
Combining indexing schemes to accelerate querying XML
on content and structure

Georgina Ramı́rez
CWI

P.O. Box 94079
1090GB Amsterdam

The Netherlands

georgina.ramirez@cwi.nl

Arjen P. de Vries
CWI

P.O. Box 94079
1090GB Amsterdam

The Netherlands

arjen@acm.org

ABSTRACT
This paper presents the advantages of combining multiple
document representation schemes for query processing of
XML queries on content and structure. We show how ex-
tending the Text Region approach [2] with the main features
of the Binary Relation approach developed in [8] leads to a
considerable speed-up in the processing of the XPath loca-
tion steps. We detail how, by using the combined scheme,
we reduce the number of structural joins used to process
the XPath steps, while simultaneously limiting the amount
of memory usage. We discuss optimisation strategies en-
abled by the new ‘combined representation scheme’. Ex-
periments comparing the efficiency of alternative query pro-
cessing strategies on a subset of the queries used at INEX
2003 (the Initiative for the Evaluation of XML Retrieval
[4]) demonstrate a favourable performance for the combined
indexing scheme.

1. INTRODUCTION
Different approaches have been developed for the storage,
processing and retrieval of XML documents. This paper in-
vestigates the suitability of such approaches in the design
of document-centric XML retrieval systems, where queries
specify constraints on both the XML structure (a data re-
trieval problem) and the document content (an information
retrieval problem). Examples of such queries have been
defined for the ‘content-and-structure’ task (CAS) at the
Initiative for the Evaluation of XML Retrieval (INEX) [4].
CAS queries define the structural constraints in the queries
using (a subset of) XPath, and the content part of the query
with a special-purpose about-clause, which expresses that
the elements should be ranked by the expected relevance of
their textual content to the user’s information need. The ex-
periments on this paper are centered on the Strict CAS task,
meaning that the structural constraints of the query must
be exactly satisfied by the retrieved components. INEX’s

TDM’04, the first Twente Data Management Workshop on XML Databases
and Information Retrieval, Enschede, The Netherlands
c© 2004 the author/owner

query language is defined precisely in [6].

The Text Region approach for processing such content-and-
structure queries [2] views the XML document as an ordered
sequence of tokens (including the document text itself), rep-
resenting the documents using a preorder-postorder tree en-
coding scheme, as an extension of [9, 5]. The main advan-
tages of this approach are the efficiency of processing descen-
dant axis steps (using structural joins on the representation
of the XML tree in the ‘pre-post plane’), and the low cost
of reconstructing the XML document when returning an an-
swer to the user.

The Binary Relation approach described in [8] views the
XML document as a rooted (syntax) tree and stores the doc-
ument in binary associations representing the edges of the
syntax tree (i.e., parent-child and node-attribute relations).
In addition, it stores a path summary table containing all
unique paths in the tree, used as an index to restrict access
to only those tables that could contain answers. The main
advantages of this approach are the efficent processing of
consecutive child axis steps, and the use of smaller tables to
do the processing. The main drawbacks are the inefficient
way of processing descendant steps, the high cost of recon-
structing XML answers, and, the impossibility to directly
access the text nodes when, for instance, term frequency
statistics should be determined for ranked retrieval.

This paper shows how a redundant representation that com-
bines properties of both schemes reduces the number of
structural joins needed in the query plan and limits the
memory used in the processing of the XPath steps, lead-
ing to an improved runtime performance. Also, we point
out how several optimization techniques can be applied to
further improve the performance on this combined scheme.

The paper is organized as follows. Section 2 details the doc-
ument model and indexing schemes of the two approaches
used in this paper. Section 3 proposes a new document rep-
resentation by combining these schemes. Section 4 presents
a procedure for processing queries on the new indexing scheme,
and several optimization aspects are discussed. Section 5
presents experiments on the INEX collection and shows the
performance obtained. The paper ends with conclusions and
ideas for future work.

2. DOCUMENT INDEXING SCHEMES
When indexing XML documents using a relational database
management system, we should take the following two as-
pects into account. First, from an effectiveness point of
view, one should decide which type of information to store
(data and metadata), depending upon the kind of operations
to be performed on the data; e.g., order of the elements, level
of the nodes in the tree, parent/child relationship, etc. Sec-
ond, from an efficiency point of view, one has to choose how
to store the information, in order to execute these operations
in the fastest possible way; e.g., the level of fragmentation,
the definition of indices, replication.

This paper focuses on decisions to be taken in the efficiency
viewpoint, under the assumption that the choices to be made
from the effectiveness viewpoint have been determined fully
by the retrieval model. The retrieval model influences our
paper in so-far, that satisfying queries with about-clauses
may require term frequency statistics in context of any node
in the XML tree (usually identified by tagname). Given this
requirement, we are interested in finding a balance between
the system resources consumed by the indexing scheme and
the response times for user requests. More specifically, the
paper investigates design choices that replicate data to im-
prove the runtime efficiency of the resulting XML retrieval
system.

2.1 Text Region approach
The Text Region approach used in this paper is the one de-
scribed in [2]. It extends the well-known preorder-postorder
tree encoding scheme of [9, 5] for the ranked retrieval on
textual content (the about-clauses). The XML document is
viewed as a sequence of tokens. Where tokens are opening
and closing tags as well as the pre-processed text content.
The pre-processing consists of word form normalizations,
stemming, and stopword removal. Each component is a
text region, i.e., a contiguous subsequence of the document.
XML text regions are represented by triplets { ti, si, ei },
where:

• ti is the (XML) tag of region i , and,

• si and ei represent the start and end positions of XML
region i .

The storage scheme (the physical representation) consists of
two large tables:

• The node-index N stores the set of all XML region
tuples;

• the word-index W stores all the index terms.

Notice that the index terms are stored in a different table,
even though they are also considered as text regions. The
reason is that the regions corresponding to the index terms
consist of a single token each, so the start position always
equals the end position. By separating the word-index from
the node-index, we may store these word positions only once,
reducing the memory requirements of the text region repre-
sentation scheme considerably.

To illustrate the storage scheme and the resulting query
plans for processing queries on content and structure, con-
sider the example document given in Figure 1. Figure 2
shows the document as a sequence of tokens with start and
end positions assigned. The document information is then
stored in the node-index and word-index as shown in Fig-
ure 3. XPath location steps are executed through structural
joins over the node-index.

Figure 1: XML document example

<bibliography>

<article>

<author>Ben Bit</author>

<title>How to Hack</title>

</article>

<article>

<author>Ben Byte</author>

<author>Ken Key</author>

<title>Hacking and RSI</title>

</article>

</bibliography>

Figure 2: The XML example document as a se-
quence of tokens. Start and end positions assign-
ment. Note that the document from Figure 1 has
already been pre-processed, stop-words have been
removed and terms have been stemmed

< bibliography >0< article >1< author >2ben3 bit4

< /author >5< title >6how7 hack8< /title >9< /article >10

< article >11< author >12ben13 byte14< /author >15

< author >16ken17 key18< /author >19< title >20

hacking21 rsi22< /title >23< /article >24< /bibliography >25

Figure 3: Text Region storage scheme for the exam-
ple document

N
< bibliography, 0, 25 >

< article, 1, 10 >

< author, 2, 5 >

< title, 6, 9 >

< article, 11, 24 >

< author, 12, 15 >

< author, 16, 19 >

< title, 20, 23 >

W
< “ben”, 3 >

< “bit”, 4 >

< “how”, 7 >

< “hack”, 8 >

< “ben”, 13 >

< “byte”, 14 >

< “ken”, 17 >

< “key”, 18 >

< “hacking”, 21 >

< “rsi”, 22 >

Consider for example the following query, requesting a ranked
list of articles written by an author named “Ben” where the
title is about hacking:

• /bibliography/article[contains(.//author, “Ben”) AND
about(.//title, “Hack”)]

The physical query plan for this example query is shown
in Figure 4. XPath name tests correspond to selections on
the node-index, and location steps translate into structural

joins. For example, R5 results from a structural join per-
formed to correlate all the pairs article-author, from the
article nodes and the author nodes previously selected, that
satisfy the descendant condition. In other words, this table
contains all the pairs of starting positions of articles and au-
thors where author is descendant of article. The processing
of the about-clause is not detailed in this paper (refer to
[2] for more information). The implementation of the AND
operator (last line) combines the ranked results for each of
the articles.

Figure 4: Text Region approach physical query plan
for the example query. The relations Ri represent
the intermediate results

R1 := select(NodeIndex ,name = ‘bibliography’)
R2 := select(NodeIndex ,name = ‘article’)
R3 := R1 1⊃ R2
R4 := select(NodeIndex ,name = ‘author’)
R5 := R3 1⊃ R4
R6 := select(NodeIndex ,name = ‘title’)
R7 := R3 1⊃ R6
R8 := contains(R5 , “ben”)
R9 := about(R7 , “hack”)
R10 := R9 ∩ R8

2.2 Binary Relation approach
The Binary Relation approach views the XML document as
a rooted syntax tree. The information stored represents the
edges of the tree as parent-child and node-attribute rela-
tions. Schmidt defines the storage scheme as follows [8]:
Given an XML document d, the ‘Monet transform’ (the
mapping of the document into a tabular representation in
the MonetDB) is a quadruple Mt(d) = (r , E ,A, T), where:

• E is the set of binary relations that contain all associ-
ations between nodes (parent-child relations);

• A is the set of binary relations that contain all as-
sociations between nodes and their attribute values,
including character data (node-attribute relations);

• T is the set of binary relations that contain all associ-
ations between nodes and their position with respect
to their siblings (node-postion relations);

• r is the root of the document.

To improve the efficiency during query processing, this ap-
proach creates a so-called path-summary that contains the
table name corresponding to each unique path in the doc-
ument. The binary relations for each such path are stored
separately. So, the path-summary provides direct access to
the corresponding edges in the document syntax tree that
share the same path. Notice that the binary relations can
be viewed as the ‘join indices’ used in relational query pro-
cessing (introduced by Valduriez in [10]).

As an example, consider again the example document (Fig-
ure 1). Figure 5 shows the tree view of the XML example
document and the oid assignments. The Binary Relation
approach stores the information of E and the path-summary
as depicted in Figure 6. Query processing first retrieves the

Figure 7: Binary Relation approach physical query
plan for the example query. The relations Ri rep-
resent the intermediate results and Ti represent the
names of the binary relations shown in Figure ??

path := /bibliography/article
R1 := ∅
foreach Ti ∈ MatchingPaths(path . //author) do

R2 := select(PathSummary,name = Ti)
R2 := contains(R2 , “Ben”)
R1 := R1 ∪ JoinUp(R2 ,Ti , “article ′′)

R3 := ∅
foreach Ti ∈ MatchingPaths(path . //title) do

R4 := select(PathSummary,name = Ti)
R4 := about(R4 , “Hack”)
R3 := R3 ∪ JoinUp(R4 ,Ti , “article ′′)

R5 := R1 ∩ R3

filter elements from the path-summary, selects the nodes
according to the predicates and then proceeds to ‘join up’
against the other relations until it reaches the target ele-
ment. The physical query plan for the example query of
Subsection 2.1 is given in Figure 7. Here, MatchingPaths
is a shorthand notation for identifying the unique paths in
the document (i.e., table names in the path-summary) that
satisfy the XPath expression. The JoinUp procedure starts
with a join between two relations, e.g., R2 1 T3 in the ex-
ample, and proceeds to compute the transitive closure over
the parent relationship; i.e., the first JoinUp corresponds to
expression R2 1 T3 1 T2.

In the example, only one path matches each of the descen-
dant steps in the query example. Because the query is se-
lective, query processing accesses only a small proportion of
the collection, and is very efficient. Indeed, Florescu and
Kossmann found a similar mapping to be most efficient for
XML query processing in their experiments [3]. In cases
where multiple paths match however, each of these must
be ‘joined up’ individually, and the results unioned. This
procedure may become expensive on large collections with
a ‘lenient’ DTD, when many paths need to be followed to
determine the query results.

3. THE COMBINED INDEXING SCHEME
This paper proposes to combine the ideas from both ap-
proaches discussed before. This combined scheme views the
document as both a syntax tree for which we store the edge
information, and, a set of regions, for which we store the
triplets defined in Subsection 2.1. While the type of infor-
mation we store is just a direct combination of both ap-
proaches, the way the information is stored in the resulting
data representation differs from just storing all the defined
tables.

We define the combined indexing scheme formally as follows:
Given an XML document instance, the indexing scheme con-
sists of a 5-tuple: Mt ′(d) = (N ,W, E ,A,P), where

• N is the set of all XML region tuples;

• W is the set of all index terms in the document;

Figure 5: Binary Relation tree view of the example document and oid assignments

“ben bit“o4

authoro3

“how hack“o6

titleo5

����
bbb

articleo2

“ben byte“o9

authoro8

“ken key“o11

authoro10

“hacking rsi“o13

titleo12

������� ��
XXXXXXX

articleo7

((((((((((
XXXXXXX

bibliographyo1

Figure 6: Binary Relation storage scheme for the example document

Path Summary
< T1, /bibliography/article >,

< T2, /bibliography/article/author >,

< T3, /bibliography/article/author/cdata >,

< T4, /bibliography/article/author/cdata/string >,

< T5, /bibliography/article/title >,

< T6, /bibliography/article/title/cdata >,

< T7, /bibliography/article/title/cdata/string >

Relation Content

T1 {< o1, o2 >, < o1, o7 >}
T2 {< o2, o3 >, < o7, o8 >, < o7, o10 >}
T3 {< o3, o4 >, < o8, o9 >, < o10, o11 >}
T4 {< o4, “ben bit” >, < o9, “ben byte” >,

< o11, “ken key” >}
T5 {< o2, o5 >, < o7, o12 >}
T6 {< o5, o6 >, < o12, o13 >}
T7 {< o6, “how hack” >, < o13, “hacking rsi” >}

• E is the set of binary relations that contain all associ-
ations between nodes;

• A is the set of binary relations that contain all associ-
ations between nodes and their attribute values;

• P is the set of all unique paths linked to the binary
relations.

Notice that the set of binary relations E differs from the
one defined in the Binary Relation approach. First, we do
not store the node-text relations. Word-index W is needed
for computing the ranking (specified by the probabilistic re-
trieval model) and storing this data redundantly would incur
a huge cost without benefits for query processing. Similarly,
we can also remove the set of relations T , as this information
can be extracted directly from the start and end positions
from the regions in the node-index N . We have not stored
the root element at this time, because we indexed one col-
lection only; so, it is already stored in the node-index table
with a start position equal to zero.

The proposed combined indexing scheme trades storage cost
for increased query processing performance. This seems a
reasonable trade-off, as disk capacity is not a main prob-
lem nowadays, especially when compared to memory size.
We consciously duplicate information in order to reduce the
amount of irrelevant data accessed during query processing,
by limiting the size of the tables that are loaded to mem-
ory. As an additional advantage of replicated information,
we may speed up the processing of different types of user
requests by taking optimization decisions at run-time, de-
pendent on the properties of the specific user request being
executed.

4. QUERY PROCESSING
This Section presents a procedure for processing content-
and-structure queries on the proposed combined indexing

scheme, and discusses its advantages regarding memory us-
age and the number of structural join operations needed.

The retrieval model considered is described in detail in [7],
which assumes the text region based approach for docu-
ment representation. Queries are classified into three dif-
ferent patterns and split into one or more subqueries. After
processing each of the subqueries, their scores are combined
for a final ranking. Table 1 reviews the patterns and sum-
marises the processing involved. We refer the reader to [7]
for more detailed information on the Patterns approach.

Extending this pattern approach for the combined indexing
scheme, processing content-and-structure queries follows a
4-step procedure:

1. Split the query into different subqueries following the
Pattern approach detailed in [7] and summarized in
Figure 1.

2. Split each of the XPath location steps into canonical
paths.

3. Process the subpaths and subqueries according to the
algorithm described in Figure 8.

4. Combine the results of the subqueries for a final score
according to the Pattern approach.

This paper focuses on steps 2 and 3 in this process. We show
how we can make use of the combined scheme to accelerate
the processing of the XPath steps (xp and axp). Step 2
follows a straightforward algorithm that splits the location
paths that occur in the query into series of canonical loca-
tion paths. A canonical path is a path that either contains
child axis steps only, or, when starting with a descendant
axis step, is followed by child axis steps only.

Table 1: Pattern approach. Splitting queries and combining their results. Note that xp, xp2, axp, axp1
and axp2 are location steps, and ’t/p’ denotes any set of terms or phrases to search for. Patterns 2 and 3
are split into two or more instances of pattern 1 and queried with all the keywords (t12/p12). After the
processing of the pattern 1 instances, their results (Pn) are combined as indicated in the last column. P () is
the probability/score of a node and size() is the text length of the region determined by a node
Pattern Definition Subqueries Combining results

P1 xp[about(axp, ’t/p’)] xp[about(axp, ’t/p’)] if multiple axp in xp node then

P (xpnode) =
∑

i size(axpi)∗P (axpi)∑
i (size(axpi))

P2 xp[about(axp1, ’t1/p1’) AND/OR xp[about(axp1, ’t12/p12’)] AND: product Pn(1) * Pn(2)

about(axp2, ’t2/p2’)] xp[about(axp2, ’t12/p12’)] OR: average (Pn(1) + Pn(2)) / 2

P3 xp[about(axp1, ’t1/p1’)]//xp2[about(axp2, ’t2/p2’)] xp[about(axp1, ’t12/p12’)] Propagation scores:

xp//xp2[about(axp2, ’t12/p12’)] Pn(xp) * Pn(xp2)

As an example, consider the following path used to query
the INEX data:

/books/journal//article/bdy//sec/p/it

This path is split into the following three canonical paths:

• /books/journal

• //article/bdy

• //sec/p/it

Because the document representation stores its data redun-
dantly, the resulting subpaths can be processed in a number
of ways. The goal is to make the best use of the multiple
representations available. Figure 8 presents our algorithm
for generating an efficient query plan for the processing of
the XPath location steps.

Figure 8: Algorithm to process the XPath location
steps

NP := 3; NC := 3;
for each of the subpaths p do

if StartsChild(p) then ConcatenateToPrevious(p);
else

if NumberPathsMatching(p) <= NP then
FlattenStep(p);
ConcatenateToPreviousPath();

else
if NumberConsecChildren(p) >= NC then

SelectEndingPaths(p);
UseStructuralJoinToJoinFigures(p);

else ContinueWithStructuralJoin();
endif ;

endif ;
endif ;

endfor;

The general idea underlying the algorithm is twofold. On
the one hand, it decides (based on constant NP) whether
to execute the descendant axis step with a structural join,
or, alternatively, to flatten it. Flattening the descendant
step means to find all matching paths in the path-summary
table, and unioning the obtained relations. On the other

hand, it decides (based on constant NC1) how to proceed
after a structural join is used for processing a descendant
step. A canonical path starting with a descendant step can
be followed by one or more child axis steps. The ‘standard’
solution is to apply an additional structural join for each
remaining child step. The alternative solution retrieves from
the path-summary all paths that end in the same sequence
of child steps as the canonical path. The resulting tables
are unioned, and then a single structural join correlates this
unioned table with the intermediate results of the previously
processed canonical path.

Consider for example the XPath expression introduced be-
fore with its three canonical subpaths, the result from step
2 in the query processing procedure. The algorithm then
proceeds as follows. The path-summary table gives only
one path ending with ‘article’. So, the descendant step of
the second canonical path is flattened and concatenated to
the first one, obtaining the concatenated XPath expression
/books/journal/article/bdy.

When processing the third canonical path (//sec/p/it), the
algorithm chooses a structural join to identify the ‘sec’ ele-
ments, as more than NP=3 unique matching paths exist in
the path-summary. Because the number of remaining child
axis steps (two) is smaller than NC=3, we process these
steps using structural joins. So, the final query plan se-
lects from the path-summary the relation that corresponds
to the concatenated subpaths (/books/journal/article/bdy),
performs the structural join to identify the contained ‘sec’
elements, and then executes two more structural joins to
process child axis steps ‘/p’ and ‘/it’.

Finally, for comparison to the query plans of the other two
document indexing approaches, let us return to the example
introduced in Subsection 2.1. The physical query plan using
the combined scheme is shown in Figure 9.

Generation of the query plan using our algorithm allows for
a variety of further optimisation techniques. First, when
processing a descendants query that leads to many differ-

1The best values for constants NP and NC are still an open
issue for further research. We decided to first set them to
three because, given the INEX topics in section 5 and the
algorithm in Figure 8, we would be able to see some differ-
ences in the processing. Note that, for this set of queries, to
set NC to any number different than 1 would produce the
same effect.

Figure 9: Physical query plan for the example query
using the combined scheme. The relations Ri repre-
sent the intermediate results

path := /bibliography/article
R1 := select(PathSummary ,name = path . /author)
R2 := contains(R1 , “Ben”)
R3 := select(PathSummary ,name = path . /title)
R4 := about(R3 , “Hack”)
R5 := R4 ∩ R2

ent canonical paths, each involving many child axis steps,
then performing a single structural join over the node-index
might be a more efficient alternative. In some cases however,
flattening a descendant step over the path-summary could
access much less data than executing the location step us-
ing the node-index. These optimisation decisions require
statistics about the data, possibly precomputed, such as the
number of elements of each kind, the number of matching
paths, and table sizes. The next Section investigates the im-
pact of such optimisation opportunities experimentally. A
query optimiser should also consider how the static typing
information from a DTD or XML Schema may improve the
generation of query plans. This topic is however postponed
to future research.

5. EXPERIMENTS
We have investigated experimentally the run-time perfor-
mance and cost of the new approach on a subset2 of the
INEX 2003 topics (Table 2). The Text Region’s physical
representation of the INEX collection as node-index and
word-index accumulates to 877MB (this excludes a small
number of auxiliary tables needed for processing the about-
clauses). The combined storage scheme increases the mem-
ory usage by 76MB (i.e., the parent-child relations and the
path-summary). The speed-up observed clearly outweights
the relatively small additional cost for the redundancy in
the storage scheme.

Three runs have been performed, characterised in Table 3,
to observe the behaviour and performance of our combined
approach in comparison to the processing on the Text Re-
gion approach. We have not performed runs on the ‘pure’
Binary Relation indexing scheme, because this document
representation is not suitable for handling the about-clauses
that rank elements by their content; the query plans re-
sulting from the INEX topics using this mapping are very
inefficient (and do not give any insights). Table 5 shows the
wall-clock times for each of the queries in each of the runs.

The different runs were performed on an AMD Opteron
1.4Ghz machine with 2GB of main memory. MonetDB [1]
was used as the database kernel.

Using our algorithm with the combined indexing scheme per-
forms usually better than the equivalent query plan using
the Text Region approach used at INEX 2003. It is inter-
esting however that using the combined scheme does not

2For clarity and comparison, we selected only the topics with
different structural constraints that could be ”affected” by
the new algorithm and therefore, could give some insights
into the performance

necessarily imply a performance gain. Comparing the re-
sults between runs TR and C1 shows for example that a
strategy that always flattens the first descendant step leads
to performance differences between the various topics. Take
for instance topics 78, 80, and 84. The ‘flattening always’
strategy works well for topic 80, because only a single path
in the collection leads to ‘article’ nodes. In the case of topic
78 however, following this strategy results in a run-time ef-
ficiency that is worse than the times obtained with the Text
Regions approach. Here, the number of paths in the INEX
collection that lead to ‘vt’ elements is 11. Looking at topic
84, we can clearly see that the use of a structural join per-
forms much better than flattening the descendant step. In
this case, 637 different paths in the collection end in ‘p’ el-
ements. Summarising, we conclude from these experiments
that it is important to decide upon the best query process-
ing strategy given the query at hand, providing support for
following the ‘database approach’ using a layered design of
XML retrieval systems, as proposed in e.g. [2] and [7].

To analyse in more detail the performance gain obtained for
most topics, let us look closer into the execution of INEX
topic 69:

/article/bdy/sec[about(.//st,’”information retrieval”’)]

Processing this query with the Text Region approach first
correlates the ‘article’ nodeset with the ‘bdy’ nodeset, and
correlates the result with the ‘sec’ nodeset. Each of these
structural correlations is performed by a structural join. We
proceed with another structural join, to retrieve the ‘st’
nodes that are descendants of the nodes in the result so
far. To summarize, the query plan consists of three struc-
tural joins. The physical query plan and the sizes of the
corresponding intermediate result relations are detailed in
Figure 10.

The combined storage scheme allows to perform some of the
correlations between nodesets with ‘normal’ relational joins,
using the parent/child relationships. Processing the same
INEX topic with the previously described algorithm on the
new combined scheme accesses the path summary to obtain
the result table for XPath expression /article/bdy/sec. We
correlate the result to the descendant ‘st’ nodes with a struc-
tural join. So, the query plan consists of a selection on the
path-summary followed by one structural join.

Notice that, obviously, the observed run-time performance
improvement is not an immediate consequence of the num-
ber of structural join operators in the query plan. Instead,
it results from the reduced sizes of tables accessed during
processing, in combination with the number of intermediate
results and their sizes. The physical query plan and the sizes
of the relations produced are detailed in Figure 10.

6. CONCLUSIONS AND FUTURE WORK
We presented the possible advantages for query processing
when the XML storage scheme represents a document col-
lection redundantly, corresponding to a trade-off often made
in database management systems between storage require-
ments and run-time efficiency. Specifically, we augment our
previously developed Text Region indexing scheme (used in
our participation in INEX) with join indices on path ex-
pressions, as applied previously to XML data collections in

Table 2: Queries used on the experiments. Subset of the INEX03 topics.
Topic number Query title

61 //article[about(., ’clustering +distributed’) a nd about(.//sec, ’java’)]

64 //article[about(.,’hollerith’)]//sec[about(.,’DEHOMAG’)]

69 /article/bdy/sec[about(.//st,’”information retrieval”’)]

70 /article[about(./fm/abs, ’”information retrieval” ”digital libraries”’)]

72 //article[about(./fm/au/aff,’United States of America’)]/bdy//*[about(.,’weather forecasting systems’)]

73 //article[about(.//st,’+comparison’) and about (.//bib,’”machine learning”’)]

78 //vt[about(.,’”Information Retrieval” student’)]

79 //article[about(.,’XML’) AND about(.,’database’)]

80 //article/bdy/sec[about(.,’”clock synchronization” ”distributed systems”’)]

82 //article[about(.,’handwriting recognition’) AND about(./fm/au,’kim’)]

83 /article/fm/abs[about(.,’”data mining” ”frequent itemset”’)]

84 //p[about(.,’overview ”distributed query processing” join’)]

Table 5: Run times. Text Region approach vs. Combined scheme. Time in seconds. Average result for 10
runs, after removing the best and worst results (for each topic in each of the runs separately).

Run t61 t64 t69 t70 t72 t73 t78 t79 t80 t82 t83 t84

TR 3 10.88 13 9.88 16.5 11.13 5.5 6.13 14.63 17 10.25 4.5
C1 3 7.88 5 6.13 13.38 11.5 6 3.75 3 6.63 1 9.5
C2 3 7.75 4.88 6.38 13.75 12.13 6.75 3 3.38 3.63 1 6

Figure 10: Physical query plan and tables’ sizes (in #tuples/1000) using the Text Region approach (left) and
the Combined scheme (right). The relations Ri represent the intermediate results

Operation |Input| |Result|
R1 := select(N ,name = ‘article’) 8240 12
R2 := select(N ,name = ‘bdy’) 8240 12
R3 := R1 1⊃ R2 12, 12 12
R4 := select(N ,name = ‘sec’) 8240 70
R5 := R3 1⊃ R4 12, 70 65
R6 := select(N ,name = ‘st’) 8240 146
R7 := R5 1⊃ R6 65, 146 140
R8 := about(R7 , “qw”) 140 140
R9 := avg(R8) 140 58

Operation |Input| |Result|
R1 := select(PathSummary ,

name = /article/bdy/sec) 10 65
R2 := select(N ,name = ‘st’) 8240 146
R3 := R1 1⊃ R2 65, 146 140
R4 := about(R3 , “qw”) 140 140
R5 := avg(R4) 140 58

Table 3: Experimental runs
Run Description

TR Text Region approach. Use of Structural
Joins to process XPath steps.

C1 Combined Scheme. Flattening only
the first descendant step when the path starts
with a descendant axis step.

C2 Combined Scheme. Using algorithm of
Figure 8 with NP = 3 and NC = 3.

Table 4: Run times statistics. Text region approach
vs. Combined scheme. Time in seconds

Run Total Average Max Min

TR 122.4 10.2 16.5 4.5
C1 76.77 6.4 13.38 1
C2 71.65 5.97 13.75 1

Schmidt’s PhD thesis [8].

Our experiments with INEX topics demonstrate how a mi-
nor increase in storage requirements can lead to a consider-
able acceleration of query processing. The number of struc-
tural joins required to produce the results of the content-
and-structure queries has been reduced, and the memory
requirements during query processing diminished.

The most interesting contribution of this paper is that it
demonstrates how document-centric XML query process-
ing should benefit from a layered system design similar to
the architecture of relational database management systems,
where the query is declarative, and the query optimiser de-
termines the actual query execution plan. We have shown
how the most appropriate query processing strategy can only
be chosen at run-time, based on statistics about the data
collection indexed.

Our main plans for future research in this area consist of a
deeper investigation of optimisation techniques enabled by
the redundant representation of XML documents. Also, no-

tice that the collection we used in this paper exhibits a fairly
regular structure. While the combined scheme could be sim-
ilarly efficient for selective queries in a heterogeneous collec-
tion, the path-summary would grow significantly, increasing
the cost of identifying the relations to be used. Another
future direction is therefore to investigate whether this cost
can be reduced by maintaining only a selection of the join
indices, rather than simply defining them for all possible
location paths occurring in the document.

7. ACKNOWLEDGEMENTS
The authors would like to thank Johan List for his valuable
comments and help.

8. REFERENCES
[1] P. A. Boncz. Monet: A Next-Generation DBMS Kernel

For Query-Intensive Applications. Ph.d. thesis, Universiteit
van Amsterdam, Amsterdam, The Netherlands, May 2002.

[2] A.P. de Vries, J.A. List, and H.E. Blok. The Multi-Model
DBMS Architecture and XML Information Retrieval. In
H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors, Intelligent Search on XML, volume
2818 of Lecture Notes in Computer Science/Lecture Notes
in Artificial Intelligence (LNCS/LNAI), pages 179–192.
Springer-Verlag, Berlin, New York, etc., August 2003.

[3] D. Florescu and D. Kossmann. Storing and Querying XML
Data using an RDBMS. IEEE Data Engineering Bulletin,
22:27–34, 1999.

[4] Norbert Fuhr, Norbert Gövert, Gabriella Kazai, and
Mounia Lalmas. INEX: INitiative for the Evaluation of
XML retrieval. In Proceedings of the SIGIR 2002
Workshop on XML and Information Retrieval, 2002.
http://www.is.informatik.uni-duisburg.de/bib/xml/
Fuhr_etal_02a.html.

[5] T. Grust, M. van Keulen, and J. Teubner. Accelerating
XPath Evaluation in any RDBMS. ACM Transactions on
Database Systems (TODS), 2003.

[6] INEX’03 Guidelines for Topic Development. In Norbert
Fuhr, Saadia Malik, and Mounia Lalmas, editors, INEX
2003 Workshop Proceedings, pages 192–199, 2003.
http://inex.is.informatik.uni-duisburg.de:
2003/proceedings.pdf.

[7] Johan List, Vojkan Mihajlovic, Arjen P. de Vries, Georgina
Ramirez, and Djoerd Hiemstra. The TIJAH XML-IR
system at INEX 2003. In Norbert Fuhr, Saadia Malik, and
Mounia Lalmas, editors, INEX 2003 Workshop
Proceedings, pages 102–109, 2003.
http://inex.is.informatik.uni-duisburg.de:
2003/proceedings.pdf.

[8] Albrecht Schmidt. Processing XML in Database Systems.
PhD thesis, University of Amsterdam, 2002.

[9] T.Grust. Accelerating XPath Location Steps. In In
Proceedings of the 21st ACM SIGMOD International
Conference on Management of Data, pages 109–120, 2002.

[10] Patrick Valduriez. Join indices. ACM Transactions on
Database Systems (TODS), 12(2):218–246, 1987.

