
Adding State to Declarative
Languages to Enable Web

Applications

Jack Jansen
Vrije Universiteit, Amsterdam

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Adding State to Declarative
Languages to Enable Web

Applications
Jack Jansen

Vrije Universiteit, Amsterdam
Student number 0197254

Jack.Jansen@cwi.nl

Supervisor: Prof. dr. D.C.A. Bulterman

Abstract
On the web, media tend to be encoded in declarative formats, which facilitate
accessibility, reuse, and transformation. Web applications, on the other hand,
are created with more procedural technology and do not enjoy these benefits.
In this thesis we examine how this can be fixed. We examine a small part of
the problem space, adaptive time based applications, and investigate how we can
extend existing declarative languages to facilitate these. We develop a mecha-
nism, SMIL State, which enables SMIL to be used to create such applications,
either by itself or integrated with other declarative components. The mecha-
nism is then evaluated in its target application area. We then return to the
larger problem area, and show that there are opportunities for applying simi-
lar techniques. This should eventually enable the creation of web applications
that are more integrated in the web as a whole, by being searchable, accessi-
ble, transformable and reusable.

 3

mailto:Jack.Jansen@cwi.nl
mailto:Jack.Jansen@cwi.nl

 4

Table of Contents

1. ...Introduction 7

1.1 Overview of the Problem Domain 9

1.2 Problem Statement 10

1.3 Research Quest ions 11

1.4 Methodology 11

1.5 Outl ine 12

1.6 Conclusions 13

1.7 Discussion 14

1.8 Acknowledgements 15

2. SMIL State: An Architecture and Implementation for Adaptive

...Time-Based Web Applications 17

2.1 Introduction 17

2.2 Scenario 19

2.2.1 Requirements 21

2.3 A Review of Exis t ing Technology 22

2.3.1 Mult imedia on the Web 22

2.3.2 Declarat ive Alternat ives to Scr ipt ing 23

2.3.3 SMIL 23

2.3.4 Other Related Work 24

2.3.5 Comparison 25

2.4 Design and Architecture 27

2.4.1 SMIL State Elements 28

2.4.2 Shared Data Model 30

2.4.3 Content Control 31

2.5 Implementat ion 32

2.6 Applicat ions 35

2.6.1 Guided Tour Webapp 35

2.6.2 Delayed Ad Select ion 38

 5

2.7 Conclusions and Future Work 40

2.8 Acknowledgements 41

2.9 References 42

..Appendix A - SMIL 3.0 State 45

...Appendix B - SMIL State Test suite 61

..Appendix C - Acronyms 71

 6

1. Introduction
The World Wide Web was conceived in the early 1990’s with information
sharing as its primary goal. Initially, the web was predominantly a text-based
medium, with support for hyperlinks and simple bitmapped graphics. Over
the years many other languages were developed to allow a richer experience to
delivered to the client: CSS decoupled presentation aspects from semantic
meaning, SVG enabled structured graphics (as opposed to bitmapped graph-
ics) and MATHML allowed mathematical formulas to be represented, to name
just three. These languages are structured declarative Domain Specific Languages
(DSL’S): they are designed for a specific problem domain, not general purpose
computation, and they emphasize the what over the how.
The declarative nature of web languages has a number of key benefits:

• The declarative design enables web technology to adapt well to differences
in many aspects of the environment. These differences in the environment
can be of a technical nature, such as bandwidth and screen space, but also of
a personal nature, such as the end users’ mother tongue or specific disabili-
ties. The use of declarative technology enables document authors to focus
on the content, while the mechanisms needed for the adaptation are han-
dled by the implementation. For example, an XForms single selection con-
trol is usually rendered as a drop-down menu, but if screen space is limited it
may be a rollover menu, and a voice browser could read out the entries.

• The text-based structure enables accessibility: a blind mathematician is much
better served by a MATHML fragment read by a speech synthesizer than by a
bitmapped graphic of that same formula. In addition, accessibility promotes
searchability: search engines can index text more easily, and the structure of
documents enables them to present results in context.

• The structured nature facilitates reuse. This is not only reuse by the original
author, but structure combined with hyperlinks also enables third parties to
refer to relevant items in a new context (deep-linking).

These benefits, combined with the fact that these formats are open standards,
have played a large part in shaping the web as we know it today: accessible
from different devices, easily searchable, etc.
One area of the web where the declarative model has not been widely used is
that of active content. In parallel to the enrichment of media formats, devel-
opment was happening on how computation was handled. Initially, any com-
putations required were done on the server side, with the results delivered to
the browser in HTML or other static representations. By the middle of the
decade, however, various technologies appeared that enabled computation to
be run client side, in the browser. Over the years, JavaScript, Flash and Java
became the most popular of these, due to two factors:

 7

• Machine independence, due to being based on a virtual machine, and

• near-ubiquitous availability in browsers, allowing end users to view the con-
tent without first having to install a new plugin.

Initially used for simple scripting-like tasks such as animated buttons, over
the years Web Applications (webapps) started to appear: applications with a
similar role as traditional desktop applications, but delivered over the web and
running in the browser. Eventually, the richness of the web as a source of data
and the ability to aggregate input from users around the globe has enabled a
whole new category of applications.
Unfortunately the two trends sketched here have proceeded largely independ-
ent: the DSL’s used for static content did not provide enough freedom of ex-
pression for the creation of Web Applications, so the trend has been to use
JavaScript. Development of the field has taken the form of standardizing
JavaScript, and extending it with technologies like DOM, XML Events and
Ajax to enable richer applications. This has led to a situation where an ad-
vance in one area (more dynamism on the client side) has led to drawbacks in
another: the easy adaptivity of using a declarative language was lost.
Currently, the benefits of the declarative model that static content enjoys is
not available to web applications: accessibility (and searchability) has to be
explicitly catered for by the author, there is little support for automatic adap-
tion and reuse.
In this thesis, we will study ways to address this situation. The work presented
here was done under the supervision of Prof. dr. Dick Bulterman, in the SEN5
group of Centrum Wiskunde & Informatica (CWI), Amsterdam. The research
focus of the group is Distributed Multimedia Languages and In%astructures, and
this is reflected by work in a number of areas1:

• composition languages for multimedia, enabling media streams from different
sources to be combined and allowing adaptation and interoperability be-
tween mobile, home and other platforms;

• structured authoring, allowing authors to focus on the story line in stead of
delivery or packaging details;

• end-user authoring, enabling viewers to enrich and share content from a home
setting, looking both at technology such as secondary screen usage as well as
social issues (sharing, privacy, etc).

 8

1 The current list of publications of the group can be viewed at
http://repository.cwi.nl:8888/cwi_repository/zoekinoaienora/searchrepository.php?sth
eme=SEN5 .

http://repository.cwi.nl:8888/cwi_repository/zoekinoaienora/searchrepository.php?stheme=SEN5
http://repository.cwi.nl:8888/cwi_repository/zoekinoaienora/searchrepository.php?stheme=SEN5
http://repository.cwi.nl:8888/cwi_repository/zoekinoaienora/searchrepository.php?stheme=SEN5
http://repository.cwi.nl:8888/cwi_repository/zoekinoaienora/searchrepository.php?stheme=SEN5

• in%astructure for efficient and timely media delivery, such as playback
scheduling algorithms, distributed clock synchronization protocols and
priority-based routing.

The group combines a strong presence in the scientific field with a practical
side: various group members are active in standardization committees, such as
the Synchronous Multimedia Working Group (SYMM WG) of W3C. The group
also has a history of producing open source software distributions, such as of
the Ambulant Player.

1.1 O ve r v i e w o f t h e P r o b l e m D o m a i n
The problem domain can be summarized as follows: can web applications enjoy
the same benefits that declarative languages give the static web?
Most declarative web languages (HTML, CSS, SVG, SMIL, VOICEXML, RDF, to
name a few) are examples of DSL’S: they have been designed for a specific pur-
pose. Therefore, they perform poorly (if at all) as general purpose program-
ming languages. The ability to combine languages would help here, but unfor-
tunately this is difficult. The languages often each have their own paradigm,
and these paradigms are difficult to unify.
As an example, SMIL is about time and uses structure to represent structured
timelines, which allows creation of documents that adapt to the environment
without breaking the story line intended by the author. SVG uses structure to
represent hierarchical objects and grouping, thereby enabling reuse of objects
within a document. Combining these two paradigms in a single document can
be done in two ways:

• Using SVG hierarchy as the outer structure. This has been done for the way
SMIL Animation is embedded in SVG, which loses a lot of SMIL functional-
ity, such as automatic adaptive timing.

• Using SMIL timing as the outer structure. This would lose SVG functionality,
such as object reuse.

Enabling web applications to use these languages to solve sub-problems that
fit the domain would be beneficial. As direct integration of the current lan-
guages is not an option the next best solution is interoperability: allow the
languages to be used each in their own problem domain, while communicating
with each other. Some languages interoperate well because they were specifi-
cally designed to do so, for example HTML and CSS. Some other combinations
have sufficiently orthogonal domains that they have been made to interoper-
ate through simple syntactic sugar, for example HTML and RDF through micro-
formats.
Due to its history, the one language that has reasonable interfaces to most
web languages is JavaScript. Through DOM and XML Events JavaScript code
can control and modify code in other languages, and events happening in an-

 9

other language can trigger JavaScript. Most web languages provide a very rich
DOM model. This appears to be convenient for JavaScript programmers, but
has a serious safety implication: the semantics of the target language can no
longer be guaranteed if any language construct can be modified on the fly in
an uncontrolled fashion. This results in the declarative benefits mentioned
earlier becoming unsafe. The DOM interaction model is also unidirectional:
JavaScript is in control, and the other technologies are driven by it. This leads
to a model where the declarative constructs may be embedded in JavaScript
code to create and control them, effectively abolishing the declarative advan-
tages.
By identifying the areas where declarative web languages could interoperate to
enable solutions that would not be feasible in a single language it should be-
come possible to create more and more applications in a declarative manner.

1.2 P r o b l e m S t a t e m e n t
This master thesis investigates combining multiple incompatible paradigms
currently prevalent on the web in a way that allows the whole to be more than
the sum of the parts. The paradigms we have selected are the structured time
paradigm of SMIL and the data model paradigm of XForms. This combination
was selected because it is non-trivial: the two paradigms are concerned with
time and state, and these two concepts interact and mutually influence one
another.
The strong points of SMIL have been mentioned before: the ability to create
timed documents that adapt dynamically to a changing environment while
maintaining story line integrity. However, SMIL has two weak points from a
web applications point of view:

• Support for non-temporal adaptation is weak: there are limited con-
structs that allow a presentation to react to things that happened in the
past. Or, colloquially: SMIL has no variables.

• Integration with the environment is limited: SMIL has no way to trigger
actions in other components, and its DOM model also allows other com-
ponents only rudimentary control over the presentation. Colloquially:
SMIL is an island.

XForms was designed to replace the rather ad-hoc method of data submission
provided by HTML Forms with a more elegant method. It uses the model-
view-controller paradigm to separate the data model from the interaction
model. Because the data model is a separate XML document it integrates eas-
ily with its environment. This is true both in a client-server setting, where the
data model can easily be communicated with a server, or in a web application,
where JavaScript code can use DOM access and XML Events on the data

 10

model. However, XForms has only a limited execution model (based on XML
Events) and no temporal model.
In the rest of this thesis, we study how incorporation of an XForms-derived
data model into SMIL can be designed, and whether it indeed enables declara-
tive web applications. While SMIL and XForms are the focus in this work, the
method is expected to have wider applicability:

• There are a number of languages with an execution model, such as
VOICEXML and SCXML, which may also be amenable to a similar approach.

• Coupling modules through a data model leads to a paradigm of data model as
API. This appears to be a promising model for loosely coupled web applica-
tions.

• The data model is completely accessible through the DOM, thereby bridg-
ing SMIL to JavaScript, which enables interaction between SMIL and most
other web languages.

We hope to show that our method of combining two declarative languages
through a small bridging technology provides insights that can be applied to
other areas in the problem domain.

1.3 R e s e a rch Q u e s t i o n s
The following list defines the research questions that motivated the work de-
scribed in this thesis:

1. Can a mechanism be designed that provides variables in a declara-
tive language, without losing the advantages of the declarative
model? In other words: does the mechanism have an advantage over
simply opening the whole language to modification through DOM
access and JavaScript?

2. Does the mechanism actually enable interaction between multiple
languages, does it live up to the expectations? Is the mechanism rich
enough to allow actual applications to be created?

3. Is there an advantage to using the new mechanism over using exist-
ing technology for writing such applications?

4. Is the mechanism actually applicable more widely than just to SMIL?
As we will see, the results obtained by this work have largely provided positive
answers to the questions in this list.

1.4 M e t h o d o l o g y
The first research question, above, is the question that originally started this
research: how can we add variables to SMIL, to enable applications such as dis-
tance learning and games. We started by researching ways in which other non-

 11

procedural languages, and specifically XML-based web languages, handle this
issue. A promising approach was found in the way the XForms data model
works, combining architectural simplicity with expressive power.
The XForms data model architecture was adapted to operate in a SMIL set-
ting, with timeline driven activation (as opposed to the event-based and
dependency-driven model in XForms). Evaluation of the architecture showed
opportunities for wider applicability, which prompted research into applying
it to the larger scope that is the subject of this thesis.
An initial strawman implementation was created in the Ambulant SMIL
player, and some test documents were created to gain some experience. Dur-
ing this process, the solution was presented to the W3C SYMM group for
feedback. Based on this feedback the design was refined, and a complete im-
plementation was created, again in the Ambulant player.
The scientific relevance was then tested by submitting a paper entitled Ena-
bling Adaptive Time-based Web Applications with SMIL State to Document Engi-
neering 2008 (September 16-19, Sao Paulo, Brazil). It was accepted and
awarded the best paper award. Subsequently, the paper was extended, and ac-
cepted for publication in Multimedia Tools and Applications (Springer Science
and Business Media), as SMIL State: An Architecture and Implementation for
Adaptive Time-Based Web Applications. That extended paper forms chapter 2 of
this thesis..
The interaction with the SYMM Working Group resulted in SMIL State being
accepted for inclusion in the SMIL 3.0 Recommendation in December 2008.
The relevant chapter of the specification is included here as Appendix A.

1.5 O u t l i n e
As most of the results of this research have been previously published else-
where they have been included verbatim.
Chapter 2 contains the MTAP paper, SMIL State: An Architecture and Implemen-
tation for Adaptive Time-Based Web Applications. It examines the problem area
from an application point of view, from requirement analysis via design to
evaluation. Section 2.1 introduces adaptive time-based web applications and how
these can be created with current technology. Section 2.2 elaborates on those
applications and examines an example of such an application, leading to a set
of requirements. The application is a video-driven interactive guided tour
through Amsterdam, with adaptive selection of content and interaction with
map components, background material, etc. Section 2.3 investigates existing
technology, related research and how well these match the requirements. Sec-
tion 2.4 describes the SMIL State design and its motivation. Section 2.5 de-
scribes the implementation of SMIL State. Section 2.6 then returns to the ac-
tual applications, and examines how two of these have been implemented

 12

with SMIL State: the guided tour application and another application that al-
lows a novel method of advertisements in video content. This method, delayed
ad viewing, enables an alternative to fixed commercial breaks (as in broadcast
TV) and popup or click-to-view ads (as on the web). Section 2.7 has conclu-
sions, which are summarized below.
Appendix A contains the SMIL State chapter of the SMIL 3.0 Recommenda-
tion. It contains the complete technical description of SMIL State, and the
rationale for standardizing it. SMIL is a modularized standard, to enable
Appendix B contains the portions of the test suite that are relevant to SMIL
State.

1.6 C o n c l u s i o n s
The conclusions of our work are summarized in section 2.7. In short, these
conclusions are that adding a data model to SMIL does not interfere with the
advantages of the declarative nature of SMIL, that it enables new, richer appli-
cations, and that such a model is easy to implement.
We can also provide answers here to the research questions posed earlier:

1. Can a mechanism be designed that provides variables in a declarative lan-
guage, without losing the advantages of the declarative model?
SMIL has been specifically designed to enable it to retain its declara-
tive advantages, even in the light of DOM access and other modifi-
cation, through the so-called “sandwich model”. This is done by limit-
ing the types of modification that a script or animation can cause.
This model has proven itself over the last decade. As discussed in
section 2.4, the SMIL State design fits seamlessly into the sandwich
model, therefore it does not cause any new issues with the declara-
tive model and its advantages.

2. Does the mechanism actua(y enable interaction between multiple languages?
The MTAP paper describes one such application, the No Budget Bicy-
cle Tour. This application was implemented using SMIL, XForms,
HTML and widgets written in JavaScript, all tied together using
SMIL State. Integration between XForms and SMIL worked seam-
lessly. It was expected that we could use XBL for integration with
JavaScript and HTML, but due to its unavailability on our experi-
mental platform a small amount of JavaScript glue code was re-
quired. A detailed description can be found in section 2.6.

3. Is there an advantage to using the new mechanism over using existing tech-
nology for writing such applications?
The total amount of code in the bicycle tour application is small
(less than 500 lines, counting all HTML, SMIL, XForms and JavaS-

 13

cript), therefore we can conclude that a similar application created
with traditional means would require much more effort. However,
we have not actually conducted the experiment of re-creating the
application in JavaScript.

4. Is the mechanism actua(y applicable more widely than just to SMIL?
The best paper award for the Document Engineering paper suggests
wider applicability than just SMIL. In addition, reactions have been
favorable in discussions in the Rich Web Applications Backbone
XG (RWAB XG), which is comprised of experts in this field. Specifi-
cally, the data model as API has generated sufficient interest to
prompt further research.

All in all, the work presented shows that judicious application of technology
from one declarative web language to another is possible, and that this can be
used to enable new applications. It also appears that this method can be ap-
plied to more languages, with the eventual goal of enlarging the category of
web applications that can be created in a declarative way.

1.7 D i s c u s s i o n
The work presented here here has a practical as well as a scientific side: SMIL
State was proposed to the SYMM working group for inclusion in SMIL 3.0, and
accepted in the Recommendation. The relevant section of the SMIL Specifica-
tion is included as Appendix A. In the standardization process, the members
of the SYMM working group examined the technology, and an independent
implementation of SMIL State was created by an external party, based on the
description in the recommendation. This second implementation also passed
the SMIL State test suite (included here in Appendix B). In addition, the rec-
ommendation was endorsed by the whole W3C membership in the two
rounds of review leading to the acceptance of the recommendation.
The SMIL DOM access model is much more limited in the modifications it
allows to the DOM tree than most other XML languages. This results in DOM
access not compromising the SMIL semantics, thereby retaining the declara-
tive advantages, at the cost of limitations in dynamism. Introduction of vari-
ables through SMIL State lifts some of those limitations while still safeguard-
ing the SMIL semantics. A parallel can be drawn to the ban on self-modifying
code in general purpose programming languages and operating systems: limit-
ing access patterns to a well-defined and understood subset gains a lot of
safety while losing only a little freedom. It seems likely that a similar approach
can be taken for other web languages, especially languages that have an execu-
tion model (such as SVG, SCXML or VOICEXML).
The SMIL timing and synchronization model may have wider applicability
than only multimedia. While this has always been understood by the original

 14

creators of the language, its practical application has not been pursued. One
of the reasons for this has been the lack of variables, which means that the
expressivity of the language has been on the level of a state machine. The in-
troduction of SMIL State changes this and may enable the use of SMIL as a
more general declarative control language. One area of interest is the XForms
switch module: a set of constructs that allow tabbed dialogs or wizard-based
dialogs to be expressed. XForms 1.0 standardizes a set of constructs for this
that have little or no semantic relation to the rest of the language. SMIL has a
much richer set of sequencing constructs here, and SMIL State would allow
integration with the rest of XForms.
The “data model as API”, introduced in section 2.4.2, is worth further investiga-
tion. It enables web applications to be created in a loosely coupled fashion,
thereby not only component reuse (discussed in section 2.2) but maybe also
distribution and fault tolerance. I have started some preliminary work on the
former, in the form of a literature study, available at
http://homepages.cwi.nl/~jack/presentations/lit-state.pdf .
Finally, in a completely different area, section 2.6.2 introduces the concept of
delayed ad viewing, a way to monetize multimedia playback that attempts to
address the annoyance of end users being forced to watch advertisements se-
lected by the content producer. It may be worthwhile to investigate whether
this model can indeed gain end user acceptance, and what the consequences
are for business models, etc.

1.8 A ck n ow l e d g e m e n t s
I would like to thank my supervisor, Prof. dr. Dick Bulterman, for enabling
and seeding the work in this thesis. His insistence that there must be a better
way to enable interaction in web languages than simply opening up everything
to script-based modification is the core of the ideas presented here, and our
practicality versus purity discussions have led to a solution that, in my opin-
ion, sits in the sweet spot. Dick has also been very helpful with showing me
how document structure and choice of prose can make the difference in
communicating the underlying ideas.
I am grateful to Prof. dr. Guus Schreiber (VU) for agreeing to be the second
reader for this thesis and for his valuable feedback, especially on all of chapter
1 and on the general structure.
The SEN5 group at CWI, especially Dr. Pablo Cesar provided the setting for
this work, and gave feedback on the design and applicability.
Steven Pemberton of W3C introduced me to the XForms data model and its
applicability to the problem.

 15

http://homepages.cwi.nl/~jack/presentations/lit-state.pdf
http://homepages.cwi.nl/~jack/presentations/lit-state.pdf

The W3C SYMM WG, especially Sjoerd Mullender, Julien Quint and Daniel
Weck, provided comments on the integration of the model into SMIL. In ad-
dition, Sjoerd provided a second implementation.
This work has been funded by the NWO BRICKS PDC3 project, and by the FP7
IST project TA2. Development of the open source Ambulant Player and CWI’S
participation in the SMIL standardization effort have been funded by the
NLnet foundation. We gratefully acknowledge this support.

 16

2. SMIL State: An Architecture and Implementa-
tion for Adaptive Time-Based Web Applica-
tions
In this paper we examine adaptive time-based web applications (or pres-
entations). These are interactive presentations where time dictates which
parts of the application are presented (providing the major structuring
paradigm), and that require interactivity and other dynamic adaptation.
We investigate the current technologies available to create such presen-
tations and their shortcomings, and suggest a mechanism for addressing
these shortcomings. This mechanism, SMIL State, can be used to add
user-defined state to declarative time-based languages such as SMIL or
SVG animation, thereby enabling the author to create control flows that
are difficult to realize within the temporal containment model of the
host languages. In addition, SMIL State can be used as a bridging
mechanism between languages, enabling easy integration of external
components into the web application. Finally, SMIL State enables richer
expressions for content control. This paper defines SMIL State in terms
of an introductory example, followed by a detailed specification of the
State model. Next, the implementation of this model is discussed. We
conclude with a set of potential use cases, including dynamic content
adaptation and delayed insertion of custom content such as advertise-
ments.
A version of this section will appear in Multimedia Tools and Applications
(Springer Science and Business Media) in 2009, as “SMIL State: An Archi-
tecture and Implementation for Adaptive Time-Based Web Applications”
(authors Jack Jansen and Dick Bulterman), DOI:
10.1007/s11042-009-0270-3.

2.1 I n t r o d u c t i o n
This paper examines technology to create adaptive time-based web applica-
tions. These are applications that use time as a major structuring paradigm,
and need to adapt to changes at runtime. Such adaptation can be in the form
of user interaction, but also other environmental changes such as location-
based information or a change in available bandwidth. In addition to being
adaptive (or responsive), these applications should also be good web citizens:
they (and the adaptation strategy) should be searchable, accessible, structured,
reusable, etc.
Traditionally, the web has preferred structured declarative solutions over im-
perative ones: HTML [25], CSS [5], SMIL [7, 8], SVG [12] and many other web
standards are all mainly declarative languages. The advantage of declarative
languages in a web setting is that they facilitate reuse, accessibility and device
independence [20]. However, at a lower level, imperative languages (mainly
JavaScript [13]) are often required to enable time-dependent rendering, inter-

 17

activity or binding of specific components. This presents a problem if we want
to create adaptive time-based web applications, as these applications indeed
require timing and interactivity and often the help of external components.
The introduction of scripting into a webpage is a powerful tool, but therefore
also a dangerous one: maintaining the advantages of the structured declarative
model is not automatic, and may sometimes be impossible.
The alternative to structured declarative solutions is to use an imperative
technology such as Flash [2]. Flash is an example of a proprietary binary for-
mat, which uses a content encoding that is – in its distribution format – diffi-
cult to parse at activation time. This forestalls search and (third-party) reuse.
Moreover, any presentation and document adaptation and conditional acces-
sibility need to be planned and explicitly catered for by the document author.
This is not to imply that declarative language already solve all interaction
problems. If we examine the structured declarative languages that have an
execution model (SMIL, SVG Animation), one piece of missing functionality is
a user defined data model. A data model defines a document-specific collection
of variables and settable parameters. Adding such a data model, while not
completely eliminating the need for scripting, would allow a larger problem
domain to be addressed without the need for a scripting language. This can
make declarative documents more useful, especially in situations when docu-
ment need to be generated automatically.
This paper introduces SMIL State, a technology that combines temporal web
languages like SMIL or SVG with an external data model. SMIL State enables
the use of free variables in declarative presentations, allowing the author to
escape the temporal containment model in a controlled fashion. The data
model is externalized, allowing it to be shared with other components and ef-
fectively enabling its use as an API between components of a web application.
This paper is an extended version of [18], which was presented at ACM Docu-
ment Engineering 2008. It widens the scope of the former paper by examin-
ing how SMIL State is applicable to enriching existing SMIL content control
mechanisms and by providing more detail on the implementation and the les-
sons learned from that implementation.
The paper is structured as follows. In section 2 we sketch the types of applica-
tions that are relevant for SMIL State, and describe an example of such an ap-
plication in detail. We then outline the requirements of these applications. In
section 3,
we look at existing technologies for data model support, and investigate how
well these match our requirements. Section 4 describes our SMIL State solu-
tion, as well as the motivations for our design. In section 5, we report on our
initial implementation of SMIL State in the CWI Ambulant open source SMIL
player. In section 6 we describe two example presentations and their architec-

 18

ture. We conclude with determining how well our solution matches our re-
quirements, and some ideas about future work.

2.2 S c e n a r i o
In this paper we will concentrate on presentations which have time as their
major structuring mechanism and that require user interaction/selection as
the secondary mechanism. To set the stage, let us start with an example of the
type of presentations we want to enable.

Figure 1 – Screen Shot of Guided Tour webapp

The application shown in figure 1 is a web-based guided tour through
Amsterdam.2 The backbone of the application is a video, with the tour guide
showing some highlights of the city, with additional information provided
from a variety of external sources on hotels, shopping opportunities, enter-
tainment and nightlife. The application allows viewers to select the topics in
which they are interested dynamically: for example, if a viewer is staying with
friends and prefers to be in bed right after dinner he can choose to skip the
hotel and nightlife entertainment information. Of course, such choices are

 19

2 A version of this example is available on the CWI Ambulant player website:
http://ambulantplayer.org /smilStateExample.shtml

not static: the user should be able to change the content selection while view-
ing the presentation. If, in doing so, it turns out the cultural information is
too detailed for his taste, he also should have the option to disable it on the
fly.
The video presentation itself is rather fast-paced: the presenter races through
the streets on his bicycle (as only a local can) and gives only terse information
on the various subjects he encounters along the way. However, for each item
he describes, the viewer is given the option of getting more information from
external resources: when a museum is described, the link to the museum web-
site is also given; the end user can temporarily pause the video to visit the mu-
seum website to find out about opening hours, etc. The presentation also in-
cludes a standard map, such as from Google Maps, orienting the viewing
within the city. This has the benefit that the user may bookmark a place of
interest, or again pause the presentation to search for related interesting
places in the vicinity. The application also allows for the dynamic insertion of
adwords, which bring up sponsored links relevant to the material currently
presented. An interesting feature is that while sponsored links are triggered by
location information, they are also temporally shifted so that their presenta-
tion is delayed until after a main content stream has completed. (This delayed
scheduling can obviously be used for a host of applications beyond ad inser-
tion.)
All these are examples of the use of timed metadata (annotations) in the presen-
tation. The time logic of the presentation need only know which metadata
pertains to which (timed) sections of the presentation. The actual presenta-
tion of the metadata is handed off to other components for rendering.
Our application example is similar in scope to the personalized multimedia
tourist guide described by Scherp and Boll in [28], but where they generate
personalized applications on the server, our solution allows client-side personal-
ization. This not only distributes workload from the server to the clients, but
has the added advantage that viewers can adapt their preferences during play-
back. Another form of adaptability that we aim for is device independence: de-
pending on characteristics of the device on which the presentation is viewed
(bandwidth, screen size), some content may be replaced by items more appli-
cable to the current viewing context. If this could be done dynamically, so ses-
sion transfer becomes possible, that would be an advantage: transferring the
presentation to another device would then only require moving the presenta-
tion over to that other device as-is, the presentation itself would adapt to the
new hardware characteristics.
Another important feature for presentation authors is reusability: if a general
structure can be set up that handles multiple related presentations (such as
bicycle tours for other cities, in our example), a significant authoring saving
could be realized. It also eases the process of serving such presentations from

 20

a content management system. A related form of reuse is third party enrich-
ment, which requires that it is possible to refer to portions of the presenta-
tion, either in-context or out-of-context. Such reuse is increasingly important
on the web, and handled well for non-temporal media through wikis and blog
syndication. We want to enable this form of reuse for multimedia presenta-
tions as well.
Finally, we feel accessibility is important. Not only does this enable the use of
assistive technology, but it also allows search engines to index the content in-
side the presentation. This is another step in enabling third party reuse: to en-
able someone to refer to our content they must be able to find it first.

2.2.1 Requirements
To enable the type of applications sketched in the previous section we have a
number of requirements on the technology we use. Let us outline our major
requirements, so we can then determine how applicable various technologies
are to our problem space.
The following requirements are important:

• The solution should be structured. Declarative structured languages
have proven themselves to be facilitate reuse, accessibility, device in-
dependence and transformability.

• Time based structuring is required, because time is a major structuring
paradigm for the types of applications we envision. Having time as a
first class citizen allows easier presentation creation and deep-linking.
Time based structuring also enables close coupling of annotations
with the media fragments they refer to, ensuring they stay together in
the face of edits or deep linking.

• Fragment support on original media items is required. If there are multi-
ple possible timelines through the presentation, lack of fragmenting
original media would require the author to statically create multiple
edits for each of the different timelines, or a large collection of small
media snippets. Fragmenting support on the final presentation is also
needed, again to enable third-party annotation.

• Variables are required to enable presentations to adapt to user input,
especially if this adaptation is to happen at a different point in time
than the input itself. Variables also enable interaction patterns not
foreseen by the designers of the language.

• Language bridging is related to variables, but with a different scope. It is
needed to enable integration of multiple components. Enabling multi-
ple components allows the use of the best tool available for the sub-
problem at hand. Language bridging and variables should also enable

 21

two-way communication between components, which increases the
richness of the presentations possible.

• Adaptability is needed to enable platform independence, among other
things. Built-in adaptability eases the burden on the author.

• Accessibility enables the use of assistive devices. Accessibility together
with structuring enables search engines to index the content of the
presentation.

• Reusability also eases the burden on authors, by allowing parts common
to multiple presentations to be implemented only once. Content man-
agement systems and other dynamic methods of creating presentations
benefit from it too, as only a single instance of common items needs to
be stored. Third party modification and enrichment of existing presen-
tation also requires reusability to be feasible without copying.

As will been seen, our SMIL State approach meets all of these requirements.

2.3 A R e v i e w o f E x i s t i n g Te ch n o l o g y
Given the requirements of the previous section, this section will examine and
evaluate the facilities available in existing Web technology. We will start with
languages that aim at solving the whole problem space, or at least a large sub-
set of it. Then we will look at emerging partial solutions that may be used to
augment those solutions and other related work. We will then see how well all
of these match our requirements.

2.3.1 Multimedia on the Web
For interactive multimedia on the web there are currently two solutions in
widespread use: Flash, and JavaScript combined with a plug-in to handle me-
dia playback (such as RealPlayer or, again, Flash). SMIL, which we will exam-
ine in greater depth in the following section, is not currently a serious con-
tender in this market because it defines an execution model that is separated
from the procedural control favored in web design.
The Flash solution is by far the most common, and used by websites like
YouTube and Asterpix. All interaction is programmed explicitly in Action-
Script [1], requiring specialized skills and tools. Moreover, due to the binary
nature of the Flash distribution, the content is no longer easily accessible
from outside. This is a problem for screen readers and other assistive technol-
ogy, but also for web crawlers (content inside Flash does not show up in a
search engine) and deep linking (no syndication or mash-ups).
Interactive multimedia presentations can also be created using standard tech-
nology: HTML, JavaScript and CSS. For audio or video playback this requires
either the proposed HTML5 video extensions [16], or a plug-in to render the
continuous media. While it is usually possible to control the media playback

 22

engine from JavaScript, for example starting and stopping video playback in
response to user interaction, the reverse is usually not true: having the JavaS-
cript react to events in the video (such as specific time codes) is not easy. In
practice this means that using JavaScript is currently usually limited to presen-
tations using predominantly static media: if time is the primary structuring
paradigm of the presentation Flash is a better solution. A prime example of
doing multimedia presentations with only standard technology is the W3C
Slidy tool [27], which can be used to create interactive accessible slideshows.

2.3.2 Declarative Alternatives to Scripting
Both technologies sketched so far share the property that the logic is ex-
pressed in a procedural language (JavaScript or ActionScript). If it were possi-
ble to express the logic in a declarative way that would be more suited to the
trend in web languages towards declarative structuring to enable transform-
ability, reuse and accessibility. An example of this trend is XForms [6], which
uses a wholly declarative logic to specify not only the forms themselves but
also the way these forms are connected to the underlying data store. In the
context of this paper we are not so much interested in the model-view-
controller paradigm of XForms or the high-level definition of the controls
themselves (which allows an XForm form designed for a desktop web browser
to be reused on a mobile browser, or even a voice browser [17]). We are, how-
ever, interested in the declarative nature in which constraints on input values
can be specified, such as “weekday must be an integer between 0 and 6 inclu-
sive”. This feature means that old-style HTML forms that used procedural
logic in JavaScript to check value constraints can be replaced by a declarative
XForm.
XForms uses an XML document as its data model, and addresses the data
items in this model through XPath expressions [10]. XForms 1.0 does not have
an execution model, but it does not really need one for its application area. It
does include a spreadsheet-like functional programming construct that allows
variables to be computed on the basis of other variables, and that is good
enough for its domain.
While it would probably be possible to create a complete interactive multi-
media presentation using the technologies outlined in this section it would
suffer from the fact that none of these languages have an inherent concept of
time. Hence, all temporal relations would have to be explicitly coded in a lan-
guage for which this was not the primary design goal.

2.3.3 SMIL
SMIL, the Synchronous Multimedia Integration Language is the W3C standard
for presenting multimedia on the web. It is primarily an integration language:
it contains references to media items, not the media data itself, and instruc-
tions on how those media items should be combined spatially and temporally.

 23

SMIL is a declarative language: relations between media objects (and substruc-
tures) are described, and the computation of the timeline follows from this.
The main temporal composition operators available are parallel composition,
sequential composition and selection of optional content. Composition is hi-
erarchical: nodes cannot become active unless all of their ancestors are active.
The declarative containment model has one large advantage: SMIL presenta-
tions can adapt automatically to varying bandwidth conditions and alternate
content with different durations because of the adaptive nature of hierarchical
timing. The hierarchical temporal composition model is also a nice container
for timed metadata, and allows structure-based deep linking into the content.
There are a number of mechanisms in SMIL that allow the presentation to re-
act to user input (events) and to modify the behavior of other sections of the
presentation (SMIL Animation) but none of these break the basic containment
model, they only modify behavior within those constraints.
The containment model has one serious drawback, though: there is no way in
which the path taken through the presentation can be used to influence future
behavior within that presentation. Or, more directly: there are no variables.
In addition, with events being the only dynamic communication channel, a
SMIL presentation can not exchange structured data with the outside world.
This is a problem SMIL shares with many declarative languages. For example,
functional languages have had to add constructs like effect classes [14] or mo-
nads [22, 30] to enable side-effects and input/output. Without these, their ap-
plication domain would have been severely limited.

2.3.4 Other Related Work
The technologies described in sections 3.1 and 3.3 aim at addressing a large
subsection of our problem space, but all have some shortcomings. In this sec-
tion we will examine some ways to address those shortcomings and some solu-
tions that address related problem areas, from which we may learn something.
XBL [15] is a language that allows an author to declaratively add behavior to an
otherwise static HTML or XHTML document. It can modify the target docu-
ment in-place, for example setting attributes on one element based on values
obtained from another element. These actions can occur statically, somewhat
similar to how XSLT [9] would operate on a document during load time, or
dynamically, reacting to DOM events [26]. XBL has no notion of time or con-
trol flow, so using it to create self-paced multimedia presentations would be
difficult.
XConnector [23] is an extension to XLink that has some overlap with XBL in
application area. It also allows the specification of relations between different
elements and attributes within an XML document. Some of these relations
allow similar constructs as in XBL, such as changing an attribute value to
match an attribute value elsewhere in the document. XConnector does have a

 24

notion of time, allowing the author to specify that something should start
when something else stops, for example. The accompanying language XTem-
plate [24] allows an author to declare templates for such relationships, thereby
enabling, among other things, the definition of temporal and spatial con-
straints on items in an HTML page in a way that facilitates reuse. XConnector
and XTemplate together with HTML should enable creation of rich multime-
dia applications for the web fairly easily.
XHTML+SMIL [4] is similar to XConnector plus XTemplate, but more limited
in scope: it allows the application of SMIL timing constructs to static HTML
(or other XML) documents, thereby adding timing to an otherwise static for-
mat.
Another approach is taken by King, Schmitz and Thompson in [19] (unfortu-
nately for reference purposes, no name is given for their work, so we will call
it “KST” in this paper): adding rich transformations and expressions to a lan-
guage that already has an execution model, such as SMIL or SVG animation.
Where SMIL and SVG animation allow only a predefined number of opera-
tions on attribute values, determined by the language designers, this paper
adds spreadsheet-like expressions and conditions through a functional “little
language”. The temporal constraints of SMIL animation are still in place, how-
ever.
Those temporal constraints are lifted by the same authors in [29], which adds a
<value> element that can be used to store free variables. (It also adds a tem-
plate mechanism, but that is outside the scope of this paper). This leads to a
solution that has comparable application area and power as SMIL State within
a single document, but the externalized data model of SMIL State allows
communication with the outside world, as well.

2.3.5 Comparison
Table 1 summarizes how existing technology matches the requirements from
section 2.1. The first two columns show the main problems with the most
popular current solutions: a finished presentation is a monolithic unstructured
blob. This results in problems for deep-linking into a presentation, but also
for accessibility, which also requires access to the internals of a presentation.

 25

Table 1 – Technology Comparison

F JS S2 S+X XBL KST XCXT XS S3
Structured - - ✓ ✓ n/a ✓ +/- +/- ✓

Time based ✓ - ✓ ✓ - ✓ +/- ✓ ✓

Fragment sup-
port - - ✓ ✓ n/a ✓ ✓ ✓ ✓

Variables ✓ ✓ - - ✓ ✓ ✓ - ✓

Language
bridging - ✓ - - ✓ - unknown - ✓

Adaptability +/- - ✓ ✓ ✓ ✓ ✓ ✓ ✓

Accessibility - +/- ✓ ✓ n/a ✓ unknown ✓ ✓

Reusability - - +/- +/- +/- +/- ✓ +/- ✓

F: Flash; JS: JavaScript plus DOM access; S2: SMIL 2.1 (not including SMIL State); S+X:

SMIL combined with XForms; XCXT: XConnector and XTemplate; XS: XHTML+SMIL; S3:

SMIL 3.0 including SMIL State.

As we can see in the table, SMIL 2.1 does fairly well on the structuring front,
but falls short in practical issues like rich interactivity and integration with
other components (ignoring SMIL State, for the moment). Embedding
XForms islands into a SMIL presentation does not help: it enables the end
user to fill in forms that can be transmitted back to a server, but no extra in-
teractivity is added. SMIL+XBL provides more options, but here the generality
of what XBL allows would break some of the basic assumptions of SMIL, such
as timegraph consistency. Incidentally, SMIL+JavaScript, which is not in the
comparison table, would have the same problem.
KST is aimed at a different problem, but it still fits our requirements pretty
well, with the exception of enabling communication with other components,
which is outside its scope.
Interestingly enough, KST use different solutions in a number of areas where
they were facing the same design decisions that our work considered:

• both solutions allow for rich data structures in the data model, but
where we opted for XML for easy sharing, they felt a richer and more
compact representation is needed;

• we think static strong typing is generally not needed for most applica-
tions, and can easily be added when needed through XSchema (follow-
ing the model of XForms), their solution has static strong typing;

 26

• their solution uses an expression language based on JavaScript expres-
sions, ours uses XPath expressions, for standards compliance.

These different choices are partially dictated by different application areas,
but probably partially by personal taste as well. We agree that XPath is not a
very nice language to express complex expressions in, the corresponding ex-
pression in KST is definitely more readable. XPath expressions, however, are
richer in the handling of complex data structures. In the case of static typing
or not this is probably more a matter of personal preference.
XConnector and XTemplate are the best fit of the existing technologies, but
it shares the XBL problem that they provide so much freedom that an author
has to be careful not to lose the structuring advantages of the declarative
model. The same is true for temporal structuring: this can be done by an
author, but the language does not enforce it. We are also not sure whether
XConnector provides any help with language bridging, the literature does not
mention this.
XHTML+SMIL has similar advantages and shortcomings as SMIL 2.1, which is
to be expected given their common heritage.
We will explain how SMIL plus SMIL State matches the requirements below.

2.4 D e s i g n a n d A rch i t e c t u r e
The main thrust of the research leading up to this article is that the addition
of variables and communication would enable SMIL to be used in a number of
application areas that are currently beyond its reach. These application areas
include:

• Courseware is an important application area for multimedia software.
One of the main advantages of using computers for instructional mate-
rial is that the path through the material can adapt itself to the stu-
dent. This takes the form of providing more in-depth material based
on user interaction, either a “tell me more” button or the answer to a
question being correct or not. Courseware also benefits from the abil-
ity to interact with problem domain specific components, to enable
hands-on interaction or non-standard rendering capabilities. SMIL has
no standard way to interact with external components, and no way to
base decisions on user input that occurred earlier during the presenta-
tion.

• Quizzes are somewhat related, but here we also want to tally results, re-
quiring computation. Moreover, quizzes are much more fun if your
personal results can be compared to those of others, requiring commu-
nication of such dynamically computed scores to some central agent.

• Games are even more interactive, and require things like a ball to move
in a direction determined by the mouse position when the ball hit a

 27

paddle, some time in the past. And a game needs more author-defined
state, to determine when the aliens have all been destroyed. As with
quizzes, destroying aliens becomes much more fun if your high score
is transmitted to a server.

In addition, variables would allow an author to have more control over selec-
tively rendered content. Prior to SMIL 3.0, SMIL provided custom tests, which
allow end-user control over whether optional content is rendered or not, but
the mechanism for presenting these options to the user is determined by the
rendering user agent, not the author.
A separate, but related, issue with older SMIL releases is that it is impossible
to communicate presentation state to the outside world. This problem be-
comes more acute once variables are added: if the SMIL presentation repre-
sents an interactive multiple-choice exam it is probably important to commu-
nicate the results to a server after the whole exam has been taken. If it repre-
sents a game we may want to keep high-scores at a central location.
A final design guideline was that the solution should be as simple as possible
but be easily extensible if required for certain application areas.

2.4.1 SMIL State Elements
SMIL State was designed using a two-tiered approach: first we architected
hooks in the SMIL language to enable inclusion of a data model and expres-
sion language; we next focused on the selection of a default language for the
data model and expression language. This layered approach has the advantage
that if the default expression language is not the best choice for a given appli-
cation it is possible to use another expression language that is more suitable
without modifying the semantics on the SMIL level. The ability to use an ex-
pression language other than the default choice of XML and XPath, however,
is not relevant to this paper, with the exception of the fact that it allows for
extending the data model to the richer model supported by XForms.
The hooks in SMIL are:

• a <state> element in the head section of the document, used to de-
clare the data model;

• an expr attribute that can be used on any timed element to condi-
tionally skip the element;

• new timed elements <setvalue>, <newvalue> and <delvalue>
which allow changing the data model;

• a head element <submission> and a timed element <send> that
allow sending and receiving parts of the data model;

 28

• an attribute value template construct, {expression}, that can be
used in selected attributes to interpolate data model values into attrib-
ute values;

• an event stateChanged(ref) that occurs when the specified item
in the data model changes.

All of these hooks are modeled after existing SMIL constructs: expr behaves
in a manner similar to system tests and custom tests, the timed elements be-
have like normal media items or SMIL animation elements. The attribute
value template, which was modeled after the same construct in XSLT, fits in
nicely with the existing mechanism in which SMIL animation and DOM access
are allowed to modify attribute values in a running SMIL presentation (the so-
called “sandwich model”). In this model, attribute value templates are only
allowed in attributes where they cannot modify the time graph of a running
presentation, similar to what is defined for SMIL animation.
For the default data model and expression language we have selected XML and
XPath, respectively. We specifically allow XPath nodeset expressions: the data
model is the XML document on which XPath operates, not the XPath vari-
able bindings. XPath variables are used as the data model in some other stan-
dards such as DISelect [20], but this data model allows only simple unstruc-
tured scalar variables. Using the XML document as the data model allows
structured values such as lists and associative arrays. To allow maintaining data
model consistency, updates (by a single element) are atomic, and <setval-
ue> allows copying of subtrees.
The data model XML document may be embedded inside the SMIL docu-
ment, but it is logically a separate document: the XPath expressions cannot
refer to random items in the SMIL document.

Listing 1 – Sample SMIL document with SMIL State constructs highlighted

<smil>
 <head>
 <state>
 <data xmlns="">
 <wantAd></wantAd>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <par>
 <video src=”match.mp4”/>
 <img xml:id=”banner” begin=”10s”

 29

 end=”15s” src=”banner.png”/>
 <setvalue begin=”banner.activateEvent”
 ref=”wantAd” value=”’commercial.mp4’”/>
 </par>
 <video expr=”wantAd” src=”{wantAd}”/>
 </seq>
 </body>
</smil>

Listing 1 shows an example of the use of SMIL State. The data model XML
document is declared in the <state> element in the head section, it consists
of a data root element with one child, wantAd, initially empty. The data and
wantAd elements are not part of the SMIL language, this is really a separate
XML document included inline for convenience only, hence the use of the
xmlns attribute.
When the presentation starts, the match.mp4 video starts playing. After 10
seconds, the banner.png image is displayed for 5 seconds. If the user clicks
on this image while it is active the value of the wantAd element in the data
model is changed to the string commercial.mp4. The match.mp4 video
continues playing until its end, whether or not the user clicks the image. After
the video has finished the second video element get scheduled. Whether it
plays or not depends on the wantAd data model item: if it is true (or non-
empty and non-zero) it does play. Which video it plays depends on the value
of the wantAd data model element, interpreted as a URL string.

2.4.2 Shared Data Model
The data model of SMIL State is external to the SMIL document itself. As
stated in the previous section, this forestalls random changes to the SMIL
document, thereby maintaining its time graph and its structural consistency.
This has the effect that we do not lose the ability to do transformation and
adaptation on the document, one of the key advantages of a declarative
model.
The external data model has another advantage, however: it can be shared. In
its simplest form this sharing can be between runs of the same presentation:
an author can create a long-running presentation that stores data when a sec-
tion has been finished. A later run of the presentation can pick this up, and
start the presentation at the given spot, in stead of at the beginning.
Sharing of the data model can also be applied to multiple components running
at the same time. Using a shared data model as the communication paradigm
between components decouples dependencies between these components:
they only depend on a common understanding of the data model. This decou-

 30

pling facilitates reuse, adaptability and retargeting: if a multimedia presenta-
tion wants to show locations on a map it only needs to define that it will store
the location in /location/latitude and /location/longitude.
The map applet can now listen for changes to these variables and modify the
map view. Reuse is facilitated because another multimedia presentation only
needs to be aware of this “data model API” to use mapping services. Same for
adaptability and retargeting: if the map applet is replaced by a different one
this does not affect the multimedia presentation. And even if the map applet
is completely missing, for example because the presentation is viewed on a
mobile device with not enough screen space to show both the presentation
and the map, the multimedia presentation need not be aware of this.

2.4.3 Content Control
SMIL has always supported optional content, the ability to render or skip con-
tent based on environmental conditions. System tests allow the presentation
author to trigger on predefined conditions, such as available bandwidth and
screen size, and custom tests allow extension of these with author-defined bi-
nary conditions. These constructs suffer from a number of drawbacks, how-
ever:

• there is no way to set the value of a custom test attribute from the
presentation, and the user interface for defining these values is un-
specified in the SMIL standard and left to individual implementations;

• the standard specifically allows system and custom tests to be evalu-
ated once, at document load time, which limits their usefulness for in-
teractivity and dynamic adaptation;

• the lack of an expression language means presentation authors can
only test for attributes being true, not for them being false, and not for
combinations of attribute values.

SMIL State integrates system tests and custom tests into its general expression
framework. For example, the SMIL 2.1 construct
<audio src=”background.ogg” systemBitrate=”128000”/>

plays an audio fragment only if enough bandwidth is available. The corre-
sponding SMIL State construct
<audio src=”background.ogg” expr=”smil-bitrate() >
128000”/>

ensures dynamic evaluation, which means the presentation can adapt to vary-
ing bandwidth conditions (for example in mobile situations). Another example
of the advantage of rich expressions is the ability to specify
<audio src=”background.ogg” expr=”smil-bitrate() >
128000 and not(smil-audioDesc())”/>

 31

This plays the background music track only if enough bandwidth is available,
and if it does not interfere with audio descriptions.

2.5 I m p l e m e n t a t i o n
We have implemented SMIL State in our open source Ambulant SMIL player,
this implementation was used to experiment with our sample applications.
The implementation follows the two-tiered approach of the SMIL state de-
sign:

• architectural hooks into the SMIL language have been implemented in
the core SMIL engine;

• data model and expression language are implemented in optional plug-
in modules.

In this section we will look at three example expression language implementa-
tions: the XPath-WebKit-state module which was used for the guided tour, the
XPath-standalone-state module used for the delayed advertisement presenta-
tion and a Python-state module.
Listing 2 – State component API

class state_component_factory {
 state_component *new_state_component(const char *uri);
};

class state_component {
 void declare_state(const lib::node *state);

 void set_value(const char *var, const char *expr);
 bool bool_expression(const char *expr);

 void want_state_change(const char *ref,
 state_change_callback *cb);
 ...
};

class state_change_callback {
 void on_state_change(const char *ref);
};

The basics of the interface between the core interpreter and the expression
language plug-in are shown in listing 2. Each plug-in provides a state_com-
ponent_factory interface. The core iterates over these, passing the ex-
pression language specified by the document author as a parameter. A plug-in
that implements this language will return its implementation, and the iterat-
ing stops.

 32

Now the core calls declare_state passing the <state> element to ini-
tialize the data model. During runtime, methods such as set_value and
bool_expression are called to implement the corresponding SMIL State
elements and attributes. StateChanged events are implemented by the core
calling want_state_change to signal its interest in changes to a specific
data model item. The plug-in will now call on_state_change whenever the
item is modified.
The advantage of using plug-in modules and a factory class for implementing
the data model and expression language is that it enables multiple implemen-
tations. One use for multiple implementations is the selection of the SMIL
State expression language: the Python-state factory will return its implementa-
tion only if the SMIL author has specified that Python is to be used as the ex-
pression language. Another use of the factory class is that it allows plug-ins to
dynamically determine whether they are applicable: both XPath-WebKit-state
and XPath-standalone-state implement XPath as the expression language, but
XPath-WebKit-state will only return its implementation after determining that
the SMIL interpreter is currently hosted in a WebKit plug-in [4].
The XPath-standalone-state implementation is rather mundane: 700 lines of
C++ that use the DOM and XPath facilities of the Gnome libxml2 [3] to im-
plement SMIL State for standalone documents.
The XPath-WebKit-state implementation is more interesting: the application
requires that it interfaces with a browser DOM and Javascript implementation
as well as with an XForms implementation. Programming this directly in C or
C++ using the NSAPI browser plug-in API would be painful: NSAPI is rather
old, and its model is low level and verbose. As an example of how verbose it is,
the following JavaScript statement obtains the base URL of the currently dis-
played HTML page:
base = document.location.href;

The equivalent C++ code is 50 lines long. Exporting functions from C++ to
JavaScript also requires similarly verbose hand-written code.
Safari on MacOSX not only supports NSAPI-based plug-ins but also native
WebKit plug-ins. These plug-ins are written in Objective-C, and tie in well with
the AppKit and Foundation toolkits that are commonly used on OSX to cre-
ate applications. Because Objective-C is a modern high-level language, it sup-
ports fairly rich introspection features, and the WebKit plug-in API exploits
this to transparently bridge Objective-C to JavaScript and vice-versa: the plug-
in can access JavaScript objects (and, hence, DOM objects) relatively easily,
and exporting objects from Objective-C to JavaScript is similarly easy.
Objective-C, in turn, is transparently bridged to Python through PyObjC,
which is a standard component of MACOSX. And as the full Ambulant API is
also transparently bridged to Python, through a modified version of the stan-

 33

dard (but little known) Python tool bgen, the XPath-WebKit-state implementa-
tion is now a mere 200 lines of Python.

Figure 2 – Implementation language bridging

Figure 2 shows the cascade of bridges mentioned in the previous paragraph,
and despite their rickety appearance we have not experienced stability issues.
The use of dynamic languages and the availability of the language bridges has
enabled us to use rapid prototyping methods to perform these experiments.
The SMIL State design matched the platform nicely, and clean separation of
components was almost automatic. The only link between the WebKit world
and the Ambulant world is DOM access and XML Events, between the Web-
Kit DOM and the Ambulant SMIL State plug-in. The relevant components in
this implementation are shown in figure 3.

Figure 3 – Browser plug-in implementation

We have also started thinking about implementing browser integration
through the standard NSAPI plug-in API, to facilitate using SMIL State in
Firefox or Internet Explorer. Experience with the WebKit plug-in suggests
that providing a general bridge to a high-level language may be a good solution
that allows easy experimentation, so we are looking at implementing a gener-
alized JavaScript-Python bridge based on NSAPI.

 34

2.6 A p p l i c a t i o n s
In this section we examine two applications that address the two different as-
pects of using SMIL state. We start with a full-blown web app as outlined in
section 2 and continue with a much more lightweight presentation that en-
ables ad insertion into video presentation without the end-user annoyance
that it currently often evokes.
These applications were created using our Ambulant SMIL playback engine,
with support for SMIL State added. In case of the first application Ambulant
was hosted in the Safari web browser, together with the FormFaces XForms
implementation and the Google map applet. The second presentation runs in
a standalone Ambulant player.

2.6.1 Guided Tour Webapp
We now revisit the example presentation sketched in section 2, and show how
it was designed.
The general control flow of the application is driven by SMIL, and consists of
a linear sequence of video clips, with optional subtitles. Some clips, such as
the introduction, are played unconditionally, others are played or skipped de-
pending on user preferences set through the XForms controls. For each clip,
the lattitude and longitude information are stored in the data model. The lo-
cation is picked up by glue on the webpage and communicated to the map
applet. Additionally, references to relevant external websites, adwords and
search terms are put in the data model. This information is picked up by glue
code in the webpage and displayed.

Figure 4 – Guided tour document model

Because multiple components are involved (SMIL for media playback and tim-
ing control, XForms for interaction, map applet) HTML is used as the outer-
most container format, as well as for displaying additional content such as

 35

background links, etc. The global structure of the presentation is shown in
figure 4: the HTML document embeds the XForms form and the applet, and it
has a reference to the SMIL presentation. SMIL (through SMIL State) and
XForms both refer to the shared data model, and can both read and modify it.
The map applet and HTML page itself only read values from the data model,
through a bit of glue. How this architecture matches to the visual representa-
tion on the web page is shown in figure 5.

Figure 5 – Mapping of components to screen rendition

The glue needs a bit more explanation: as only XForms and SMIL have direct
access to the data model, in the prototype the glue is implemented with a bit
of Javascript, triggered by DOM events when the data model changes. This
glue could be implemented using XBL, XConnector or another declarative
form, but unfortunately none of these were available in a browser that could
also host our SMIL plug-in.
Listings 3 and 4 show the relevant parts of the HTML and SMIL documents,
respectively. The HTML document has the embedded data model (in the
XForms namespace). It consists of sections optionalContent, for content
selection, subtitles, for subtitle selection, and gps, backgroundLinks,
backgroundSearch and adWords, for communicating timed metadata.
The XForms form enables the viewer to select, for example, whether to dis-
play the hotel information or not.
In the SMIL code, the whole section is played only if optionalContent/
hotels is true. The multimedia data for that section consists of a subsection
of the video clip and some subtitles. The metadata is stored in the data model
at the time the media start. Some of this metadata is scalar (such as longitude,

 36

latitude and adWords), some is structured (background search items). In the
latter case a new sub-item named hotel is added to the background-
Search container.

Listing 3 – HTML and XForms code

<head>
 <form:model ...>
 <form:instance id="jacksinstance">
 <data xmlns="">
 <optionalContent>
 <hotels>false</hotels>
 <culture>true</culture>
 <shopping>false</shopping>
 <entertainment>false</entertainment>
 </optionalContent>
 <subtitles>none</subtitles>
 <gps>
 <long></long>
 <lat></lat>
 </gps>
 <backgroundLinks/>
 <backgroundSearch/>
 <adWords/>
 </data>
 </form:instance>
 ...
 </form:model>
 ...
</head>
<body>
 ...
 <form:select ref="optionalContent/hotels" ...>
 <form:label>Hotel Information
 </form:label>
 <form:item>
 <form:label></form:label>
 <form:value>true</form:value>
 </form:item>
 </form:select>
 ...
</body>

 37

Note that, despite the similarity to SMIL Animation constructs like <set>,
these <setvalue> and <newvalue> elements are not automatically re-
verted when their timeline ends. In that way, they form the procedural escape
hatch for the temporal containment model, while still keeping that contain-
ment model intact in the general case.

Listing 4 – SMIL code

<par expr="optionalContent/hotels">
 <video src="biketour.mp4"
 clipBegin="26s" clipEnd="53s" .../>
 <smilText expr="subtitles = 'nl'" ...>
 Als je een hotel zoekt kun je
 bijvoorbeeld ...
 <clear begin="6s"/>
 ...
 </smilText>
 <setvalue ref="gps/long" value="52.3776"/>
 <setvalue ref="gps/lat" value="4.89868"/>
 <setvalue ref="adWords" value="'hotel amsterdam'"/>
 <newvalue ref="backgroundSearch"
 name="hotel" value="'hotel amsterdam'"/>

 ...
</par>

2.6.2 Delayed Ad Selection
The standard way to do advertisements in video streams, whether over the
internet or through traditional channels, is ad insertion. This can be static or
dynamic, but the dynamism is generally server-based: depending on data the
server knows it selects specific ads to insert. This selection process may be
based on a user profile the server keeps, but there is no direct user interac-
tion. Ad insertion done dynamically at client side, based on user interaction,
such as discussed in [11], has a different problem: it hinges on the fact that the
viewer is so interested in the product that she actually clicks the link, disrupt-
ing her viewing experience. We feel this may be an unlikely general model.
For static media on the internet the situation is wholly different. Inserted ad-
vertisements, which require the user to first read the ad before being able to
get at the target content, are generally frowned upon, and recently most major
browsers contain features that actively try to forestall pop-ups and other dis-

 38

ruptive advertisements. Instead of the forced consumption of ads, web pages
tend to work with the voluntary model: the user has the option of clicking a
banner ad. While even this may go too far for some people, the model proba-
bly will have a much larger acceptance than forced ads.
We feel that it would be good to transport the voluntary banner ad method to
the realm of multimedia. However, if the user is in the mindset of watching a
video it may be unlikely that this user clicks the advertisement instead.
To address this issue, we have come up with a technique we call delayed ad
viewing. A video program has pre-determined advertisement slots, and during
such a slot an advertisement always plays. However, through interaction with
the presentation before the advertisement slot the user can influence which
ads will be played.

Figure 6 – Video with banner for delayed advertisement showing in bottom right corner

The sample presentation consists of a (non-live) football program. Included in
the presentation are a number of commercial videos, with a default playout
order. At various times, usually when a billboard is in plain view in the video
footage, a banner for a specific brand will show up in the lower-right corner of
the screen for a couple of seconds. Figure 6 shows how this looks during play-
back. If the user clicks during this period the corresponding ad will be moved
to the front of the playout list. When it is time for a commercial break, the
main video is paused and the head of the advertisement playout list is shown.
After an advertisement has been viewed its banner will no longer show.
Figure 7 shows the timelines of three different playbacks of the same docu-
ment. User 1 did nothing and got the default ad playout order of a soap adver-
tisement and a beer advertisement. User 2 clicked the “Ford” banner, and got
that advertisement first followed by the default soap ad. User 3 requested the

 39

Amstel and Ford banners, and was spared the Lux ad. (At least, during the
first commercial break!)

Figure 7 – Different playout orders

At the end of the presentation the state variables contain information on
which ads have been watched. This information could be transmitted back to
a central server for monetization, along the lines of pay-per-click ads on static
web pages. Alternatively, this data could be gathered by the media server when
the request to serve the ad stream comes in.
Note that the use of delayed ad selection does not preclude other current
standard ad-insertion methods. The SMIL presentation can be generated on
demand by the server for a specific user. Whether the user has complete free-
dom to select advertisements or only limited options is a choice at the discre-
tion of the content provider. Different advertisement selections, choices and
commercial break frequencies can be served to different users by serving only
different SMIL documents: the underlying media items can all be static.
The structure of the presentation is rather simple, and listing 1 gives the gen-
eral idea. A problem that was encountered is that the XPath expression lan-
guage is primarily meant for manipulating general XML documents and not
for the more spreadsheet-like operations we are using it for. Hence, functions
like max(), which would have made the ad reordering a lot simpler, are miss-
ing and the logic needs to be written out.

2.7 C o n c l u s i o n s a n d F u t u r e Wo r k
Based on the example applications we have created we can match our solution
to the requirements (see table 1). SMIL State does not interfere with any of the
advantages of SMIL, so we only need to look at the three requirements where
SMIL is lacking:

• Variable support works nicely in SMIL State, and simple use cases have
simple solutions. XPath as the expression language could have used a
little boost, though, as XForms did by introducing a number of con-
venience functions into the XPath function namespace. Even so:

User 1 (default) timeline

10 min Football match
Lux

ad

Amstel

ad
More football

User 2 timeline

10 min Football match
Ford

ad

Lux

ad
More football

User 3 timeline

10 min Football match
Ford

ad

Amstel

ad
More football

 40

XPath may be a rich language to encode expressions, it is not a very
user-friendly one. We plan to investigate whether it is possible to come
up with an alternative for XPath that is as easy to use as KST or JavaS-
cript while still allowing the use of a full XML document as the under-
lying data store.

• Language bridging works fine. Here the problem is on the other side of
the bridge: as only SMIL State and XForms currently share this data
model, the integration into other languages requires some glue code.

• Reusability works fine. Whether you want to replace components or
refer to fragments inside the presentation, we have not encountered
any problems.

SMIL State has been proposed to the SYMM working group, and has been ac-
cepted as a part of the standard for SMIL 3.0, which became a W3C Recom-
mendation in December 2008.
The model is fairly easy to support, as is demonstrated by our multiple im-
plementations, as well as by an independent third-party implementation
which was required for inclusion in the SMIL 3.0 Recommendation .
We intend to pursue and extend this model in the context of the W3C Rich
Web Application Backplane Incubator Group. There we will also try and ad-
dress the some of the shortcomings sketched in this section: Current web ap-
plication toolkits are (naturally) oriented towards procedural languages, spe-
cifically JavaScript. A more declarative interface, possibly based on using XBL
to connect widget-like components would not only benefit our model, but also
help accessibility and general reuse.
We also plan to experiment with more rich interaction with the environment,
through the Python-state implementation. This implementation should allow
things like controlling and interrogating external applications, which could be
put to good use for “hands-on” style courseware and such.
Distributed shared state is another area that has our interest: with the ubiqui-
tous availability of handheld devices that have decent connectivity, compute
power and rendering capabilities it is interesting to look at the possibility to
create presentations that are shared among devices in a loosely coupled man-
ner.

2.8 A ck n ow l e d g e m e n t s
The work reported in this paper has benefited from suggestions offered by
members of the W3C backplane activity and members of the W3C Synchro-
nized Multimedia working group. Sjoerd Mullender, Julien Quint and Daniel
Weck have provided comments on earlier versions of this research. We are
grateful to Steven Pemberton for introducing us to the philosophy behind
XForms, which seeded the design of our solution. This work has been funded

 41

by the NWO BRICKS PDC3 project, and by the FP7 IST project TA2. Develop-
ment of the open source Ambulant Player and CWI’s participation in the
SMIL standardization effort have been funded by the NLnet foundation. We
gratefully acknowledge this support.

2.9 R e f e r e n c e s
1. http://www.adobe.com/devnet/actionscript/
2. http://www.macromedia.com/software/flash/about/
3. http://xmlsoft.org/
4. Apple Inc. (2008) WebKit Plug-In Programming Topics. Available at:

http://developer.apple.com/documentation/InternetWeb/Conceptual/
WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf .

5. Bos, B., Lie, H., Lilley, C. and Jacobs, I. (1998) Cascading Style Sheets,
level 2. Available at: http://www.w3.org/TR/CSS2/.

6. Boyer, J. (2007) XForms 1.0 (Third Edition). W3C. Available on:
http://www.w3.org/TR/xforms/ .

7. Bulterman, D. and Rutledge, L. (2008) SMIL 3.0: Interactive Multi-
media for the Web, Mobile Devices and Daisy Talking Books. Springer-
Verlag, Heidelberg, Germany, ISBN: 978-3-540-78546-0.

8. Bulterman, D. et al. (2008) Synchronized Multimedia Integration Lan-
guage (SMIL 3.0). W3C. Available on: http://www.w3.org/TR/SMIL/ .

9. Clark, J. (1999) XSL Transformations (XSLT) Version 1.0. Available at:
http://www.w3.org/TR/xslt.

10. Clark, J. and DeRose, S. (1999) XML Path Language (XPath) Version
1.0. Available at: http://www.w3.org/TR/xpath.

11. Costa, R. et al. (2006) Live editing of hypermedia documents. DocEng
'06: Proceedings of the 2006 ACM symposium on Document engi-
neering. ACM, New York, NY, pp. 165-172.
Doi:10.1145/1166160.1166202 .

12. Ferraiolo, J., Fujisawa, J., Jackson, D. et al. (2003) Scalable Vector
Graphics (SVG) 1.1 Specification. Available at:
http://www.w3.org/TR/SVG11/.

13. Flanagan, D. (2006) JavaScript: The Definitive Guide. O'Reilly & Asso-
ciates, Sebastopol, CA, USA. ISBN 0-596-10199-6.

14. Gifford, D. and Lucassen, J. (1986) Integrating functional and impera-
tive programming. ACM conference on LISP and functional program-
ming. Doi:10.1145/319838.319848 .

15. Hickson, I. (2007) XML Binding Language (XBL) 2.0. W3C. Available
on: http://www.w3.org/TR/xbl/ .

 42

http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/actionscript/
http://www.macromedia.com/software/flash/about/
http://www.macromedia.com/software/flash/about/
http://xmlsoft.org/
http://xmlsoft.org/
http://developer.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf
http://developer.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf
http://developer.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf
http://developer.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://doi.acm.org/10.1145/1166160.1166202
http://doi.acm.org/10.1145/1166160.1166202
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://doi.acm.org/10.1145/319838.319848
http://doi.acm.org/10.1145/319838.319848
http://www.w3.org/TR/xbl/
http://www.w3.org/TR/xbl/

16. Hickson, I. et al. (2009) HTML 5 Draft Recommendation. Available
at: http://www.whatwg.org/specs/web-apps/current-work/. Retrieved on
February 2, 2009.

17. Honkala, M. and Pohja, M. (2006) Multimodal interaction with
xforms. ICWE '06: Proceedings of the 6th international conference on
Web engineering. ACM, New York, NY, pp. 201-208.
Doi:10.1145/1145581.1145624 .

18. Jansen, J. and Bulterman, D. (2008) Enabling adaptive time-based web
applications with SMIL state. DocEng ’08: Proceedings of the 2008
ACM symposium on Document Engineering (2008). ACM, New York,
NY, USA. Doi: 10.1145/1410140.1410146 .

19. King, P., Schmitz, P. and Thompson, S. (2004) Behavioral reactivity and
real time programming in XML: functional programming meets SMIL
animation. DocEng '04: Proceedings of the 2004 ACM symposium on
Document engineering (2004). Doi:10.1145/1030397.1030411 .

20. Lewis, R. et al. (2007) Content Selection for Device Independence
(DISelect) 1.0. W3C. Available on: http://www.w3.org/TR/cselection/ .

21. Lie, H. and Saarela, J. (1999) Multipurpose Web publishing using
HTML, XML, and CSS. Communications of the ACM, Vol. 42, Issue
10. ACM, New York, NY, pp. 95-101. Doi:10.1145/317665.317681 .

22. Moggi, E. (1988) Computational Lambda-calculus and monads. In pro-
ceedings 4th Annual Symposium on Logic in Computer Science. IEEE
Computer Society Press, Washington, DC.

23. Muchaluat-Saade, D., Rodrigues, R. and Soares, L. (2002) XConnector:
extending XLink to provide multimedia synchronization. Proceedings
of the 2002 ACM symposium on Document Engineering . ACM, New
York, NY, USA. Doi:10.1145/585058.585069 .

24. Muchaluat-Saade, D.. and Soares, L. (2003) XConnector and XTem-
plate: improving the expressiveness and reuse in web authoring lan-
guages. The New Review of Hypermedia and Multimedia. Tay-
lor&Francis, Bristol, PA, USA. Doi:10.1080/13614560208914739 .

25. Pemberton, S. et al. (2002) XHTML™ 1.0 The Extensible HyperText
Markup Language (Second Edition). Available at:
http://www.w3.org/TR/xhtml1.

26. Pixley, T. (2000) Document Object Model (DOM) Level 2 Events
Specification Version 1.0. Available at:
http://www.w3.org/TR/DOM-Level-2-Events/.

27. Raggett, D. (2006) Slidy - a web based alternative to Microsoft Power-
Point. XTech (Amsterdam, May 16-19 2006). Available on:
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf .

 43

http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://doi.acm.org/10.1145/1145581.1145624
http://doi.acm.org/10.1145/1145581.1145624
http://doi.acm.org/10.1145/1410140.1410146
http://doi.acm.org/10.1145/1410140.1410146
http://doi.acm.org/10.1145/1030397.1030411
http://doi.acm.org/10.1145/1030397.1030411
http://www.w3.org/TR/cselection/
http://www.w3.org/TR/cselection/
http://doi.acm.org/10.1145/317665.317681
http://doi.acm.org/10.1145/317665.317681
http://doi.acm.org/10.1145/585058.585069
http://doi.acm.org/10.1145/585058.585069
http://dx.doi.org/10.1080/13614560208914739
http://dx.doi.org/10.1080/13614560208914739
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf

28. Scherp, A. and Boll, S. (2004) Generic support for personalized mobile
multimedia tourist applications. MULTIMEDIA '04: Proceedings of
the 12th annual ACM international conference on Multimedia (2004).
Doi:10.1145/1027527.1027566 .

29. Thompson, S., King, P. and Schmitz, P. (2007) Declarative extensions
of XML languages. DocEng '07: Proceedings of the 2007 ACM sympo-
sium on Document engineering (2007). Doi:10.1145/1284420.1284442 .

30. Wadler, P. (1990) Comprehending Monads. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, pages 61--77,
Nice, France, 1990.

 44

http://doi.acm.org/10.1145/1027527.1027566
http://doi.acm.org/10.1145/1027527.1027566
http://doi.acm.org/10.1145/1284420.1284442
http://doi.acm.org/10.1145/1284420.1284442

Appendix A - SMIL 3.0 State
Editors for SMIL 3.0

Jack Jansen, CWI
Julien Quint, DAISY Consortium

This appendix contains chapter 13 of the SMIL 3.0 Recommendation.
The full text of the recommendation is available at
http://www.w3.org/TR/SMIL3/ .
The main body of this thesis presents a somewhat abstracted view of
SMIL State, for reasons of readability. This appendix has the full, de-
tailed specification of the functionality.

1 Overview and Summary of Changes for SMIL 3.0
This section is informative.

The modules defined in this chapter are all new modules which were not part
of the SMIL 2.1 specification.

2 Introduction
This section is informative.

A SMIL 2.1 presentation has a lot of state that influences how the presenta-
tion runs. Or, to rephrase that in a procedural way, state that influences deci-
sions that the SMIL scheduler makes. All this state is either implicit in the
presentation (what nodes are active and how long into their duration they are,
how many iterations of a repeat we have done, which nodes in an excl are
paused because a higher priority node has preempted them, etc.), or com-
pletely external to the presentation (system tests and custom tests).
This has the effect that the only control flow that the SMIL author has at his/
her disposal is that which is built in to the language, unless the SMIL engine
includes some scripting language component and a DOM interface to the
document that the author may use to create more complex logic.
The modules in this section provide a mechanism whereby the document
author may create more complex control flow than what SMIL provides
through the timing and content control modules, without having to go all the
way of using a scripting language. One way to provide this is to allow a docu-
ment to have some explicit state (think: variables) along with ways to modify,
use and save this state.
In addition, the mechanisms that the SMIL BasicContentControl and Cus-
tomTestAttributes modules provide for testing values are limited: basically
one can only test for predefined conditions being true (not for them being

 45

http://www.w3.org/TR/SMIL3/
http://www.w3.org/TR/SMIL3/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-timing.html#edef-excl
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-timing.html#edef-excl

false) and there is a limited form of testing for multiple conditions with "and"
being the only boolean operator.
Application areas include things like quizzes, interactive adaptation of presen-
tations to user preferences, computer-aided instruction and distant learning.
3 Relation To Other Standards

This section is informative.

The design of these modules was done after meeting with the W3C Backplane
Group (part of the Hypertext Coordination Group) and various choices were
influenced by the direction that group is taking.
These modules therefore borrow heavily from work done by other W3C
working groups:

• The data model is a small XML document addressed with XPath 1.0
[XPATH10]. This follows the lead set by XForms 1.0 [XFORMS10].

• The XPath function interface to system and custom test data and the expr
attribute are modelled after work by the Device Independent WG on DISe-
lect 1.0 [DISELECT10].

• Attribute Value Templates used in StateInterpolation are lifted from XSLT
1.0 [XSLT10], [XSLT20].

The intention of these modules it to provide authors with the minimum func-
tionality required to create compelling presentations, not to import all func-
tionality from the standards they were lifted from, and concentrate on the
timing integration issues. Applications requiring a richer set of primitives
should import, for example, the XForms data model through the XML
namespace mechanism.

4 Module Overview
This section is normative.

This chapter defines the following modules:

• StateTest, containing extended content selection;

• UserState, containing author-defined state;

• StateSubmission, saving author-defined state;

• StateInterpolation, allowing runtime modification to attribute values.

5 The SMIL StateTest Module
5.1 Changes for SMIL 3.0

This section is informative.

 46

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XPATH10
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XPATH10
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XFORMS
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XFORMS
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-DISELECT10
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-DISELECT10
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XSLT10
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XSLT10
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XSLT20
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-XSLT20
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateTest
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateTest
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-UserState
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-UserState
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateSubmission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateSubmission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateInterpolation
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateInterpolation

The SMIL 3.0 StateTest Module defined in this document is a new module
which was not part of the SMIL 2.1 specification.
5.2 Overview

This section is informative.

The mechanisms that the BasicContentControl and CustomTestAttributes
modules provide for testing values are limited: basically one can only test for
predefined conditions being true (not for them being false) and by specifying
multiple system test attributes an author has a way to simulate an and opera-
tor but that is all.
This module introduces a generalized expr attribute that contains an expres-
sion. If the expression evaluates to false the element carrying the attribute is
ignored. If the expression evaluates to true or if there is any error (this ranges
from expression syntax errors and type errors to unavailability of the expres-
sion language engine) the element is treated normally.

5.3 Elements and Attributes
This section is normative.

The expr Attribute
expr

This attribute contains an expression that is evaluated at runtime, i.e.
each time the element becomes active. If the expression evaluates to
false the element is ignored (including its hierarchy of descendants). If it
is impossible to resolve the expression specified in the expr attribute to a
boolean, user-agents must ignore the expr attribute.

Any profile using this module needs to define the language used to specify the
expression.

This section is informative.

The SMIL 3.0 Language Profile specifies that XPath 1.0 is used as the default
expression language, and the context in which the expressions are evaluated is
as follows:

• The context node, context position and context size are not relevant to the
functionality in the State Test module;

• The variable bindings are empty;

• The function library consists of the functions listed below (in addition to the
builtin XPath functions); and

• The set of namespace declarations is not relevant to the functionality in the
State Test module.

 47

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr

Alternative expression languages that could be used are a scaled down form of
XPath as used by DI, or EcmaScript, Python, Lua or any other language suit-
able for the application domain of the profile.
Note that there is a slight but important semantic difference between using
content control attributes and using expr: the latter is guaranteed to be dy-
namically evaluated at runtime and may therefore be used for more dynamic
control whereas there is no such guarantee for the former.
5.4 Functions

This section is normative.

This module defines a set of functions for use in the expr attribute (possibly
in addition to functions already defined in the expression language). The nam-
ing convention used for the functions is compatible with XPath 1.0 expres-
sions, a profile using this module with another expression language must spec-
ify a transformation that needs to be applied to these function names to make
them compatible with the expression language specified.
boolean smil-audioDesc()

Corresponds to systemAudioDesc.
number smil-bitrate()

Corresponds to systemBitrate.
boolean smil-captions()

Corresponds to systemCaptions.
boolean smil-component(string uri)

Corresponds to systemComponent, checks for availability of a single
playback component.

boolean smil-customTest(string name)

Corresponds to customTest, checks the current state of the given custom
test.

string smil-CPU()

Related to systemCPU. This function returns the CPU on which the user
agent runs.

number smil-language(string lang)

Related to systemLanguage. The string argument should be a BCP47
[BCP47] language tag. If the language does not match any language range
in the users' preferences the function returns 0. If the tag does match the
function returns a positive number, such that languages that match higher
in the language priority list return a higher number.

 48

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemAudioDesc
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemAudioDesc
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemBitrate
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemBitrate
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemCaptions
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemCaptions
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemComponent
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemComponent
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemComponent
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemComponent
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemCPU
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemCPU
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemLanguage
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemLanguage
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-BCP47
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-refs.html#ref-BCP47

string smil-operatingSystem()

Related to systemOperatingSystem. This function returns the operating
system on which the user agent runs.

string smil-overdubOrSubtitle()

Values: overdub or subtitle
Corresponds to systemOverdubOrSubtitle.

boolean smil-required(string uri)

Corresponds to systemRequired.
number smil-screenDepth()

Corresponds to systemScreenDepth.
number smil-screenHeight()

Related to systemScreenSize, returns the height of the screen in pixels.
number smil-screenWidth()

Related to systemScreenSize, returns the width of the screen in pixels.

5.5 Examples
This section is informative.

Here is a SMIL 3.0 Language Profile example of an audio element that is only
played if audio descriptions are off and the internet connection is faster than
1Mbps. Think of using it for playing background music only when this will not
interfere too much with the real presentation:
<audio src="background.mp3"
 expr="not(smil-audioDesc()) and smil-bitrate() > 1000000" />
Here is an example that will show the image colour.jpg to most english-
speaking people. However, people preferring American English over other
variants of english will see color.jpg. Non-english speaking people will see
couleur.jpg.
<switch>
 <img src="color.jpg"
 expr="smil-systemLanguage('en-us') >= smil-systemLanguage('en')"
/>

</switch>

6 The SMIL UserState Module
6.1 Changes for SMIL 3.0

This section is informative.

 49

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemOperatingSystem
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemOperatingSystem
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemOverdubOrSubtitle
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemOverdubOrSubtitle
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemRequired
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemRequired
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemScreenDepth
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemScreenDepth
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemScreenDepth
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemScreenDepth
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemScreenDepth
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemScreenDepth

The SMIL 3.0 UserState Module defined in this document is a new module
which was not part of the SMIL 2.1 specification.
6.2 Overview

This section is informative.

This section introduces a data model that document authors may refer to in
the context of the expr attribute, allowing elements to be rendered depending
on author-defined values. A mechanism to change values in the data model is
also included.
The actual choice of the expression language is made in the language profile.
The SMIL 3.0 Language Profile requires support for the XPath 1.0 expression
language (but allows use of other languages as well).

6.3 Elements and Attributes
This section is normative.

The UserState module defines the elements state, setvalue, newvalue and del-
value and the attributes language, ref, where, name and value.

The state Element
The state element sets global, document-wide, information for the other ele-
ments and attributes in this module. It selects the expression language to use
and it may also be used to initialize the data model.
Initialization of the data model may be done in-line, through the contents of
the state element, or from an external source through the src attribute (de-
fined in the Media Object Modules section).
The src takes precedence over the inline content, which is only used if the src
attribute is not specified or if the document it refers to cannot be found.
Initialization of the data model (including retrieval of the data) happens at the
beginning of document playback. This may include modifications to the data
model to make it play well with SMIL State use. Such modifications must be
defined in the profile including this module.

This section is informative.

Allowing both inline content and a src attribute allows the former to be used
as a fallback mechanism.
Note that beginning of document playback may be different than document
parse time: depending on the user interface of the user agent a document may
be played multiple times after being parsed once.

 50

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-expr
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src

The SMIL language profile specifies that, in the case of using the XPath data
model, an empty data model will be modified so that it consists of a single
empty <data/> root element.

Element Attributes
The state element accepts the language and src attributes.

The setvalue Element
The setvalue element modifies the value of an item in the data model, similar
to the corresponding element from XForms, but it takes its time behaviour
from the SMIL ref element.
Note that setvalue only modifies existing items, it is therefore an error to
specify a non-existing item, depending on the expression language semantics.
In case of such an error SMIL Timing semantics of the element are not af-
fected.
The setvalue supports all timing attributes, and participates normally in tim-
ing computations. The effect of setvalue happens at the beginning of its sim-
ple duration.

Element Attributes
The setvalue element accepts the ref and value attributes. Both of these are
required attributes.

The newvalue Element
The newvalue element introduces a new, named, item into the data model.
The newvalue supports all timing attributes, and participates normally in tim-
ing computations. The effect of newvalue happens at the beginning of its sim-
ple duration. Depending on the semantics of the expression language it may
be an error to execute the newvalue element more than once. In case of such
an error SMIL Timing semantics of the element are not affected.
The ref and where determine where in the data model the new item is intro-
duced. If the expression language does not support a hierarchical namespace
these attributes are ignored. The name attribute determines the name for the
new item.

Element Attributes
The newvalue element accepts the ref, where, name and value attributes.
Which of these are required depends on the expression language.

The delvalue Element
The delvalue element deletes a named item from the data model.
The delvalue supports all timing attributes, and participates normally in tim-
ing computations. The effect of delvalue happens at the beginning of its sim-

 51

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-animation.html#edef-set
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-animation.html#edef-set
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-setvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue

ple duration. Depending on the semantics of the expression language deletion
of variables may not be supported, or it may be an error to execute the del-
value element on a non-existing item. In case of such errors SMIL Timing se-
mantics of the element are not affected.

Element Attributes
The delvalue element accepts the ref attribute.

The language Attribute
The language attribute selects the expression language to use. Its value should
be a URI defining that language. The default value for this attribute is defined
in the profile.
SMIL implementations should allow expression language availability to be
tested through the systemComponent attribute.

The ref Attribute
The ref attribute indicates which item in the data model will be changed. The
language used to specify this, plus any additional constraints on the attribute
value, depend on the expression language used.

This section is informative.

The reason that newvalue has both a ref and a name attribute is that some
languages, notably XPath 1.0, do not support ref referring to a non-existing
named item in the data model. Therefore, name is used to give the name for
the new item and ref and where specify where it is inserted. For expression
languages without a hierarchical namespace ref and where should be omitted
and only name is needed.

This section is informative.

For the SMIL 3.0 Language Profile the value of the ref attribute is an XPath
expression that evaluates to a node-set. It is an error if the node-set does not
refer to exactly one node.

The where Attribute
The where attribute indicates where in the data model the new item will be
inserted, if the expression language supports a hierarchical data model. The
allowed values are before, after and child, the default.

The name Attribute
The name attribute specifies the name for the new data model item. This
name must adhere to constraints set by the expression language used.

The value Attribute
The value attribute specifies the new value of the data model item referred to
by the ref element. How the new value is specified in the value attribute is

 52

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-delvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-language
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemComponent
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-content.html#adef-systemComponent
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-newvalue
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-metadata.html#adef-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-where
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-name
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value

defined in the profile that includes this module. This specification also states
whether only simple values are allowed or also expressions, and when those
expressions are evaluated.
If a statically-typed language is used as the data model language it is an error
if the type of the value expression cannot be coerced to the type of the item
referred to by the ref.
6.4 Examples

This section is informative.

Here is a SMIL 3.0 Language Profile example of a sequence of audio clips that
remembers the last audio clip played, omitting the state declaration in the
head for brevity:
<seq>
 <audio src="chapter1.mp3" />
 <setvalue ref="lastPlayed" value="1" />
 <audio src="chapter2.mp3" />
 <setvalue ref="lastPlayed" value="2" />
 <audio src="chapter3.mp3" />
 <setvalue ref="lastPlayed" value="3" />
</seq>
Here is an extension of the previous example: not only is the last clip remem-
bered but if this sequence is played again, later during the presentation, any
audio clips played previously are skipped:
<seq>
 <seq expr="lastPlayed < 1">
 <audio src="chapter1.mp3" />
 <setvalue ref="lastPlayed" value="1" />
 </seq>
 <seq expr="lastPlayed < 2">
 <audio src="chapter2.mp3" />
 <setvalue ref="lastPlayed" value="2" />
 </seq>
 <seq expr="lastPlayed < 3">
 <audio src="chapter3.mp3" />
 <setvalue ref="lastPlayed" value="3" />
 </seq>
</seq>

6.5 Data Model
This section is informative.

As stated before, the normative choice of an expression language and data
model is made in the profile that includes this module, but for ease of reading
this section informatively describes the choices in the SMIL 3.0 Language
Profile: XPath 1.0 operating on a simple XML document contained in the
state element.
It is important to note that the data model is an XML document. This is not
to be confused with the variable bindings in the expression context, another

 53

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-value
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state

namespace that XPath has. These variable bindings are not supported through
SMIL State. Therefore references to state elements are node-set expressions,
not $name-style variable references. This usage allows for nested variables and
more complex data structures than the flat namespace of the variable bindings
provides. SMIL follows the lead of XForms here.
The state element, of which at most one may occur, in the head section,
should either be empty or contain a well-formed XML document.
The XPath context in which the expressions are evaluated is as follows:

• The context node is the root of the XML document specified with the state
element;

• context position and context size refer to that same element;

• The variable bindings are empty;

• The function library consists of the functions defined in the StateTest module
and those defined in the XPath Core Function Library; and

• The set of namespace declarations is defined by the xmlns attribute on
the context node.

This context means that an expression of the form count has the same mean-
ing as one of the form /data/count. Moreover, the XPath type conversion
rules result in count + 1 in meaning the exact same things as number(/
data/count) + 1.

Data Model Examples
Here is the minimal state section that corresponds to the audio clip example
above:
 <smil>
 <head>
 <state>
 <data xmlns="">
 <lastPlayed>0</lastPlayed>
 </data>
 </state>
 ...

Expression Constraints
The UserState module does not constrain the data model and expressions of
the underlying language, unless specifically done so in a profile. For ease of
reading most examples in this document use simple variable-style names, but
richer constructs, such as setting attribute values with XPath or using com-
pound values in Python, are allowed.
6.6 Data Model Events

This section is informative.

 54

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-structure.html#edef-head
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-structure.html#edef-head
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateTest
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-StateTest
http://www.w3.org/TR/xpath#corelib
http://www.w3.org/TR/xpath#corelib
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-UserState-Examples
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#StateNS-UserState-Examples

Supported events for event-based timing are normatively specified in the pro-
file. For ease of reading we include the relevant event defined in the SMIL 3.0
Language Profile here as well. The purpose of these events is to allow docu-
ment authors to create documents (or sections of documents) that restart and
re-evaluate conditional expressions whenever the values underlying the ex-
pressions have changed.
stateChange(ref)

Raised by the state element. The parameter is a reference to an item (or
multiple items) in the data model. Whenever any of the data model items
referenced by the parameter is changed this event is raised. The event
does not bubble.

contentControlChange(attrname)

Raised by the root of the SMIL document when the named Content
Control test values has changed. The list of allowed values for attrname is
taken from the Content Control Module attribute names. The event does
not bubble.

contentControlChange

Raised by the root of the SMIL document when any Content Control
test value has changed. The event does not bubble.

Raising the stateChange event on the state element instead of on the data
model element itself allows for external data models (which have a distinct
xmlid-space) and on non-XML data models (depending on the expression lan-
guage).
If any of the Content Control test values changes both the specific event and
the general event are raised. This is because for some documents the author
will want to react to a change in a specific parameter (bandwidth, screensize)
only, whereas for other use cases the author may want to reconfigure the
whole presentation on any change.
7 The SMIL StateSubmission Module
7.1 Changes for SMIL 3.0

This section is informative.

The SMIL 3.0 StateSubmission Module defined in this document is a new
module which was not part of the SMIL 2.1 specification.

7.2 Overview
This section is informative.

This section introduces a method to save author defined state or to transmit
it to an external server.

 55

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-state

7.3 Elements and Attributes
This section is normative.

The StateSubmission module defines two elements, submission and send, and
the attributes submission, action, method, replace and target.

The submission Element
The submission element carries the information needed to determine which
parts of the data model should be sent, where it should be sent and what to do
with any data returned. The ref attribute selects the portion of the data model
to transmit and in case of XPath should be a node-set expression. The default
is to transmit the whole data model (in case of xpath: "/"). The other attrib-
utes are explained below.

Element Attributes
The submission element accepts the ref, action, method, replace and target
attributes. The action and method attributes are required.
Depending on the method this element describes either transmission of data,
reception of data or both. The ref element is ignored if no transmission hap-
pens. The replace and target attributes are ignored if no reception happens.

This section is informative

This element was lifted straight from XForms, with the accompanying attrib-
utes. Support for asynchronous submission and the corresponding events are
not needed because of SMIL's inherent parallelism.

The send Element
The send element causes the data model, or some part of the data model, to
be submitted to server, saved to disk or transmitted externally through some
other method. It does not specify any of this directly but contains only a ref-
erence to such submission instructions.
The send supports all timing attributes, and participates normally in timing
computations. The effect of send happens at the beginning of its simple dura-
tion.

Element Attributes
The send element accepts the submission attribute.

The submission Attribute
The submission attribute is an IDREF that should refer to a submission ele-
ment.

 56

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-action
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-action
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-action
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-action
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-action
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-action
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-method
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-ref
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-send
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission

The action Attribute
A URL specifying where to transmit or save the nodeset. Which URLs are
allowable must take security and privacy considerations into account.

The method Attribute
How to serialize and transmit the data. Allowed values are at least put and
get but may be extended by the profile.
put and get must be symmetrical, and if there is a canonical external repre-
sentation for the data model language put must create that representation.

The replace Attribute
What to replace with the reply. Allowed values are all for the whole SMIL
presentation, instance for the instance data, none for nothing.

The target Attribute
If the value of replace is instance, the optional target attribute specifies
which part of the data model to replace. The default is to replace the whole
instance.

This section is informative.

The SMIL 3.0 Language Profile includes the StateSubmission module, and it
defines that the submission element must occur in the head section.
7.4 Examples

This section is informative.

Here is an example of asynchronous submission: whenever the lastPlayed item
changes because another clip has been played this fact is communicated to
some server.
<smil>
 <head>
 <state xml:id="stateid">
 <data xmlns="">
 <lastPlayed>0</lastPlayed>
 </data>
 </state>
 <submission xml:id="subid" action="http://www.example.com/savexmldoc"
 method="put" />
 </head>
 <body>
 <par>
 <send submission="subid" begin="stateid.stateChange(lastPlayed)"
 restart="always" />
 ...
 <seq end="... some interactive end condition ..." >
 <seq expr="lastPlayed < 1">
 <audio src="chapter1.mp3" />
 <setvalue ref="lastPlayed" value="1" />
 </seq>
 <seq expr="lastPlayed < 2">

 57

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-replace
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#adef-state-target
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-state.html#edef-submission
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-structure.html#edef-head
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-structure.html#edef-head
http://www.example.com/savexmldoc
http://www.example.com/savexmldoc

 <audio src="chapter2.mp3" />
 <setvalue ref="lastPlayed" value="2" />
 </seq>
 <seq expr="lastPlayed < 3">
 <audio src="chapter3.mp3" />
 <setvalue ref="lastPlayed" value="3" />
 </seq>
 </seq>
 </par>

In another presentation we could pick this value up again synchronously and
use it.
 <smil>
 <head>
 <state>
 </state>
 <submission xml:id="subid" action="http://www.example.com/loadxmldoc"
 replace="instance" method="get" />
 </head>
 <body>
 <par>
 ...
 <seq >
 <send submission="subid" />
 <seq expr="lastPlayed < 1">
 <audio src="chapter1.mp3" />
 <setvalue ref="lastPlayed" value="1" />
 </seq>
 <seq expr="lastPlayed < 2">
 <audio src="chapter2.mp3" />
 <setvalue ref="lastPlayed" value="2" />
 </seq>
 <seq expr="lastPlayed < 3">
 <audio src="chapter3.mp3" />
 <setvalue ref="lastPlayed" value="3" />
 </seq>
 </seq>
 </par>

That last example is actually a procedural roundabout way to get the same ef-
fect as using <state src="http://www.example.com/loadxmldoc" />
without submissions.
8 The SMIL StateInterpolation Module
8.1 Changes for SMIL 3.0

This section is informative.

The SMIL 3.0 StateInterpolation Module defined in this document is a new
module which was not part of the SMIL 2.1 specification.

8.2 Overview
This section is normative.

This section introduces a mechanism whereby document authors may use val-
ues from the data model to construct attribute values at runtime. The mecha-
nism has been borrowed from XSLT attribute value templates.

 58

http://www.example.com/loadxmldoc
http://www.example.com/loadxmldoc
http://www.example.com/loadxmldoc
http://www.example.com/loadxmldoc
http://www.w3.org/TR/xslt#dt-attribute-value-template
http://www.w3.org/TR/xslt#dt-attribute-value-template

Substitution is triggered by using the construct {expression} anywhere in-
side an attribute value. The expression is evaluated, converted to a string value
and substituted into the attribute value.
This substitution happens when the element containing the attribute with the
{expression} attribute becomes active.
If any error occurs during the evaluation of the expression no substitution
takes place, and the {expression} construct appears verbatim in the at-
tribute value.
If a profile includes this module it must list all attributes for which this substi-
tution is allowed. It must use the same expression language for interpolation
as the one used for StateTest expressions.
8.3 Elements and Attributes

This section is normative.

This module does not define any new elements or attributes.
This section is informative

The SMIL 3.0 Language Profile includes the StateInterpolation module. It
allows its use in the same set of attributes for which SMIL animation is al-
lowed plus the src, href, clipBegin and clipEnd attributes. It disallows its use
on the Timing and Synchronization attributes. Its use on other attributes is
implementation-dependent.

8.4 Examples
This section is informative.

This SMIL 3.0 Language Profile example shows an icon corresponding to the
current CPU on which the user views the presentation, or a default icon for
an unknown CPU:
<switch>

</switch>

8.5 StateInterpolation, Animation and DOM access
This section is normative.

Because StateInterpolation may also change attribute values its interaction
with animation and DOM access needs to be defined, the so-called "sandwich
model". StateInterpolation sits between DOM access and animation, i.e.
DOM access will see the {expression} strings verbatim and it may set these
values too. SMIL animation will operate on the value of the expression.

 59

http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-src
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-linking.html#adef-href
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-linking.html#adef-href
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-clipBegin
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-clipBegin
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-clipEnd
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-extended-media-object.html#adef-clipEnd

 60

Appendix B - SMIL State Test suite
This appendix contains the interoperability tests used during the SMIL
3.0 standardization process. Two independent implementations of the
SMIL State specification (one of them ours) have passed this test suite.
The intention of the test suite is only to confirm that the language in the
specification is such that at least two independent parties arrive at com-
patible implementations.
The full test suite is available at
http://www.w3.org/2007/SMIL30/testsuite/ .
The appendix is included as a clarification of the interoperability proce-
dure referred to in section 1.7.

test 01 - Attribute Value Templates
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: StateInterpolation
Feature: Use of attribute value templates
File Name: test-01-avt.smil
Description: An AVT construct is used to interpolate text into a data
url.
Expected Behavior: It should display "the number 42 should be forty-two".

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <text dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-two" />
 </seq>
 </body>
</smil>

test 02 - setvalue element
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008

 61

http://www.w3.org/2007/SMIL30/testsuite/
http://www.w3.org/2007/SMIL30/testsuite/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/

Chapter: SMIL 3.0 State
Module: UserState
Feature: setvalue element
File Name: test-02-setvalue.smil
Description: Computes expressions and sets valriables with setvalue.
 StateInterpolation is required for this test.
Expected Behavior: The output is self-describing, displayed in 3 5-second
texts.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <text dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-two" />
 <setvalue ref="foo" value="43" />
 <text dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-three" />
 <setvalue ref="foo" value="foo+1" />
 <text dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-four" />
 </seq>
 </body>
</smil>

test 03 - newvalue element
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: UserState
Feature: newvalue element
File Name: test-03-newvalue.smil
Description: Computes expressions and sets variables with newvalue.
 StateInterpolation is required for this test.
Expected Behavior: The output is self-describing, displayed in 3 5-second
texts.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 <region xml:id="text" width="400" height="100" />
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">

 62

http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

 <data xmlns="">
 </data>
 </state>
 </head>
 <body>
 <seq>
 <newvalue ref="/data" name="foo" value="42" />
 <text region="text" dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-two" />
 <setvalue ref="foo" value="43" />
 <text region="text" dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-three" />
 <setvalue ref="foo" value="foo+1" />
 <text region="text" dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-four" />
 </seq>
 </body>
</smil>

test 04 - state element with src attribute
<?xml version="1.1"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 3.0 Language//EN"
"http://www.w3.org/2007/07/SMIL30/SMIL30Language.dtd">
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: UserState
Feature: state element with src attribute
File Name: test-04-statesrc.smil
Description: Obtains state variables from external document.
 StateInterpolation is required for this test.
Expected Behavior: The output is self-describing.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0" baseProfile="La-
nguage">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116"
src="test-04-statesrc-state.xml" />
 </head>
 <body>
 <seq>
 <text dur="5s"
src="data:,the%20number%20{foo}%20should%20be%20forty-two" />
 </seq>
 </body>
</smil>

test 05 - send element
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008

 63

http://www.w3.org/2007/07/SMIL30/SMIL30Language.dtd
http://www.w3.org/2007/07/SMIL30/SMIL30Language.dtd
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/

Chapter: SMIL 3.0 State
Module: StateSubmission
Feature: submission and send elements
File Name: test-05-send.smil
Description: Saves the state document to a file.
Expected Behavior: After running the test there should be a file
 "test-05-send-out.xml". The contents of this file should be
 identical to "test-05-send-out-correct.xml" (modulo whitespace).

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0" baseProfile="La-
nguage">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 <submission xml:id="subid" method="put"
 action="test-05-send-out.xml" />
 </head>
 <body>
 <seq>
 <text dur="5s"
 src="data:,writing%20xml%20to%20test-05-send-out.xml" />
 <send submission="subid" />
 <text dur="5s"
 src="data:,write%20to%20to%20test-05-send-out.xml%20done" />
 </seq>
 </body>
</smil>

test 06 - newvalue element
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: UserState
Feature: newvalue where attribute
File Name: test-06-newvalue.smil
Description: Saves the state document to a file.
 StateSubmission is required for this test to work.
Expected Behavior: After running the test there should be a file
 "test-06-newvalue-out.xml". The contents of this file should be
 identical to "test-06-newvalue-out-correct.xml" (modulo
whitespace).

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">

 64

http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

 <data xmlns="">
 <fortytwo>42</fortytwo>
 </data>
 </state>
 <submission xml:id="subid" method="put"
 action="test-06-newvalue-out.xml" />
 </head>
 <body>
 <seq>
 <newvalue ref="fortytwo" where="before" name="fortyone" value="41" />
 <newvalue ref="fortytwo" where="after" name="fortythree"
 value="43" />
 <newvalue ref="fortytwo" where="child" name="fortytwopointfive"
 value="42.5" />
 <text dur="5s"
 src="data:,writing%20xml%20to%20test-06-newvalue-out.xml" />
 <send submission="subid" />
 <text dur="5s"
 src="data:,write%20to%20to%20test-06-newvalue-out.xml%20done" />
 </seq>
 </body>
</smil>

test 07 - expr attribute
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: StateTest
Feature: expr attribute
File Name: test-07-expr.smil
Description: Tests expressions with expr.
 Requires UserState.
Expected Behavior: You should see two 5-second self-explanatory texts.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <text dur="5s" expr="foo==42"
 src="data:,this%20is%20the%20first%20you%20should%20see" />
 <text dur="5s" expr="foo<41"
 src="data:,THIS%20YOU%20SHOULD%20NOT%20SEE" />
 <text dur="5s" expr="foo>41"
 src="data:,this%20is%20the%20second%20you%20should%20see" />
 </seq>
 </body>

 65

http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

</smil>

test 08 - expr attribute with language function
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: StateTest
Feature: expr attribute
File Name: test-08-language.smil
Description: Tests for user language preference equality and inequality.
Expected Behavior: You should see one 5 second statement about english
 being one of your preferred languages (or not), another 5 second
statement
 about french. These statements should be correct.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <text dur="5s" expr="smil-language('en')"
 src="data:,you%20should%20see%20this%20if%20you%20speak%20english" />
 <text dur="5s" expr="not(smil-language('en'))"
src="data:,you%20should%20not%20see%20this%20if%20you%20speak%20english"
/>
 <text dur="5s" expr="smil-language('fr')"
src="data:,you%20should%20see%20this%20if%20you%20speak%20french" />
 <text dur="5s" expr="not(smil-language('fr'))"
src="data:,you%20should%20not%20see%20this%20if%20you%20speak%20french"
/>
 </seq>
 </body>
</smil>

test 09 - state element boundary conditions
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: March 12, 2008
Chapter: SMIL 3.0 State
Module: UserState
Feature: state element with src attribute referring to nonexistent docu-
ment
File Name: test-09-statesrc-badurl.smil

 66

http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/

Description: Test that referring to a non-existent url in the state ele-
ment uses the
 inline document as fallback.
 StateInterpolation is required for this test.
Expected Behavior: The output is self-describing.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116"
 src="test-09-statesrc-state.xml">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <text dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20forty-two" />
 </seq>
 </body>
</smil>

test 10 - state element boundary conditions

<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: March 12, 2008
Chapter: SMIL 3.0 State
Module: UserState
Feature: state element with src attribute and inline state document
File Name: test-10-statesrc-override.smil
Description: Test that the external state document overrides the inline
one.
 StateInterpolation is required for this test.
Expected Behavior: The output is self-describing.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116"
 src="test-10-statesrc-state.xml">
 <data xmlns="">
 <foo>42</foo>
 </data>
 </state>
 </head>
 <body>
 <seq>

 67

http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

 <text dur="5s"
 src="data:,the%20number%20{foo}%20should%20be%20twenty-four" />
 </seq>
 </body>
</smil>

test 11 - events
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: January 22, 2008
Chapter: SMIL 3.0 State
Module: UserState
Feature: expr attribute
File Name: test-11-statechanged.smil
Description: Tests stateChanged event. Seeing something longer than ex-
pected
 means some expected event did not fire, seeing something shorter
means
 some event fires too often.
 Requires UserState.
Expected Behavior: You should see two 5-second self-explanatory texts.

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state xml:id="mystate"
 language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <data xmlns="">
 <foo>0</foo>
 <bar>0</bar>
 </data>
 </state>
 </head>
 <body>
 <par>
 <seq>
 <setvalue begin="5s" ref="foo" value="42"/>
 <setvalue begin="5s" ref="bar" value="43"/>
 <setvalue begin="5s" ref="foo" value="44"/>
 <setvalue begin="5s" ref="bar" value="45"/>
 </seq>
 <seq>
 <text
src="data:,you%20should%20see%20this%20from%20begin%20to%205%20seconds"
 end="mystate.stateChange(foo)" />
 <text
src="data:,you%20should%20see%20this%20from%205%20to%2010%20seconds"
 end="mystate.stateChange(//*)" />
 <text
src="data:,you%20should%20see%20this%20from%2010%20to%2020%20seconds"
 end="mystate.stateChange(bar)" />
 </seq>
 </par>
 </body>

 68

http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

</smil>

test 12 - xml document generation
<?xml version="1.1"?>
<!--
Copyright: Copyright 1998-2007 W3C (MIT, ERCIM, Keio), All Rights Re-
served. See http://www.w3.org/Consortium/Legal/.
Author: Jack Jansen (CWI)
Version: March 27, 2008
Chapter: SMIL 3.0 State
Module: StateSubmission
Feature: submission and send elements
File Name: test-12-empty.smil
Description: Create a variable in an initially empty state document and
save to file.
Expected Behavior: After running the test there should be a file
 "test-12-empty-out.xml". The contents of this file should be
 identical to "test-12-empty-out-correct.xml" (modulo whitespace).

-->
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0"
 baseProfile="Language">
 <head>
 <layout>
 <root-layout width="400" height="100" backgroundColor="white"/>
 </layout>
 <state language="http://www.w3.org/TR/1999/REC-xpath-19991116">
 </state>
 <submission xml:id="subid" method="put"
 action="test-12-empty-out.xml" />
 </head>
 <body>
 <seq>
 <newvalue name="foo" value="42" />
 <text dur="5s"
 src="data:,writing%20xml%20to%20test-12-empty-out.xml" />
 <send submission="subid" />
 <text dur="5s"
 src="data:,write%20to%20to%20test-12-empty-out.xml%20done" />
 </seq>
 </body>
</smil>

 69

http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/ns/SMIL
http://www.w3.org/ns/SMIL
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

 70

Appendix C - Acronyms
CSS Cascading Style Sheet
DISELECT Device Independent Selection
DOM Document Object Model
DSL Domain Specific Language
HTML Hypertext Markup Language
MATHML Mathematical Markup Language
MTAP Multimedia Tools and Applications
RDF Resource Description Framework
RWAB XG Rich Web Applications Backbone Expert Group
SCXML State Chart XML
SMIL Synchronous Multimedia Integration Language
SVG Structured Vector Graphics
SYMM WG Synchronous Multimedia Working Group
URL Universal Resource Locator
W3C World Wide Web Consortium
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT XSL Transformations

 71

