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SEMIDEFINITE BOUNDS FOR NONBINARY CODES BASED ON
QUADRUPLES

Bart Litjens1, Sven Polak1, Alexander Schrijver1

Abstract. For nonnegative integers q, n, d, let Aq(n, d) denote the maximum cardinality of a code
of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider
the following upper bound on Aq(n, d). For any k, let Ck be the collection of codes of cardinality
at most k. Then Aq(n, d) is at most the maximum value of

∑

v∈[q]n x({v}), where x is a function

C4 → R+ such that x(∅) = 1 and x(C) = 0 if C has minimum distance less than d, and such that
the C2 ×C2 matrix (x(C ∪C′))C,C′∈C2

is positive semidefinite. By the symmetry of the problem, we
can apply representation theory to reduce the problem to a semidefinite programming problem with
order bounded by a polynomial in n. It yields the new upper bounds A4(6, 3) ≤ 176, A4(7, 4) ≤ 155,
A5(7, 4) ≤ 489, and A5(7, 5) ≤ 87.
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MSC 2010: 94B65, 05E10, 90C22, 20C30

1. Introduction

Let Z+ denote the set of nonnegative integers, and denote [m] = {1, . . . ,m}, for anym ∈ Z+.
Fixing n, q ∈ Z+, a code is a subset of [q]n. So [q] serves as the alphabet and n as the word
length. We will assume throughout that q ≥ 2. (If you prefer {0, 1, . . . , q − 1} as alphabet,
take the letters mod q.) While this paper is mainly meant to handle the case q ≥ 3, the
results also hold for q = 2.

For v,w ∈ [q]n, the (Hamming) distance dH(v,w) is equal to the number of i ∈ [n]
with vi 6= wi. The minimum distance of a code C is the minimum of dH(v,w) taken over
distinct v,w ∈ C. Then Aq(n, d) denotes the maximum cardinality of a code with minimum
distance at least d. We will study the following upper bound on Aq(n, d), sharpening
Delsarte’s classical linear programming bound [4].

For k ∈ Z+, let Ck be the collection of subsets C of [q]n with |C| ≤ k. For each x : C4 → R

define the C2 × C2 matrix M(x) by

(1) M(x)C,C′ := x(C ∪ C ′)

for C,C ′ ∈ C2. Then define

(2) Bq(n, d) := max
x

∑

w∈[q]n

x({w}), where x : C4 → R+ satisfies

(i) x(∅) = 1,
(ii) x(C) = 0 if the minimum distance of C is less than d,
(iii) M(x) is positive semidefinite.

Proposition 1. Aq(n, d) ≤ Bq(n, d).

1 Korteweg-De Vries Institute for Mathematics, University of Amsterdam. The research leading to these
results has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement n◦ 339109.
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Proof. Let D ⊆ [q]n have minimum distance at least d and satisfy |D| = Aq(n, d). Define
x : C4 → R by x(C) = 1 if C ⊆ D and x(C) = 0 otherwise. Then x satisfies the conditions:
(iii) follows from the fact that for this x one has M(x)C,C′ = x(C)x(C ′) for all C,C ′ ∈ C2.
Moreover,

∑

w∈[q]n x({w}) = |D| = Aq(n, d).

The optimization problem (2) is huge, but, with methods from representation theory,
can be reduced to a size bounded by a polynomial in n, with entries (i.e., coefficients) being
polynomials in q. This makes it possible to solve (2) by semidefinite programming for some
moderate values of n, d, and q, leading to improvements of best known upper bounds for
Aq(n, d).

To explain the reduction, let H be the wreath product Sn
q ⋊ Sn. For each k, the group

H acts naturally on Ck, maintaining minimum distances and cardinalities of elements of Ck
(being codes). Then we can assume that x is invariant under the H-action on C4. That is,
we can assume that x(C) = x(D) whenever C,D ∈ C2 andD = g·C for some g ∈ H. Indeed,
(2)(i)(ii)(iii) are maintained under replacing x by g ·x. (Note that M(g ·x) is obtained from
M(x) by simultaneously permuting rows and columns.) Moreover, the objective function
does not change by this action. Hence the optimum x can be replaced by the average of
all g · x (over all g ∈ H), by the convexity of the set of positive semidefinite matrices. This
makes the optimum solution H-invariant.

Let Ω be the set of H-orbits on C4. Note that Ω is bounded by a polynomial in n

(independently of q). As there exists an H-invariant optimum solution, we can replace, for
each ω ∈ Ω and C ∈ ω, each variable x(C) by a variable y(ω). In this way we obtain M(y).

ThenM(y) is invariant under the action of H on its rows and columns, induced from the
action of H on C2. Hence M(y) can be block-diagonalized by M(y) 7→ UTM(y)U , where U
is a matrix independent of y. The entries in each block are linear functions of the variables
y(ω). There are several equal (or equivalent) blocks. Taking one block from each such class
gives a matrix of order polynomial in n with numbers that are polynomials in q. The issue
crucial for us is that the original matrix M(y) is positive semidefinite if and only if each of
the blocks is positive semidefinite.

In this paper we will describe the blocks that reduce the problem. With this, we found
the following improvements on the known bounds for Aq(n, d), with thanks to Hans D.
Mittelmann for his help in solving the larger-sized problems

best
best upper
lower new bound
bound upper previously

q n d known bound known

4 6 3 164 176 179

4 7 4 128 155 169

5 7 4 250 489 545

5 7 5 53 87 108

The best upper bound 179 previously known for A4(6, 3) is the Delsarte bound [4]; the
other three best upper bounds previously known were given by Gijswijt, Schrijver, and
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Tanaka [7]. We refer to the most invaluable tables maintained by Andries Brouwer [3]
with the best known lower and upper bounds for the size of error-correcting codes (see also
Bogdanova, Brouwer, Kapralov, and Österg̊ard [1] and Bogdanova and Österg̊ard [2] for
studies of bounds for codes over alphabets of size q = 4 and q = 5, respectively).

1.1. Comparison with earlier bounds

The bound Bq(n, d) described above is a sharpening of Delsarte’s classical linear program-
ming bound [4]. The value of the Delsarte bound is equal to our bound after replacing C4
and C2 by C2 and C1, respectively, which generally yields a less strict bound.

We can add to (2) the condition that, for each D ∈ C4, the S(D)× S(D) matrix

(3) (x(C ∪C ′))C,C′∈S(D) is positive semidefinite,

where S(D) := {C ∈ C4 | C ⊇ D, |D| + 2|C \D| ≤ 4}. (So (iii) in (2) is the case D = ∅.)
Also the addition of (3) allows a reduction of the optimization problem to polynomial size
as above. For q = 2 we obtain in this way the bound given by Gijswijt, Mittelmann,
and Schrijver [6]. Our present description gives a more conceptual and representation-
theoretic approach to the method of [6]. Some preliminary computations suggest that
adding condition (3) might be superfluous in the optimization problem, but this needs
further investigation.

A bound intermediate to the Delsarte bound and the currently investigated bound is
based on considering functions x : C3 → R+ and the related matrices — see Schrijver [9] for
binary codes and Gijswijt, Schrijver, and Tanaka [7] for nonbinary codes.

2. Preliminaries on representation theory

We assume some familiarity with classical representation theory, in particular of the sym-
metric group Sn and of finite groups in general. In this section we give a brief review, also
to settle some notation and terminology. We refer to Sagan [8] for background. All groups
considered are finite, which allows us to keep decompositions and reductions real-valued.

A group G acts on a set X if there is a group homomorphism G→ SX , where SX is the
set of bijections X → X. The image of g ∈ G in SX is indicated by g · . If X is a linear
space, the bijections are assumed to be linear functions. The action of G on a set X induces
an action of G on the linear space R

X , by (g · f)(x) := f(g−1 · x) for all g ∈ G, f ∈ R
X ,

and x ∈ X. If any group G acts on X, then XG denotes the set of elements of X invariant
under the action of G.

Let m ∈ Z+ and let G be a finite group acting on V = R
m. Then V can be decomposed

uniquely as direct sum of the G-isotypical components V1, . . . , Vk. Next, each Vi is a direct
sum Vi,1⊕· · ·⊕Vi,mi

of mutually G-isomorphic, irreducible G-modules. (This decomposition
is generally not unique.) For each i ≤ k and j ≤ mi, choose a nonzero ui,j ∈ Vi,j such that
for each i and all j, j′ ≤ mi there exists a G-isomorphism Vi,j → Vi,j′ bringing ui,j to ui,j′ .
For each i ≤ k, let Ui be the matrix [ui,1, . . . , ui,mi

], considering the ui,j as columns. We call
any matrix set {U1, . . . , Uk} that can be obtained in this way representative for the action
of G on R

m. It has the property that the function

3



(4) Φ : (Rm×m)G →
k

⊕

i=1

R
mi×mi with Φ(X) :=

k
⊕

i=1

UT

i XUi

for X ∈ (Rm×m)G is bijective. So
∑

im
2
i is equal to the dimension of (Rm×m)G (and hence

can be considerably smaller thanm). Another important property of a representative matrix
set is that X is positive semidefinite if and only if Φ(X) is positive semidefinite. Moreover,
by construction, as Vi,j = RG · ui,j for all i, j,

(5) V =

k
⊕

i=1

mi
⊕

j=1

RG · ui,j.

It will turn out to be convenient to consider the columns of the matrices Ui as elements
of the dual space (Rm)∗ (by taking the standard inner product). Then each Ui is an ordered
set of linear functions on R

m. (The order plays a role in describing a representative matrix
set for the action of the wreath product G⋊ Sn on V ⊗n.)

2.1. A representative set for the action of Sn on V ⊗n

Classical representation theory of the symmetric group yields a representative set for the
natural action of Sn on V ⊗n, where V is a finite-dimensional vector space, which we will
describe now.

For n ∈ Z+, λ ⊢ nmeans that λ is equal to (λ1, . . . , λt) for some t, with λ1 ≥ · · · ≥ λt > 0
integer and λ1 + · · · + λt = n. The number t is called the height of λ. The Young shape
Y (λ) of λ is the set

(6) Y (λ) := {(i, j) ∈ Z
2
+ | 1 ≤ j ≤ t, 1 ≤ i ≤ λj}.

For any j0 ≤ t, the set of elements (i, j0) in Y (λ) is called the j0-th row of Y (λ). Let Rλ

be the group of permutations π of Y (λ) with π(Z) = Z for each row Z of Y (λ). For any
i0 ≤ λ1, the set of elements (i0, j) in Y (λ) is called the i0-th column of Y (λ). Let Cλ be the
group of permutations π of Y (λ) with π(Z) = Z for each column Z of Y (λ).

A λ-tableau is a function τ : Y (λ) → Z+. We put τ ∼ τ ′ for λ-tableaux τ, τ ′ if τ ′ = τr for
some r ∈ Rλ. A λ-tableau is semistandard if in each row the entries are nondecreasing and
in each column the entries are increasing. Let Tλ,m denote the collection of semistandard
λ-tableaux with entries in [m]. Note that Tλ,m 6= ∅ if and only if λ has height at most m.

Let B = (B(1), . . . , B(m)) be an ordered basis of V ∗. For τ ∈ Tλ,m, define the following
element of (V ∗)⊗n:

(7) uτ,B :=
∑

τ ′∼τ

∑

c∈Cλ

sgn(c)
⊗

y∈Y (λ)

B(τ ′c(y)),

where we order the Young shape Y (λ) by concatenating its rows. Then the matrix set

(8) { [uτ,B | τ ∈ Tλ,m] | λ ⊢ n}

is representative for the natural action of Sn on V ⊗n.
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3. Reduction of the optimization problem

In this section we describe reducing the optimization problem (2) conceptually. In Section
4 we consider the reduction computationally. For the remainder of this paper we fix n and
q.

We consider the natural action ofH = Sq⋊Sn on R
C2 . If U1, . . . , Uk form a representative

set of matrices for this action, then with (4) we obtain a reduction of the size of the
optimization problem to polynomial size. To make this reduction explicit in order to apply
semidefinite programming, we need to express each mi×mi matrix UT

i M(y)Ui as an explicit
matrix in which each entry is a linear combination of the variables y(ω) for ω ∈ Ω (the set
of H-orbits of C4).

For ω ∈ Ω, let Nω be the C2 × C2 matrix with 0, 1 entries satisfying

(9) (Nω){α,β},{γ,δ} = 1 if and only if {α, β, γ, δ} ∈ ω

for α, β, γ, δ ∈ [q]n. Then

(10) UT

i M(y)Ui =
∑

ω

y(ω)UT

i NωUi.

So to get the reduction, we need to obtain the matrices UT

i NωUi explicitly, for each ω ∈ Ω
and for each i = 1, . . . , k. We do this in a number of steps.

We first describe in Section 3.1 a representative set for the natural action of Sq on R
q×q.

From this we derive, in Section 3.2, with the help of the representative set for the action
of Sn on V ⊗n described in Section 2.1, a representative set for the action of the wreath
product H = Sn

q ⋊ Sn on the set ([q]n)2 of ordered pairs of words in [q]n, in other words,

on R
([q]n)2 ∼= (Rq×q)⊗n. From this we derive in Section 3.3 a representative set for the

action of H on the set C2 \ {∅} of unordered pairs {v,w} (including singleton) of words
v,w in [q]n. Then in Section 3.4 we derive a representative set for the action of H on the
set Cd

2 \ {∅}, where Cd
2 is the set of codes in C2 of minimum distance at least d. (So each

singleton word belongs to Cd
2 .) Finally, in Section 3.4 we include the empty set ∅, by an

easy representation-theoretic argument.

3.1. A representative set for the action of Sq on R
q×q

We now consider the natural action of Sq on R
q×q. Let ej be the j-th unit basis vector in

R
q, Jq be the all-one q × q matrix, 1 be the all-one column vector in R

q, N := (e1 − e2)1
T,

and Ei,j := eie
T

j . We furthermore define the following matrices, where we consider matrics
in R

q×q as columns of the matrices Bi:

(11) B1 := [Iq, Jq − Iq],
B2 := [E1,1 − E2,2, N −NT, N +NT − 2(E1,1 − E2,2)],
B3 := [E1,2 + E2,3 + E3,1 − E2,1 − E3,2 − E1,3],
B4 := [E1,3 − E3,2 + E2,4 − E4,1 + E3,1 − E2,3 + E4,2 − E1,4].

The matrices in R
q×q will in fact be taken as elements of the dual space (Rq×q)∗ (by taking

the inner product), so that they are elements of the algebra O(Rq×q) of polynomials on the
linear space R

q×q.

5



One may check that {B1, . . . , B4} is representative for the natural action of Sq on R
q×q,

if q ≥ 4. If q ≤ 3, we delete B4, and if q = 2 we moreover delete B3 and the last column of
B2 (as this column is 0 if q = 2). Therefore, if q ≥ 4, set k = 4, m1 = 2, m2 := 3, m3 := 1,
and m4 := 1. If q = 3, set k = 3, m1 = 2, m2 := 3, and m3 := 1. If q = 2, set k = 2,
m1 = 2, and m2 := 2.

For the remainder of this paper we fix k, m1, . . . ,mk, and B1, . . . , Bk.

3.2. A representative set for the action of H on (Rq×q)⊗n

We next consider the action of H on the set ([q]n)2 of ordered pairs of code words. For that,
we derive a representative set for the natural action of H on (Rq×q)⊗n ∼= R

([q]n)2 from the
results described in Sections 2.1 and 3.1.

Let N be the collection of all k-tuples (n1, . . . , nk) of nonnegative integers adding up
to n. For n = (n1, . . . , nk) ∈ N , let λ ⊢ n mean that λ = (λ1, . . . , λk) with λi ⊢ ni for
i = 1, . . . , k. (So each λi is equal to (λi,1, . . . , λi,t) for some t.)

For λ ⊢ n define

(12) Wλ := Tλ1,m1 × · · · × Tλk ,mk
,

and for τ = (τ1, . . . , τk) ∈Wλ define

(13) vτ :=

k
⊗

i=1

uτi,Bi
.

Proposition 2. The matrix set

(14) { [vτ | τ ∈Wλ] | n ∈ N ,λ ⊢ n}

is representative for the action of Sn
q ⋊ Sn on (Rq×q)⊗n.

Proof. Let Li denote the linear space spanned by Bi(1), . . . , Bi(mi). Then

(15) (Rq×q)⊗n by (5)
=

(

k
⊕

i=1

mi
⊕

j=1

RSq ·Bi(j)
)⊗n

= RSn ·
⊕

n∈N

k
⊗

i=1

(

mi
⊕

j=1

RSq ·Bi(j)
)⊗ni =

RSn · RS⊗n
q ·

⊕

n∈N

k
⊗

i=1

L⊗ni

i

by (5)
= RH ·

⊕

n∈N

k
⊗

i=1

⊕

λi⊢ni

⊕

τi∈Tλi,mi

RSni
· uτi,Bi

=

⊕

n∈N

⊕

λ ⊢ n

⊕

τ∈Wλ

RH · vτ .

Now for each n, λ and τ ,σ ∈Wλ, there is an H-isomorphism RH · vτ → RH · vσ bringing
vτ to vσ, since for each i = 1, . . . , k, setting Hi := Sni

q ⋊ Sni
, there is an Hi-isomorphism

RHi · uτi,Bi
→ RHi · uσi,Bi

. Hence

(16) dim((Rq×q)⊗n ⊗ (Rq×q)⊗n)H ≥
∑

n∈N

∑

λ ⊢ n

|Wλ|
2 =

∑

n∈N

∑

λ ⊢ n

k
∏

i=1

|Tλi,mi
|2 =

6



∑

n∈N

k
∏

i=1

∑

λi⊢ni

|Tλi,mi
|2

by (8)
=

∑

n∈N

k
∏

i=1

dimSymni
(Rmi ⊗ R

mi) =

∑

n∈N

k
∏

i=1

(

m2
i+ni−1
ni−1

)

=
(

∑k
i=1 m

2
i+n−1

n−1

)

= dimSymn(((R
q×q)⊗ (Rq×q))Sq ) =

dim((Rq×q)⊗n ⊗ (Rq×q)⊗n)H

as
∑k

i=1m
2
i = dim(Rq×q⊗R

q×q)Sq . So we have equality throughout in (16), and hence each
RH · vτ is irreducible, and if λ 6= λ′, then for each τ ∈ Wλ and τ ′ ∈ Wλ′ , RH · vτ and
RH · vτ ′ are not H-isomorphic.

3.3. Unordered pairs

We now go over from the set ([q]n)2 of ordered pairs of code words to the set C2 \ {∅} of
unordered pairs (including singletons) of code words. For this we consider the action of the
group S2 on R

[q]n×[q]n ∼= R
([q]n)2 ∼= (Rq×q)⊗n, where the nonidentity element σ in S2 acts as

taking the transpose. The actions of S2 and H commute.
Let F be the (C2 \ {∅}) × ([q]n)2 matrix with 0, 1 entries satisfying

(17) F{α,β},(γ,δ) = 1 if and only if {γ, δ} = {α, β},

for α, β, γ, δ ∈ [q]n. Then the function x 7→ Fx is an H-isomorphism (R([q]n)2)S2 → R
C2\{∅}.

Now note that each Bi(j), as matrix in R
q×q, is S2-invariant (i.e., symmetric) except

for B2(2) and B3(1), while σ ·B2(2) = −B2(2) and σ ·B3(1) = −B3(1) (as B2(2) and B3(1)
are skew-symmetric). So for any n ∈ N , λ ⊢ n, and τ ∈Wλ, we have

(18) σ · vτ = (−1)|τ
−1
2 (2)|+|τ−1

3 (1)|vτ .

Therefore, let W ′
λ be the set of those τ ∈ Wλ with |τ−1

2 (2)| + |τ−1
3 (1)| even. Then the

matrix set

(19) { [vτ | τ ∈W ′
λ] | n ∈ N ,λ ⊢ n}

is representative for the action of H on (R([q]n)2)S2 . Hence the matrix set

(20) { [Fvτ | τ ∈W ′
λ] | n ∈ N ,λ ⊢ n}

is representative for the action of H on R
C2\{∅}.

3.4. Restriction to pairs of words at distance at least d

Let d ∈ Z+, and let Cd
2 be the collection of elements of C2 of minimum distance at least d.

Note that each singleton code word belongs to Cd
2 , and that H acts on Cd

2 . From (20) we

derive a representative set for the action of H on R
Cd
2\{∅}.

To see this, let for each t ∈ Z+, Lt be the subspace of RC2 spanned by the elements
e{α,β} with α, β ∈ [q]n and dH(α, β) = t. (For any Z ∈ C2, eZ denotes the unit base vector

in R
Cd
2 for coordinate Z.)

7



Then for any n ∈ N , λ ⊢ n, and τ ∈ W ′
λ, the irreducible representation H · Fvτ is

contained in Lt, where

(21) t := n− |τ−1
1 (1)| − |τ−1

2 (1)|,

since B1(1) = Iq and B2(1) = E1,1 −E2,2 are the only two entries Bi(j) in the Bi that have
nonzeros on the diagonal of the matrix Bi(j). Let W

′′
λ be the set of those τ in W ′

λ with

(22) n− |τ−1
1 (1)| − |τ−1

2 (1)| ∈ {0, d, d + 1, . . . , n}.

Then a representative set for the action of H on Cd
2 \ {∅} is

(23)
{

[Fvτ | τ ∈W ′′
λ ] | n ∈ N ,λ ⊢ n

}

.

3.5. Adding ∅

To obtain a representative set for the action of H on Cd
2 , note that H acts trivially on ∅. So

e∅ belongs to the H-isotopical component of RC2 that consists of H-invariant elements. Now
theH-isotypical component of RC2\{∅} that consists of theH-invariant elements corresponds
to the matrix in the representative set indexed by indexed by n = (n, 0, 0, 0) and λ =
((n), (), (), ()), where () ⊢ 0. So to obtain a representative set for R

C2 , we just add e∅ as
column to this matrix.

4. How to compute (Fvτ )
TNωFvσ

We now have a reduction of the original problem to blocks with coefficients (Fvτ )
TNωFvσ,

for n ∈ N , λ ⊢ n, τ ,σ ∈ Wλ, and ω ∈ Ω. The number and orders of these blocks are
bounded by a polynomial in n, but computing these coefficients still must be reduced in
time, since the order of F , vτ , vσ, and Nω is exponential in n.

Fix n ∈ N , λ ⊢ n, and τ ,σ ∈ Wλ. For any ω ∈ Ω, let Lω := FTNωF . So Lω is a
([q]n × [q]n)× ([q]n × [q]n) matrix with 0,1 entries satisfying

(24) (Lω)(α,β),(γ,δ) = 1 if and only if {α, β, γ, δ} ∈ ω,

for all α, β, γ, δ ∈ [q]n. By definition of Lω,

(25) (Fvτ )
TNωFvσ = vTτLωvσ.

So it suffices to evaluate the latter value.
Let Π be the collection of partitions of {1, 2, 3, 4} into at most q parts. There is the

following bijection between Π and the set of orbits of the action of Sq on [q]4.
For each word w ∈ [q]4, let part(w) be the partition P ∈ Π such that i and j belong to

the same class of P if and only if wi = wj (for i, j = 1, . . . , 4). Then two elements v,w ∈ [q]4

belong to the same Sq-orbit if and only if part(v) = part(w). Note that |Π| = 8 if q = 2,

|Π| = 14 if q = 3, and |Π| = 15 if q ≥ 4. (In all cases, |Π| = dim(Rq×q)Sq =
∑k

i=1m
2
i .)

For P ∈ Π, let

8



(26) dP :=
∑

i1,...,i4∈[q]
parti1···i4=P

ei1e
T

i2
⊗ ei3e

T

i4
,

where each ei is a unit basis column vector in R
q, so that eie

T

j is a matrix in R
q×q. Then

D := {dP | P ∈ Π} is a basis of (Rq×q ⊗ R
q×q)Sq . Let D∗ be the dual basis.

For any (α, β, γ, δ) ∈ ([q]n)4, let

(27) ψ(α, β, γ, δ) :=

n
∏

i=1

d∗part(αiβiγiδi)
,

which is a degree n polynomial on (Rq×q ⊗ R
q×q)Sq . Then ψ(α, β, γ, δ) = ψ(α′, β′, γ′, δ′) if

and only if (α, β, γ, δ) and (α′, β′, γ′, δ′) belong to the sameH-orbit on ([q]n)4. So this gives a
bijection between the set Q of degree nmonomials expressed in the dual basisD∗ and the set
of H-orbits on ([q]n)4 ∼= ([q]4)n. The function ([q]n)4 → C4 with (α1, . . . , α4) 7→ {α1, . . . , α4}
then gives a surjective function ω : Q→ Ω \ {{∅}}.

For any µ ∈ Q, define

(28) Kµ :=
∑

d1,...,dn∈D

d∗
1
···d∗n=µ

n
⊗

j=1

dj .

Lemma 1. For each ω ∈ Ω: Lω =
∑

µ∈Q
ω(µ)=ω

Kµ.

Proof. Choose α, β, γ, δ ∈ [q]n. Then

(29)
∑

µ∈Q
ω(µ)=ω

(Kµ)(α,β),(γ,δ) =
∑

µ∈Q
ω(µ)=ω

∑

P1,...,Pn∈Π

d∗
P1

···d∗
Pn

=µ

(

n
⊗

i=1

dPi

)

α,β,γ,δ
=

∑

µ∈Q
ω(µ)=ω

∑

P1,...,Pn∈Π

d∗
P1

···d∗
Pn

=µ

n
∏

i=1

(dPi
)αi,βi,γi,δi .

Now the latter value is 1 if ω(d∗part(α1β1γ1δ1)
· · · d∗part(αnβnδnγn)

) = ω, and is 0 otherwise. So

it is equal to (Lω)(α,β),(γ,δ).

By this lemma, it suffices to compute vTτKµvσ for each µ ∈ Q. To this end, define the
following degree n polynomial on W := (Rq×q ⊗ R

q×q)Sq :

(30) pτ, σ :=

k
∏

i=1

∑

τ ′
i
∼τi

σ′

i
∼σi

∑

ci,c
′

i
∈Cλi

sgn(cic
′
i)

∏

y∈Y (λi)

Bi(τ
′
ici(y))⊗Bi(σ

′
ic

′
i(y)).

This polynomial can be computed (i.e., expressed as linear combination of monomials in
Bi(j)⊗Bi(h)) in time bounded by a polynomial in n (Gijswijt [5], see Appendix 1 in Section
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4.1 below).

Lemma 2.
∑

µ∈Q

(vTτKµvσ)µ = pτ, σ.

Proof. We can write for each µ ∈ Q:

(31) vTτKµvσ = (vτ ⊗ vσ)(Kµ),

using the fact that vτ , vσ ∈ ((Rq×q)⊗n)∗ and Kµ ∈ (Rq×q)⊗n ⊗ (Rq×q)⊗n. So it suffices to
show

(32)
∑

µ∈Q

(vτ ⊗ vσ)(Kµ)µ = pτ, σ.

Consider any f = f1 · · · fn with fj ∈W ∗ for j = 1, . . . , n. Then

(33) f =
∑

µ∈Q

(
n

⊗

j=1

fj)(Kµ)µ.

Indeed,

(34)
∑

µ∈Q

(
n

⊗

j=1

fj)(Kµ)µ =
∑

d1,...,dn∈D

d∗
1
···d∗n=µ

(
n

⊗

j=1

fj)(
n

⊗

j=1

dj)µ =
∑

d1,...,dn∈D

n
∏

j=1

fj(dj)d
∗
j =

n
∏

j=1

∑

d∈D

fj(d)d
∗ =

n
∏

j=1

fj = f.

Applying (33) to each term f of pτ, σ as given by (30) we obtain (32), in view of (7) and
(13).

So vTτKµvσ can be computed by expressing the polynomial pτ, σ as linear combination
of monomials µ ∈ Q, which are products of linear functions in D∗. So it suffices to express
each Bi(j) ⊗ Bi(h) as linear function into the basis D∗, that is, to calculate the numbers
(Bi(j) ⊗ Bi(h))(dP ) for all i = 1, . . . , k, j, h = 1, . . . ,mi, and P ∈ Π — see Appendix 2
(Section 4.2 below).

We finally consider the entries in the row and column for ∅ in the matrix associated
with λ = ((n), (), (), ()) (cf. Section 3.5). Trivially, eT∅M(x)e∅ = (M(x))∅,∅ = x(∅), which is
set to 1 in the optimization problem. Any τ ∈Wλ is determined by the number t of 2’s in
the row of the Young shape Y ((n)). Then

(35) vτ =
∑

u,w∈[q]n

dH (u,w)=t

e(u,w) and hence Fvτ =
∑

u,w∈[q]n

dH (u,w)=t

e{u,w}.

Hence, as ∅ ∪ {u,w} = {u,w},

(36) eT∅M(x)Fvτ =
∑

u,w∈[q]n

dH (u,w)=t

x({u,w}) =
(

n
t

)

qn(q − 1)ty(ω),
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where ω is the H-orbit of C4 consisting of all pairs {α, β} with dH(α, β) = t.

4.1. Appendix 1: Computation of pτ,σ

For any n,m ∈ Z+, λ ⊢ n, and τ, σ ∈ Tλ,m, define the polynomial pτ,σ ∈ R[xj,h | j, h =
1, . . . ,m] by

(37) pτ,σ(X) :=
∑

τ ′∼τ
σ′∼σ

∑

c,c′∈Cλ

sgn(cc′)
∏

y∈Y (λ)

xτ ′c(y),σ′c′(y),

for X = (xj,h)
m
j,h=1 ∈ R

m×m.

Proposition 3. Expressing pτ,σ as a linear combination of monomials can be done in
polynomial time, for fixed m.

Proof. First observe that

(38) pτ,σ(X) = |Cλ|
∑

τ ′∼τ
σ′∼σ

∑

c∈Cλ

sgn(c)
∏

y∈Yλ

xτ ′(y),σ′c(y) =

|Cλ|
∑

τ ′∼τ
σ′∼σ

λ1
∏

j=1

det((xτ ′(i,j),σ′(i′,j))
λ∗

j

i,i′=1).

(λ∗ is the dual partition of λ; that is, λ∗j is the height of column j.)
For fixed m, when n grows, there will be several columns of Y (λ) that are the same

both in τ ′ and in σ′. More precisely, for given τ ′, σ′ let the ‘count function’ κ be defined
as follows: for t ∈ Z+ and v,w ∈ [m]t, κ(v,w) is the number of columns j of height t such
that τ ′(i, j) = vi and σ

′(i, j) = wi for all i = 1, . . . , t. Then for each i ≤ h := height(λ) and
each s ∈ [m]:

(39)

h
∑

t=i

∑

v,w∈[m]t

vi=s

κ(v,w) = number of s in row i of τ , and

h
∑

t=i

∑

v,w∈[m]t

wi=s

κ(v,w) = number of s in row i of σ.

For any given function κ :
⋃h

i=1[m]i × [m]i → Z+ satisfying (39), there are precisely

(40)

h
∏

t=1

(λt − λt+1)!
∏

v,w∈[m]t κ(v,w)!

pairs τ ′ ∼ τ and σ′ ∼ σ having count function κ (setting λh+1 := 0). (Note that (39) implies
λt − λt+1 =

∑

v,w∈[m]t κ(v,w), for each t, so that for each t, the factor in (40) is a Newton
multinomial coefficient.) Hence

11



(41) pτ,σ = |Cλ|
∑

κ

h
∏

t=1

(λt − λt+1)!
∏

v,w∈[m]t

det((xv(i),w(i′))
t
i,i′=1)

κ(v,w)

κ(v,w)!
,

where κ ranges over functions κ :
⋃h

t=1([m]t × [m]t) → Z+ satisfying (39).

4.2. Appendix 2: Expressing Bi(j) ⊗ Bi(h) into d∗
P

Recall that each Bi(j) is a linear function on R
q×q, and that each dP is an element of

R
q×q⊗R

q×q, where P belongs to the set Π of partitions of {1, . . . , 4} with at most q classes.
We express each Bi(j)⊗Bi(h) in the dual basis B∗ := {d∗P | P ∈ Π}. The coefficient of d∗P is
obtained by evaluating (Bi(j)⊗Bi(h))(dP ). This is routine, but we display the expressions.

For this, denote any subset X of {1, . . . , 4} by a string formed by the elements of X, and
denote a partition P of {1, . . . , 4} by a sequence of its classes (for instance, d∗13,2,4 denotes
the dual variable d∗P associated with partition P = {{1, 3}, {2}, {4}} of {1, 2, 3, 4}). Then:

B1(1)⊗B1(1) = qd∗1234 + q(q − 1)d∗12,34,
B1(1)⊗B1(2) = q(q − 1)(d∗123,4 + d∗124,3 + (q − 2)d∗12,3,4),
B1(2)⊗B1(1) = q(q − 1)(d∗1,234 + d∗134,2 + (q − 2)d∗1,2,34),
B1(2)⊗B1(2) = q(q− 1)(d∗13,24 + d∗14,23 +(q− 2)(d∗13,2,4 + d∗14,2,3 + d∗1,23,4 + d∗1,24,3 +(q− 3)d∗1,2,3,4)).

B2(1)⊗B2(1) = 2d∗1234 − 2d∗12,34,
B2(1)⊗B2(2) = 2q(d∗123,4 − d∗124,3),
B2(1)⊗B2(3) = 2(q − 2)(d∗124,3 + d∗123,4 − 2d∗12,3,4),
B2(2)⊗B2(1) = 2q(d∗134,2 − d∗1,234),
B2(2)⊗B2(2) = 2q(2d∗13,24 − 2d∗14,23 + (q − 2)(d∗13,2,4 − d∗14,2,3 − d∗1,23,4 + d∗1,24,3)),
B2(2)⊗B2(3) = 2q(q − 2)(d∗13,2,4 + d∗14,2,3 − d∗1,23,4 − d∗1,24,3),
B2(3)⊗B2(1) = 2(q − 2)(d∗1,234 + d∗134,2 − 2d∗1,2,34),
B2(3)⊗B2(2) = 2q(q − 2)(d∗13,2,4 − d∗14,2,3 + d∗1,23,4 − d∗1,24,3),
B2(3)⊗B2(3) = 2(q−2)(2d∗13,24+2d∗14,23+(q−4)(d∗13,2,4+d

∗
14,2,3+d

∗
1,23,4+d

∗
1,24,3)+4(q−3)d∗1,2,3,4).

B3(1)⊗B3(1) = 6(d∗13,24 − d∗14,23 − d∗13,2,4 + d∗14,2,3 + d∗1,23,4 − d∗1,24,3).

B4(1)⊗B4(1) = 8(d∗13,24 + d∗14,23 − d∗13,2,4 − d∗14,2,3 − d∗1,23,4 − d∗1,24,3) + 16d∗1,2,3,4.

Acknowledgements. We are very grateful to Hans D. Mittelmann for his help in solving the
larger semidefinite programming problems.
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