D
ER

‐D
RU

G
BA

N
K 

N
YT
IM

ES
‐F
RE

EB
A
SE
‐P
ER

 

SI
D
ER

‐D
BP

ED
IA
‐D
RU

G
S 

RE
ST
AU

RA
N
T1
‐R
ES
TA
U
RA

N
T2
 

SI
D
ER

‐D
IS
EA

SO
M
E 

N
YT
IM

ES
‐F
RE

EB
A
SE
‐C
O
RP

 

N
YT
IM

ES
‐F
RE

EB
A
SE
‐G
EO

 

SI
D
ER

‐D
BP

ED
IA
‐S
ID
EE
FF
EC

T 

N
YT
IM

ES
‐D
BP

ED
IA
‐P
ER

 

N
YT
IM

ES
‐D
BP

ED
IA
‐C
O
RP

 

SI
D
ER

‐D
A
IL
YM

ED
 

PE
RS
O
N
11

‐P
ER

SO
N
12

 

PE
RS
O
N
21

‐P
ER

SO
N
22

 

N
YT
IM

ES
‐D
BP

ED
IA
‐G
EO

 

N
YT
IM

ES
‐G
EO

N
A
M
ES
 

Ta
sk
 C
om

pl
ex
it
y 
vs
. F
1 

Task Complexity  S+SR (F1)  S+SR+DM (F1)  DM (F1) 

Fig. 9. F1 for tasks with increasing complexity.

S+SR+DM, in combination with the top-1 approach
where there is an one-to-one mapping or the threshold
approach otherwise.

6.3 SERIMI vs. Alternative Approaches
We compared SERIMI with state-of-the-art approaches.
We carefully selected in the literature systems that re-
ported the best performance in the benchmark that they
participated. Those systems represents a large number
of approaches used for instance matching.

We compared SERIMI with RIMOM and Object-
Coref2010 (OC2010) using the data and results of OAEI
2010 [14]. To ensure the validity of this evaluation, we
also included recently published results for ObjectCoref
[15], called ObjectCoref2012 (OC2012). Using OAEI 2011
data and published results [1], we compared SERIMI
with AgreementMaker (AM) and Zhishi.links (Zhi). Using
the same data, we also compared SERIMI with the latest
state-of-the-art approaches for instance matching, which
did not participate at OAEI: PARIS [2] and SIFI-Hill [3].

OAEI 2010. Table 6 shows results for OAEI 2010. Miss-
ing values in the table indicates that the results were not
published by the authors at OAEI. On average, SERIMI
largely outperformed both systems. As shown in Table 6,
SERIMI (93% F1) largely outperformed RIMON (72% F1)
on average. SERIMI achieved considerable performance
gain for the life science collection. Here, class-based
matching played an important role because source and
target instances often belong to different classes. In Sider-
Dailymed for instance, there were instances of the types
Drug and Ingredient sharing the same name that were
incorrectly identified as candidate matches; these false
positives were rejected by SERIMI thanks to class-based
matching.

SERIMI was outperformed by OC2010 and RIMON
in the Person collection. One reason is that this data
involves artificially generated spelling mistakes. OC2010

and RIMON employed special direct matching strate-
gies to deal with that. More importantly, SERIMI could
not yield better results because class-based matching
has limited impact when all candidates belong to the
same class and the data schema is well-defined. In this
scenario, all instances belong to the class Person and
the source and target schema completely overlap. Thus,
instances did not greatly vary in terms of class related
information.

Also compared to OC2012, which only published re-
sults for the easiest matching tasks, SERIMI achieved
better average performance (97% F1).

TABLE 6
F1 performance for SERIMI, OC2010, RIMON, OC2012
over OAEI 2010 data; some results were not available for

OC2010, RIMON OC2012.
Datasets SERIMI OC2010 RIMON OC2012

Sider-Dailymed 0.74 - 0.62 -
Sider-Diseasome 0.89 - 0.45 -
Sider-Drugbank 0.98 - 0.50 -

Sider-Tcm 0.99 - 0.79 -
Dailymed-Sider 1.0 0.70 0.62 -
Diseasome-Sider 0.97 0.74 - -
Drugbank-Sider 1.0 0.46 - -

Person11-Person12 0.95 1.0 1.0 1.0
Person21-Person22 0.91 0.95 0.97 0.95
Restaurant1-Rest.2 0.97 0.73 0.81 0.89
Average (OC2010) 0.97 0.76 - -
Average (RIMON) 0.93 - 0.72 -
Average (OC2012) 0.97 - - 0.95

OAEI 2011 As shown in Table 7, SERIMI had the same
average performance as Zhi. In particular, Zhi performed
better in tasks involving the location datasets (DB-Geo
and GeoNAMES) because as opposed to SERIMI, it
made use of domain knowledge and location-specific
similarity functions. SERIMI largely outperformed SIFI
(91% vs. 82%). SIFI had slightly better performance
than SERIMI for Nyt-DB-Per and Nyt-Freebase-Per. With
these tasks, SIFI was able to obtain more fine-tuned
thresholds, which led to better results. As opposed to
SIFI, which relies on training data for this threshold
tuning, SERIMI is completely unsupervised. For SIFI, we
used 10% of the OAEI ground truth as positive examples,
and 10% of wrong alignments in the candidate sets as
negative examples. PARIS obtained average performance
of 47% F1, which was considerably worse than SERIMI.
PARIS used both schema- and data-level features for
matching. However, it only employed exact matching,
i.e. it considers instances as matches when their features
exactly match. In PARIS’s authors experiments, good
results could be achieved because exact matching was
sufficient for the tasks involved. With the tasks studied
here, exact matching led to very low performance.

Overall, the results show that SERIMI achieved the
best accuracy results. Further, there is room for improve-
ment as SERIMI so far neither uses training data nor
exploits domain knowledge. Training data, for instance,
could be exploited to fine tune the threshold (as imple-
mented by SIFI) or to train a more optimized combina-

14

TABLE 5
F1 performance for different SERIMI configurations.

Datasets S S+SR S+SR+DM S+SR+DM+J DM S+SR+TH S+SR+TOP1 S+SR-P S+SR-D S+SR-O S+SR-T
Dailymed-Sider 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0
Diseasome-Sider 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Drugbank-Sider 1.0 1.0 1.0 1.0 1.0 0.98 1.0 1.0 1.0 1.0 1.0

Nytimes-DB-Corp 0.88 0.88 0.91 0.85 0.83 0.78 0.88 0.87 0.88 0.88 0.88
Nytimes-DB-Geo 0.81 0.81 0.82 0.63 0.69 0.36 0.81 0.79 0.81 0.81 0.81
Nytimes-DB-Per 0.95 0.95 0.95 0.94 0.93 0.91 0.95 0.95 0.95 0.95 0.95

Nytimes-Freebase-Corp 0.92 0.92 0.92 0.84 0.92 0.88 0.92 0.86 0.92 0.92 0.92
Nytimes-Freebase-Geo 0.92 0.92 0.93 0.83 0.92 0.87 0.92 0.88 0.92 0.93 0.93
Nytimes-Freebase-Per 0.95 0.95 0.95 0.93 0.95 0.94 0.95 0.95 0.95 0.95 0.95

Nytimes-Geonames 0.78 0.78 0.87 0.49 0.87 0.4 0.78 0.64 0.78 0.78 0.78
Person11-Person12 0.47 0.47 0.95 0.95 0.97 0.49 0.47 0.46 0.48 0.46 0.46
Person21-Person22 0.86 0.86 0.91 0.91 0.91 0.86 0.5 0.86 0.86 0.86 0.86

Rest1-Rest2 0.96 0.96 0.97 0.97 0.97 0.94 0.96 0.96 0.96 0.96 0.96
Sider-Dailymed 0.83 0.81 0.74 0.55 0.72 0.81 0.56 0.73 0.8 0.79 0.79
Sider-DB-Drugs 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Sider-DB-SideEffect 0.9 0.9 0.89 0.89 0.89 0.89 0.9 0.9 0.9 0.9 0.9
Sider-Diseasome 0.91 0.91 0.89 0.9 0.88 0.91 0.91 0.92 0.91 0.91 0.91
Sider-Drugbank 0.97 0.97 0.98 0.99 0.98 0.96 0.97 0.97 0.97 0.97 0.97

Sider-Tcm 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
AVERAGE 0.90 0.89 0.93 0.87 0.91 0.84 0.86 0.88 0.89 0.89 0.89

TABLE 7
F1 performance for OAEI 2011.

Datasets SERIMI AM Zhi SIFI PARIS
Nyt-DB-Corp 0.91 0.74 0.91 0.84 0.65
Nyt-DB-Geo 0.82 0.69 0.92 0.82 0.03
Nyt-DB-Per 0.95 0.88 0.97 0.98 0.06

Nyt-Freebase-Corp 0.92 0.80 0.87 0.80 0.82
Nyt-Freebase-Geo 0.92 0.85 0.88 0.64 0.60
Nyt-Freebase-Per 0.95 0.96 0.93 0.97 0.66

Nyt-Geonames 0.87 0.85 0.91 0.72 0.46
Average 0.91 0.82 0.91 0.82 0.47

tion of direct matching and class-based matching.

7 RELATED WORK

Instance matching across datasets involves the use
of similarity functions, thresholds and comparable at-
tributes. They are captured by a matching scheme. While
the majority of approaches use a flat representation of
instances based on attribute values, other features might
be applied. We will discuss existing approaches along
these dimensions of features, similarity functions and
matching schemes.

Matching Features. Instance features are derived from
flat attributes, structure information (e.g. relations be-
tween RDF resources) [16], [17], [18] or semantic in-
formation extracted from ontologies. ObjectCoref [8] for
instance, exploits the semantics of OWL properties such
as owl:Inverse
FunctionalProperty and owl:FunctionalProperty. Also, the
combination of instance-level and schema-level features
have been explored by PARIS [2], which jointly solve the
problem of instance and schema matching.

SERIMI targets the heterogeneous scenario, where no
structure, semantic or schema information is available in
the worst case. It is based on a simple flat representation,
where instances are captured as a set of attribute values.
This representation is employed for single instances as
well as for class of instances, which are needed for class-
based matching.

Similarity Functions. The choice of similarity func-
tions depends on the nature of the features. For strings,
character-based (e.g. Jaro, Q-grams), token-based (e.g.
SoftTF-IDF, Jaccard) and document-based functions (e.g.
cosine similarity) were used. In addition to using syn-
tactic information, special similarity functions have also
been proposed to exploit different kinds of (lexical)
semantic relatedness [19], [20].

Also along this dimension, we pursued a simple
approach where only tokens are employed. However,
for our new problem of class-based matching, which
involves comparing sets of instances, we propose a set-
based similarity function that take the token overlaps
between sets into account.

Matching Schemes. With approaches relying on a flat
representation of instances, i.e., attribute values, the em-
ployed schemes contain the similarity functions, thresh-
olds and comparable attributes. Comparable attributes
are either computed via automatic schema matching
or assumed to be manually defined by experts [21].
Then, techniques with different degrees of supervision
are employed for learning the scheme. Knofuss+GA[22]
is an unsupervised approach that employs a genetic
algorithm for learning. SIFI [3] and OPTrees [12] repre-
sent supervised approaches that learn the schemes from
a given set of examples. Others approaches such as
Zhishi.links [21], RIMON [23] and Song et. al [9] assume
matching schemes that for the most part, were manually
engineered, i.e., the similarity functions and thresholds
were defined manually. They focus on the problem of
learning the best comparable attributes.

The above solutions focus on direct matching. As
oppose to that, class-based matching does not rely on a
complex scheme. It uses a special similarity function we
specifically design for this matching task. The problem
of finding the threshold is cast as the one of detecting
outliers, for which we propose an unsupervised solution.

Overall, our solution can be characterized as an unsu-
pervised, simple, yet effective solution, which employs a

15

novel class-oriented similarity function, matching tech-
nique and threshold selection method to exploit the
space of class-related features never studied before in
the literature.

There are other systems in the literature that propose
to tackle the same problem. For instance, Linda [24] is an
entity matching system for web scale that was evaluated
over a small subset of the datasets that we consider here.
The reported results have a lower accuracy compared to
the systems used on our evaluation.

8 CONCLUSION

In this work, we propose an unsupervised instance
matching approach that combines direct-based matching
with a novel class-based matching technique to infer
Sameas relation over heterogeneous data. We evaluated
our method using two public benchmarks: OAEI 2010
and 2011. The results show that we achieved good and
competitive results compared to several representative
systems focused on instance matching over heteroge-
neous data.

REFERENCES

[1] J. Euzenat, A. Ferrara, W. R. van Hage, L. Hollink, C. Meilicke,
A. Nikolov, D. Ritze, F. Scharffe, P. Shvaiko, H. Stuckenschmidt,
O. Sváb-Zamazal, and C. T. dos Santos, “Results of the ontology
alignment evaluation initiative 2011,” in OM, 2011.

[2] F. M. Suchanek, S. Abiteboul, and P. Senellart, “Paris: Probabilistic
alignment of relations, instances, and schema,” PVLDB, vol. 5,
no. 3, pp. 157–168, 2011.

[3] J. Wang, G. Li, J. X. Yu, and J. Feng, “Entity matching: How similar
is similar,” PVLDB, vol. 4, no. 10, pp. 622–633, 2011.

[4] M. A. Hernández and S. J. Stolfo, “The merge/purge problem for
large databases,” pp. 127–138, 1995.

[5] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of
high-dimensional data sets with application to reference match-
ing,” in KDD, 2000, pp. 169–178.

[6] G. Papadakis and W. Nejdl, “Efficient entity resolution methods
for heterogeneous information spaces,” in ICDE Workshops, 2011,
pp. 304–307.

[7] A. Arasu, S. Chaudhuri, and R. Kaushik, “Learning string trans-
formations from examples,” PVLDB, vol. 2, no. 1, pp. 514–525,
2009.

[8] W. Hu, Y. Qu, and X. Sun, “Bootstrapping object coreferencing
on the semantic web,” J. Comput. Sci. Technol., vol. 26, no. 4, pp.
663–675, 2011.

[9] D. Song and J. Heflin, “Automatically generating data linkages
using a domain-independent candidate selection approach,” in
International Semantic Web Conference (1), 2011, pp. 649–664.

[10] Y. Ma and T. Tran, “Typifier: Inferring the type semantics of
structured data,” in ICDE, 2013.

[11] A. Tversky, “Features of similarity,” Psychological Review,
vol. 84, no. 4, pp. 327–352, July 1977. [Online]. Available:
http://dx.doi.org/10.1037/0033-295X.84.4.327

[12] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik, “Example-
driven design of efficient record matching queries,” in VLDB,
2007, pp. 327–338.

[13] W. Chauvenet, A Manual of Spherical and Practical Astronomy V.II.
Dover, 1960.

[14] J. Euzenat, A. Ferrara, C. Meilicke, A. Nikolov, J. Pane,
F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O. Svb-Zamazal,
V. Svtek, and C. Trojahn dos Santos, “Results of the
ontology alignment evaluation initiative 2010,” in Proc. 5th
ISWC workshop on ontology matching (OM), Shanghai (CN),
P. Shvaiko, J. Euzenat, F. Giunchiglia, H. Stuckenschmidt,
M. Mao, and I. Cruz, Eds., 2010, pp. 85–117. [Online]. Available:
http://oaei.ontologymatching.org/2010/results/oaei2010.pdf

[15] W. Hu, J. Chen, and Y. Qu, “A self-training approach for resolving
object coreference on the semantic web,” in WWW, 2011, pp. 87–
96.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A
versatile graph matching algorithm and its application to schema
matching,” in ICDE, 2002, pp. 117–128.

[17] P. Shvaiko and J. Euzenat, “A survey of schema-based matching
approaches,” in J. Data Semantics IV, 2005, pp. 146–171.

[18] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, “Discovering and
maintaining links on the web of data,” in International Semantic
Web Conference, 2009, pp. 650–665.

[19] A. Budanitsky and G. Hirst, “Evaluating wordnet-based measures
of lexical semantic relatedness,” Computational Linguistics, vol. 32,
no. 1, pp. 13–47, 2006.

[20] X. Han and J. Zhao, “Structural semantic relatedness: A
knowledge-based method to named entity disambiguation,” in
ACL, 2010, pp. 50–59.

[21] X. Niu, S. Rong, Y. Zhang, and H. Wang, “Zhishi.links results for
oaei 2011,” in OM, 2011.

[22] A. Nikolov, M. d’Aquin, and E. Motta, “Unsupervised learning
of link discovery configuration,” in ESWC, 2012, pp. 119–133.

[23] Z. Wang, X. Zhang, L. Hou, Y. Zhao, J. Li, Y. Qi, and J. Tang,
“Rimom results for oaei 2010,” in OM, 2010.

[24] C. Böhm, G. de Melo, F. Naumann, and G. Weikum, “Linda:
distributed web-of-data-scale entity matching,” in CIKM, 2012,
pp. 2104–2108.

16

SUPPLEMENTAL PAGE

APPENDIX
A
Jaccard Vs. FSSim

Amos Tversky[11] proposed the ratio model as a mea-
sure of similarity between two sets A and B. The ratio
model is given below:

S(A,B) =
|A ∩B|

|A ∩B|+ α|A−B|+ β|B −A|
, α, β ≥ 0 (16)

The parameters α and β balance the weight of the
differences in the equation. This equation normalizes the
similarity so that S is between 0 and 1. We can show that
this model generalizes several set-theoretical models of
similarity proposed in literature. If α = β = 1 it reduces
to the Jaccard coefficient, i.e. Jaccard(A,B) = |A∩B|

|A∪B| :
Proof: Replacing α = β = 1 in E.q. 16, we have

S(A,B) = |A∩B|
|A∩B|+|A−B|+|B−A| . Then, using the iden-

tity |AUB| = |A ∩ B| + |A − B| + |B − A|, we have:
|A∩B|

|A∩B|+|A−B|+|B−A| =
|A∩B|
|A∪B| = Jaccard(A,B)

It is easy to show that when FSSim is replaced by
Jaccard it violates the Theorem 1.

Proof: By counterexample: Let |A∩B| = 20 and |A∩
C| = 10, and let |A ∪ B| = 40 and |A ∪ C| = 20. Then
|A ∩ B| > |A ∩ C| but |A∩B||A∪B| = |A∩C|

|A∪C| ⇒
20
40 = 10

20 ⇒
Jaccard(A,B) = Jaccard(A,C).

Now we proof that Theorem 1 is valid for FSSim(A,B).
Lemma 1: If |A ∩B| > 0 then |A−B|+|B−A|2|A∪B| < 1

Proof: Proof of Lemma 1: If |A∩B| > 0 then |A−B|+
|B −A| < |A∩B|+ |A−B|+ |B −A| < 2(|A∩B|+ |A−
B|+ |B −A|). Applying identity mentioned in Proof A,
we have: |A−B|+ |B−A| < 2|A∪B| ⇒ |A−B|+|B−A|

2|A∪B| < 1

Proof: Proof of Theorem 1: If |A ∩B| > |A ∩ C| then
|A∩B| > 0. Let a positive integer δ < 1 and ω < 1, then
|A∩B| > |A∩C|+(δ−ω)⇒ |A∩B|−δ > |A∩C|−ω. By
Lemma 1 δ = |A−B|+|B−A|

2|A∪B| < 1 and ω = |A−C|+|C−A|
2|A∪C| <

1, then |A∩B|− |A−B|+|B−A|2|A∪B| > |A∩C|− |A−C|+|C−A|2|A∪C| ⇒
FSSim(A,B) > FSSim(A,C).

