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Abstract 

Schrijver, A., Circuits in graphs embedded on the torus, Discrete Mathematics 106/107 (1992) 
415-433. 

We give a survey of some recent results on circuits in graphs embedded on the torus. Especially 
we focus on methods relating graphs embedded on the torus to integer polygons in the 
Euclidean plane. 

1. Introduction 

We give a survey of some recent results on graphs embeded on the torus. In 
particular we are interested in finding large amounts of pairwise disjoint circuits 
of given 'homotopies' in the graph. As a tool we use a certain relation between 
graphs embedded on the torus and polygons in the Euclidean plane IR 2 • There 
turns out to exist a relation between circuits in graphs on the torus and lattice 
points in such polygons. The methods and results link with convexity theory, 
geometry of numbers, and graph minors. 

In this survey we discuss: a min-max result for the maximum number of 
pairwise disjoint circuits of a given 'free homotopy type' in a graph G on the 
torus (Theorem 1 [14]); a lower bound on the maximum number of pairwise 
disjoint noncontractible circuits in G, in terms of the 'face width' of G (Theorem 
3 [17]); necessary and sufficient conditions for the existence of pairwise 
edge-disjoint closed walks of prescribed free homotopy types, provided a certain 
parity condition holds (Theorem 13 [5]); and a theorem on the existence of large 
'grid' minors, in terms of the face width of the graph (Theorem 29 (6]). 

In this paper, a graph is undirected, and a circuit is a simple closed walk, that 
is, no vertex is traversed more than once. 
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2. Curves on the torus and their intersections 

We first note some well-known facts on closed curves on the torus. Let T be the 
torus, which we identify with the cartesian product S1 x S 1 of two copies of the 
unit circle S 1 in the complex plane IC. A closed curve on T is a continuous 
function C: s1- T. It is simple if C is one-to-one. 

Two closed curves C, D: S 1 ~ T are called freely homotopic if there exists a 
continuous function <P:[O, l]xs 1-T such that <P(O,x)=C(x) and <P(l,x)= 
D(x) for each x E S 1• Free homotopy gives an equivalence relation between 
closed curves on T, denoted by - . 

The following closed curves Cm,n form a system of representatives for the free 
homotopy classes (cf. Baer [1] and Stillwell [21, Section 6.2.2]). Form, n E £., let 
Cm,n: S'-+ T be defined by 

(1) 

So Cm,n goes m times around the torus in one direction, and n times in the 
'orthogonal' direction. Now for each closed curve C on T there exists a unique 
(m, n) E 7-2 such that C - Cm,w There exists a simple closed curve C - Cm,n if and 
only if m and n are relatively prime. 

For any two closed curves C and D on T we define 

er( C, D) : = number of intersections of C and D; 

mincr(C, D) := min{cr(C, D) IC - C, J5 - D}. 

(We count multiplicities.) 

(2) 

It is not difficult to express mincr(C, D) in terms of m, n, m', n' when 

C- Cm,n and D - Cm',n.: 

mincr(Cm,m Cm'.n') = Jmn' - m'nl. (3) 

3. Disjoint circuits in graphs on the torus 

The first result we discuss concerns the existence of disjoint circuits in G of a 
given free homotopy type. Theorem 1 is a special case of a theorem proved in 
(14] for general compact surfaces. Here we give a direct proof for the torus. 

A necessary condition for the existence of k pairwise disjoint circuits of some 
prescribed free homotopy type in a given graph, clearly is that each closed curve 
D on the torus should intersect the graph 'often enough'. This is a "cut 
condition" which turns out to be sufficient. To be more precise, define for any 
graph G embedded on the torus T and any closed curve D on T, 

cr(G, D) :=number of intersections of G and D; 

mincr(G, D) := min{cr(G, D) ID - D}. 

(Again we count multiplicities.) 

(4) 
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Theorem 1. Let G be an undirected graph embedded on the torus T, and let C be 
a simple closed curve on T. Then G contains k pairwise disjoint circuits each freely 
homotopic to C if and only if 

cr(G, D);:;. k · mincr(C, D) (5) 

for each closed curve D on T. 

Proof. Necessity of the condition is trivial. To prove sufficiency, suppose that the 
condition is satisfied. Let k ;:;. 1. 

Consider the torus T as the quotient space of C\{0} by identifying any 
y, z E C\{O} if z =2uy for some integer u. Let x:C\{O}_,. Tbe the quotient map. 
We make this construction in such a way that .n:- 1(C) is the union of a collection 
of pairwise disjoint simple closed curves r; (t e Z) in C\{O}, each enclosing 0. We 
choose indices so that I;+ 1 = 2I; for each integer t. 

The inverse image H := ,.- 1[G] of G is an infinite graph embedded in C\{O}. 
Then each face of H is a bounded subset of C, since otherwise there would exist a 
curve D not intersecting G such that miner( C, D) ;:;. 1, contradicting the 
condition. 

For any curve Pin C\{O}, let cr(H, P) denote the number of times P intersects 
H (counting multiplicities). Now for each integer i, let PA; be the set of faces F of 
H so that there exists an integer t and a curve P such that: 

(i) P starts in a face enclosed by r; and ends in F; 

(ii) x 0 P does not traverse any face of G more than once; 

(iii) cr(H, P) ~ i - kt. 

(6) 

Since by (6)(ii) each P traverses at most f faces of H, where f is the number of 
faces of G, we know that U :!ll; is bounded, for each integer i. 

Clearly, each face F enclosed by r; belongs to <!Jik, (since we can take for P any 
curve remaining in F). Moreover, <lli;+k = 2:!/l;. 

The faces in :!ll; induce a connected subgraph of the dual graph of H, as one 
easily checks. Hence the arcs on the boundary of the unbounded connected 
component of C\U <!A; form a simple closed curve in H, call it "1;. 

Then for each integer i, "1; is enclosed by "1;+v without intersections. This 
follows from the fact that if F belongs to <!A;, then each face F' having a vertex in 
common with Fbelongs to :!ll;+i· Indeed, by definition of <!A;, there exists at and a 
curve P satisfying (6). We can extend P to a curve P' ending in F', by traversing 
a vertex incident with both F and F'. 

If face .n:[F'] of G is not traversed by n°P, then t, P' satisfy (6) with respect to 
i + 1 and F'. If face .n:[F'] of G is traversed by JtoP, we may assume that 
P' = P1 • P2 , so that n ° P2 is a closed curve and so that n ° P, does not traverse any 
face of G more than once. 

Let P2 go from z to zuz for some u e ~- So miner( C, x 0 P2 ) = lu I· Hence 
cr(H, P2) =er( G, n ° P2);:;. ku. Therefore, the curve zu P1 starts in a face enclosed 
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by r;+u and ends in F', and 

i + 1 ;:Jl: kt + cr(H, P') = kt + cr(H, P1) + cr(H, P2) 

;:Jl: kt + cr(H, 2uP1) + ku. 

So the pair t + u, 2up1 satisfies (6) with respect to i + 1 and F'. 

(7) 

Since also L1;+k = 2L1; for each i, it follows that ;r 0 .11 , ••. , n ° ..1k are disjoint 
closed curves in G, each freely homotopic to C. D 

This theorem was extended to directed graphs by Seymour [19] (cf. Ding et al. 
[4]). 

4. Graphs on the torus and norms and polygons in IR 2 

Theorem 1 can be formulated in terms of a certain convex set (in fact, polygon) 
associated with a graph embedded on the torus. Let G be a graph embedded on 
the torus T. Define for each (m, n) E 71..2 

</>0 (m, n) := mincr(G, Cm,n)· (8) 

It is not difficult to see that: 

(i) </Ja(m + m', n + n ').;:; </J0 (m, n) + c/>0 (m', n') and 

(ii) <Po(km, kn)= lkl · </>0 (m, n) 
(9) 

hold for all (m, n ), (m ', n ') E "ll.2 and k E "ll.. (The inequality in (i) follows from the 
fact that if C is freely homotopic to Cm,n and C' is freely homotopic to Cm',n' and 
(m, n) and (m', n') are linearly independent, then Chas a crossing with C'. We 
can concatenate C and C' at this crossing so as to obtain a closed curve C" freely 
homotopic to Cm+m'.n+n' with cr(G, C")=cr(G, C)+cr(G, C'). The equality in 
(ii) is easy.) 

Hence, if each face of G is an open disk, there exists a unique norm ll·lla in IR 2 

with the property that ll(m, n)llc = </>0 (m, n) for each (m, n) E "ll.2. 

Now we can associate with Ga convex set Pa as follows: 

Pa:= {x E 1R 2 I CTX.:;; </>o(c) for each c E "ll.2}. (10) 

So Pa is closed, convex and 0-symmetric. (A set P is 0-symmetric if -P = P.) It is 
standard convexity theory to show that (9) implies that 

max{crxlxePa}=<Pa(c) (11) 

for each C E "ll.2• 

Now Theorem 1 expressed in terms of Pa is as follows. 

Theorem 2. Let G be an undirected graph embedded on the torus, and let 
m, n e "l. Then G contains k pairwise disjoint circuits, each freely homotopic to 
Cm,n if and only if the vector k · (n, -m) belongs to Pa. 

This follows directly from Theorem 1 combined with (3) and (10). 
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5. Nontrivial closed curves 

In Theorem 1 we specified the homotopy type of the disjoint curves to be 
found. We can relax this question by just asking for a large number of pairwise 
disjoint noncontractible closed curves in a graph embedded on the torus. (The 
curves necessarily are all of the same free homotopy type, but we do not 
prescribe it in advance.) 

A closed curve C is called contractible if C - C0,0 • Any other closed curve on 
the torus is called noncontractible or nontrivial. For any graph G embedded on 
the torus T, the face width (or representatiuity) r( G) of G is the minimum of 
er( G, D), where D ranges over all non trivial closed curves on T. 

Theorem 3. (i) Any graph G embedded on the torus contains at least l~r(G)j 
pairwise disjoint nontrivial circuits. 

(ii) The factor ~ is best possible. 

(Here l J denotes the lower integer part of x.) 
Theorem 3 is equivalent to the following theorem in the geometry of numbers 

(cf. Cassels [2], Lekkerkerker [8]). For any compact convex 0-symmetric set Pin 
!Rn let 

A(P) : = min {A I A · P contains a nonzero integer vector}. 

Moreover, for any convex set PE !Rn the polar P* is defined by 

P*: = {x E !Rn I y Tx ~ 1 for each y E P}. 

As is well known, if P is closed, convex, and 0-symmetric then P** = P. 
Now Theorem 3 is equivalent to the following. 

(12) 

(13) 

Theorem 4. (i) For any 0-symmetric compact convex set P in IR 2 one has 
A(P) · J.(P*) ~ ~. 

(ii) The number 1 is best possible. 

For a proof of Theorem 4 we refer to [ 17]. 
We now prove the implications Theorem 4(i) :::>Theorem 3(i) and Theorem 

3(ii) ~Theorem 4(ii). 
To see the first implication, let G be a graph embedded on the torus. Apply 

Theorem 4(i) to P =Pc. The face width r(G) of G is equal to the minimum value 
of 

miner( G, Cm,n) = </>a(m, n) 

taken over all nonzero integer vectors (m, n). Now using (11), 

(m,n)EA·P~ <=> rnax{cTx\xEPa}.s:A. {::> </>c(m,n).S:A 

where c = (m, n). Hence r(G) = A(P;;). 

(14) 
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Therefore, by Theorem 4(i), A(Pd ~ 4/(3r(G)). So (4/(3r(G)) ·Pc contains a 

nonzcro integer vector, say (m, n). Then (3r(G)/4) · (m, n) belongs to Pc, and 

hence also l3r(G)/4j · (m, n) belongs to Pc. Then by Theorem 2, G contains 

l3r(G)/4j pairwise disjoint circuits each freely homotopic to Cn.-m· So G 

contains l 3r( G)/ 4 J pairwise dis joint non trivial circuits. 
This construction also shows that Theorem 3(ii) implies Theorem 4(ii), since 

any better factor in Theorem 4(i) would imply a better factor in Theorem 3(i). 

6. Integer norms and integer polygons 

In the proof above we associated with any graph G on the torus a 0-symmetric 

convex set PG· We show that Pc in fact is a polygon, with integer vertices. This 

follows from a slight extension of a result of Hoffman [7] in integer linear 

programming, which can be derived from the 'cutting plane theorem' of Chvatal 

[3]. 
A polytope is the convex hull of a finite set of vectors. A polytope P is called 

integer if each vertex of P is an integer vector. 

Theorem 5. Let C be a non-empty compact convex set in !Rn. Then C is an integer 

polytope if and only if max{crx Ix EC} is an integer for each integer vector 

c E IR". 

This theorem implies the following. 

Theorem 6. For each graph G embedded on the torus, Pc is an integer polygon. 

Proof. By (11), max{crx Ix E Pc}= </>c;(c) for each vector c E 1..2. Since <J>G(c) is 

an integer, the maximum is an integer for each integer vector c. Hence Theorem 
5 gives Theorem 6. D 

In Section 11 below we show Theorem 25 which implies the following. 

Theorem 7. For each 0-symmetric integer polygon Pin IR 2 there exists a graph G 

embedded on the torus such that Pc = P. 

This theorem enables us to give a proof of the implications Theorem 

3(i) =?Theorem 4(i) and Theorem 4(ii) =?Theorem 3(ii). 

We first_s~ow the first implication. Let P be a 0-symmetric convex body in [R 2 

not _co~tammg any nonzero integer vector. We show A(P) . A(P*) ~ ~- By 

contmmty we may assume that P is an integer polygon and that A(P*) is a 
multiple of 4. 
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By Theorem 7, there exists a graph G embedded on the torus such that Pa= P. 
As above this implies J..(P*) =).(Pi;)= r(G). Hence by Theorem 3(i), G contains 
k := ~A(P*) pairwise disjoint nontrivial circuits. They are all mutually freely 
homotopic, say they are all freely homotopic to Cm,n- Then by Theorem 2, 
k · (n, -m) belongs to Pa, and hence (n, -m) belongs to (1/k) ·Pa. So 
}..(P) =).(Pa)~ l/k = 4/(3).(P*)). 

Again, any better factor in Theorem 3(i) would imply a better factor in 
Theorem 4(i). This gives the implication Theorem 4(ii)::}Theorem 3(ii). 

7. Tight graphs and minimally crossing systems of curves 

We now turn to considering pairwise edge-disjoint circuits. Here the complica­
tion arises that edge-disjoint circuits can cross each other, and hence they need 
not be all of the same free homotopy type. We are interested in the question: 
given a graph G embedded on the torus T and closed curves C1 , .•. , Ck on T, 
under which conditions does G contain pairwise edge-disjoint closed walks 
C1, ••• , Ck, where C; is freely homotopic to C; (i = 1, ... , k)? 

We would like to have an analogue of Theorem 1; that is, we would like to 
have 'cut type' conditions. It turns out that such conditions are sufficient if we 
restrict ourselves to Eulerian graphs. (In this paper, a graph is Eulerian if each 
vertex has even degree. (We do not require connectedness.)) 

Let G = (V, E) be an undirected graph embedded on the torus T, and let D be 
a closed curve on T. In studying the edge-disjoint case we use the following 
number: 

mincr'(G, D) := min{cr(G, D) If> - D, f> does not traverse V}. (15) 

So mincr'(G, D) represents the minimum 'edge cut' capacity, over all cuts freely 
homotopic to D. The analogue of <Pa is the function <P'a: "ll.2~ Z defined by 

<P'a(m, n) := mincr'(G, Cm,,,). (16) 

Again one can show that (if each face of G is an open disk) there exists a unique 
norm ll·ll'a in ~ 2 such that ll(m, n)ll'a= <P'a(m, n) for each (m, n) E"ll.2. Moreover, 
one can define the closed, 0-symmetric, convex set P'a by 

(17) 

The following operation is essential. Let G be an Eulerian graph embedded on 
the torus T. Consider a vertex v, of degree d say. 'Open' the graph at v as in 
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Fig. 1, 

e~d 

(18) 

Fig. I. 

where there are !d - 2 edges connecting the new vertices v' and v". (Note that 
if d = 4, we get a real opening in the graph.) We call any graph H obtained by a 
finite sequence of these operations an opening of G. 

Clearly, if H is an opening of G then P~ c;;; P'c. We call an Eulerian graph G 
embedded on T tight if for each proper opening H of G one has P~ =I= P'c. (By 
proper we mean: we apply the above operation at least once.) 

In [15], tight graphs are characterized in the following way. Let G = (V, E) be 
an Eulerian graph embedded on the torus T. In any vertex v, of degree 2d say, 
order the edges in cyclic order as e1 , ••• , e2d. Call edge ed+i opposite to 
e; at v, for i = 1, ... , 2d, taking indices mod 2d. Call a closed walk 
(v0 , e 1 , v 2 , e3 , v 3 , •.• , e.0 vs) (with v.,. = v0 ) straight if for each j = 1, ... , sedge 
ej- i is opposite at vj to edge ej (taking indices mods). A straight decomposition is 
a decomposition of the edge set E into straight closed walks C 1 , ••• , Ck such that 
each edge of G is traversed exactly once by C 1 U · · · U Ck. Clearly, G has a 
unique straight decomposition, up to reversing closed walks, up to changing the 
starting ( = end) vertices, and up to permuting subscripts. 

Call a system C1 , ••• , Ck of simple closed curves on the torus T minimally 
crossing if 

cr(C, C1) = mincr(C;, Cj) 

for all i, j E {1, ... , k}, i =l=j. 
Now the following holds. 

(19) 
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Theorem 8. Let G be an Eulerian graph embedded on the torus. Then G is tight if 
and only if any straight decomposition of G forms a minimally crossing system of 
simple closed curves. 

For a proof we refer to [15] (where an appropriate extension to general 
compact orientable surfaces is given). Theorem 8 turns out to be useful, since 
minimally crossing systems of simple closed curves satisfy the following property, 
which is not difficult to prove. 

Theorem 9. Let C1, ... , Ck be a minimally crossing system of simple closed 
curves on the torus. Then for any closed curve D on the torus there exists a closed 
curve J5 - D such that 

cr(C;, 15) = mincr(C;, D) 

for all i = 1, ... , k. 

(20) 

So there exists a closed curve 15 that attains the minimum number of crossings 
with all C; simultaneously. 

8. Edge-disjoint closed walks 

The results on tight graphs described in the previous section are helpful in 
obtaining results on collections of edge-disjoint closed walks in graphs on the 
torus. Theorem 9 gives that Theorem 8 implies the following. 

Theorem 10. Let G be an Eulerian graph embedded on the torus T. Then there 
exist pairwise edge-disjoint closed walks Cl> ... , Ck in G such that for each 
closed curve D on T one has 

k 

mincr'(G, D) = 2: mincr(C;, D). (21) 
i=l 

(Note that the inequality ;;;;; in (21) holds trivially for any set of pairwise 
edge-disjoint closed walks in G-the content of the theorem is that we can choose 
C 1, ••• , Ck such that equality holds.) 

Proof. We may assume that G is tight, since if we could open G at some vertex in 
some direction without changing mincr'(G, D) for any closed curve D, we make 
this opening and apply induction. 

Now let Cl> ... , Ck be a stright decomposition of G. We show that (21) holds 
for each closed curve D. By Theorem 8, C" ... , Ck form a minimally crossing 
system of simple closed curves. By Theorem 9, there exists a closed curve 15 ~ D 

such that (20) holds. We may assume that 15 does not traverse any vertex of G. 
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Then we have 

k k 

mincr'(G, D) ~ cr(G, D) = L cr(Ci, D) = L mincr(C, D). (22) 
i=l i=I 

The reverse inequality in (21) being easy, this shows Theorem 10. D 

By surface duality one derives from Theorem 10 the following theorem. Given 
any graph G embedded on the torus T and any closed curve C on T define 

minlength(G, C) := min{Jength(C) IC~ C, C contained in G}. (23) 

Here length ( C) is the number of edges of G traversed by G, counting 
multiplicities. 

Theorem 11. Let G = (V, E) be a bipartite graph embedded on the torus T. Then 
there exist closed curves D1 , ••. , D, on T not intersecting V, such that each edge of 
G is crossed exactly once by D1 U · · · U D, and such that for each closed curve C 
on Tone has 

I 

minlength(G, C) = L mincr(C, Dj)­
j=I 

(24) 

Proof. If each face of G is an open disk, apply Theorem 10 to the surface dual of 
G, and the result follows directly. If G has a face that is not an open disk (but an 
annulus), Theorem 11 can be easily shown directly. D 

By Farkas' lemma ( cf. [12]), Theorem 11 implies a 'homotopic circulation 
theorem', stating that a cut condition is sufficient for the existence of a 
'fractional' solution to the closed walk packing problem (note that if each A.;,j 

below equals 1, we obtain a collection of edge-disjoint closed walks). 

Theorem 12. Let G = (V, E) be a graph embedded on the torus T and let 
C 1, ••• , Ck be simple closed curves on T. Then there exist closed walks CiJ in G 
and rational numbers A;.j > 0 (i = 1, ... , k; j = 1, ... , n;) such that: 

(i) C;J~ Cjfor each i = 1, ... , k and j = 1, ... , n;, 

(ii) ~ L.J A;.j = 1 for each i = 1, ... , k, 
j=I 

k ni 

(iii) 2: 2: A;,jx(C;J, e) ~ 1 for each edge e of G, 
i=l j=I 

if and only if for each closed curve D on T not traversing V one has 

k 

cr(G, D);;;::; L mincr(C;, D). 
i=l 

(25) 

(26) 
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(Here for any closed walk C in G and any edge e of G, x(C, e) denotes the 
number of times C traverses e.) 

Proof. Necessity being easy, we show sufficiency. With Farkas' lemma one can 
show that the C;.i, A;,j as required exist if and only if for each 'length' function 
l: E---'? 'ff.+ one has 

k 

L minlength1(G, C;) ~ L l(e). (27) 
i=l eeE 

Here for any closed curve C, minlength1( G, C) is equal to the minimum value of 
/( C) where C ranges over all C ~ C and where l( C) := l:eeE l(e)x( C, e ). In fact, it 
is not difficult to see that we may restrict ourselves to functions l that take positive 
even integer values. 

To show (27), let l be a positive even integer valued function on E. Replace 
each edge e by a path of length l(e). (That is, l(e) -1 new vertices are 'inserted' 
on e.) This way we obtain a bipartite graph H, to which we apply Theorem 11. 
Let D1, ••• , D, be the closed curves found. So D1 U · · · U D, intersects any edge e 
of G exactly l(e) times. Hence we have 

I I k 

L l(e) = L cr(G, Dj) ~ L L mincr(C;, DJ 
eeE j=l j=l i=I 

k I k 

= L L mincr(C;, DJ= L minlength1(G, C;), (28) 
i=l 

thus proving (27). D 

From this fractional theorem it is derived in [5] that in fact an integer solution 
exists if the following parity condition holds: 

for each closed curve D on T, not intersecting vertices of G, the 
number of crossings of D with edges of G, plus the number of 
crossings with C1 , .•• , Ck is an even number. (29) 

One easily checks that the parity condition implies that G is Eulerian. 

Theorem 13. Let G = (V, E) be a graph embedded on the torus T, and let 
C1 , ••• , Ck be simple closed curves on T, such that the parity condition holds. 
Then there exist pairwise edge-disjoint closed walks C'i .... ' ck in G (not 
traversing any edge more than once) so that C; ~ C; (i = 1, ... , k) if and only if 

the 'cut condition' 

k 

cr(G, D) ~ L mincr(C;, D) (30) 
i=l 

holds for each closed curve D on T not traversing V. 



426 A. Schrijver 

(We do not require the C; to be simple-they may have self-intersections at 
vertices of G. It can be shown that the parity or the simple-ness condition cannot 
be deleted.) 

For a proof we refer to [5]. 

9. Closed curves and polygons 

We will now show that the results above can also be used in deriving the 
existence of certain minors in graphs embedded on the torus. To this end it is 
convenient to associate polygons also with systems of curves. For any closed 
curve C on the torus T define <f>c: 2 2 ~ 'll.. by 

<f>c(m, n) : = miner( C, Cm,n) 

for (m, n) E 2 2 . Moreover, define 

Pc:= {x E 1R 2 I CTX ~ <f>c(c) for each c E 2 2}. 

(31) 

(32) 

It is not difficult to see that Pc is equal to the line segment connecting (-n, m) 
and (n, -m) if c ~ c,,.,.n-

There is the following relation between sums of functions </>c and sums of 
polygons Pc (as usual, P + Q := {x + y Ix E P, y E Q} for P, Q s ~ 2). 

Theorem 14. Let C1 , ... , Ck be closed curves on the torus T. Then 

This can be shown easily using standard convexity theory. 
Let P be any 0-symmetric integer polygon in IR 2 , with vertices z1> ... , z2m, in 

cyclic order (clockwise). So Zm+i = -z; for i = 1, ... , m. Let Y; := Z;+i - Z; for 
i = 1, ... , 2m, taking indices mod 2m. Let P; be the line segment connecting !y; 
and - !y;. Then it is elementary plane geometry to show that 

(34) 

Now if !y; is an integer vector, there exists a closed curve C; such that P; = Pc; 
(viz. the closed curve Cm.n if !y; = (-n, m )). Hence we have the following. 

Theorem 15. Let P be a 0-symmetric integer polygon in IR 2 such that for each two 
vertices z, z' of P the vector z - z' has even components only. Then there exist 
simple closed curves Cl> ... , Ck on the torus T such that P =Pc,+·· · + Pck· 
These closed curves are unique up to permuting indices and up to reversing closed 
curves. 
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Proof. To obtain the simple closed curves, we write each hi above as s · y;, 
where sis an integer and where y; has relatively prime integer components. Then 
we takes copies of Cm,n where m, n are such that y; = (-n, m ). 

Uniqueness follows from the fact that the decomposition (34) is unique, up to 
trivial operations. 0 

This theorem implies that a system of simple closed curves C 1 , ••• , Ck is 
determined by Pc,+· ··+Pc.· This gives the following theorem. 

Theorem 16. Let C1, ... , Ck and c;, ... , C~. be simple closed curves on the 
torus T. Then the following are equivalent: 

(i) k = k' and there exists a permutation n of {l, ... , k} such that C~(i)- C; or 
C~ul - Cj 1 for each i = 1, ... , k; 

(ii) for each closed curve D on T one has 
k k' 

2: mincr(C;, D) = 2: mincr(C;, D). (35) 
i=l i=l 

Proof. The implication (i):::} (ii) being trivial, we show (ii):::} (i). If (35) holds for 
all D, then </>c, + · · ·+</>c.= <l>ct + · · · + </Jq., and hence Pc,+· ··+Pc.= Pq + 
· · · + P Ck·· By the uniqueness of the decomposition (35) the theorem follows. D 

This theorem was shown for general compact orientable surfaces in [13]. 
Moreover, it was shown in [16] that the following is true. 

Theorem 17. Let C1 , ••• , Ck and c;, ... , C~ be two minimally crossing systems 
of simple closed curves on the torus T, such that Ci - c; for each i = 1, ... , k and 
such that C 1 U · · · U Ck and c; U ···UC~ form 4-regular graphs. Then 
C1 , ... , Ck can be moved to c;, ... , c~. by repeated application of the operation 
shown in Fig. 2. 

(36) 

Fig. 2. 

This jump is similar to the type III move given by Reidemeister [10]. 

10. Tight graphs and polygons 

Theorem 14 implies that Theorem 10 is equivalent to the following. 
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Theorem 18. Let G be an Eulerian graph embedded on the torus T. Then the 
edges of G can be decomposed into closed walks C,, ... , Ck such that 
P~, = Pc1 + · · · + Pck· 

Similarly, Theorem 13 is equivalent to the following. 

Theorem 19. Let G be a graph embedded on the torus T and let C1, ••• , Ck be 
simple closed curves on T such that the parity condition holds. Then G contains 
pairwise edge-disjoint closed walks C\, ... , ck (not traversing any edge more than 
once) such that C; ~ C;for i = 1, ... , k, if and only if Pc,+· · · + Pck ~ P'c. 

Another consequence is the following. 

Theorem 20. Let G and H be 4-regular tight graphs. Then P'c = P~ if and only if 
H can be obtained from G by repeated application of the operation (up to shifting 
the graph over the torus) shown in Fig. 3. 

r s r s 

w t w t 
(37) 

v u v u 

Fig. 3. 

Proof. Sufficiency is easy, since the operation given does not change P~,. To see 
necessity, let C1 , •.• , Ck and c;, ... , C~. be straight decompositions of G and 
H, respectively. Then by Theorems 8 and 10, 

Pc 1 + · · · + Pck = P'c = P~ =Pei+· · · + P~, .. (38) 

So <Pc1 + · · · + ef>ck = </>er+ · · · + cpq,, and hence by Theorems 16 and 17 we can 
shift C 1 , ••• , Ck to c;, ... , C~. by steps as in (36). Hence G can be moved to H 
as in (37). 0 

We also have the following directly from Theorem 15. 

Theorem 21. Let P be a 0-symmetric integer polygon in lR 2 such that for each two 
vertices z, z' one has that z - z' has integer components only. Then there exists a 
tight graph G such that P = P'c. This graph is unique up to the operation (37). 
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11. Kernels 

Let G be a graph embedded on the torus T. A minor of G is any graph 
obtained from G by a series of deletions and contractions of edges (contracting 
loops only if they enclose a face). Any minor of G has a natural embedding on T 
derived from the embedding of G. If we fix the embedding of the minor this way, 
we speak of an embedded minor. A minor is proper if at least one edge is deleted 
or contracted. 

Clearly, if H is an embedded minor of G then Pus::: Pc;. Call a graph G 
embedded on the torus Ta kernel if for each proper embedded minor H of G one 
has PH =I= P0 . 

There is a close connection between kernels and tight graphs, through the 
concept of medial graph, introduced by Steinitz [20] and in reverse form by Tait 
[22, 23]. Let G be a graph embedded on the torus T. Put a new vertex w(e) in the 
'middle' of each edge e of G, and connect, for each vertex v of G the points 
w(e) for those edges e incident with v, by a new circuit as in Fig. 4. 

w(ek-1) 

' \ 
I 

• v 

Fig. 4. 

(39) 

Doing this for each edge and vertex, the new vertices and new edges form a 
graph, the medial graph M(G) of G. (It is unique up to shifting over T.) The 
medial graph M ( G) is 4-regular. If H = M ( G), we say that G is a radial graph of 
H. Note that the radial graph is unique up to surface duality (and shifting over 
the surface). Each 4-regular graph H embedded on the torus Tso that each face 
is an open disk and so that the faces can be bicoloured, is a medial graph, and 
hence has a radial graph. Note also that each two radial graphs of a cellularly 
embedded graph can be obtained from each other by homotopic shifts and taking 
surface duals. 

Since trivially 2mincr(G, D) = mincr'(M(G), D) we have 

</>~(G) = 2</>0 and hence P~(G) = 2Pc;. (40) 

Now one has the following. 

Theorem 22. Let G be a graph embedded on the torus. Then G is a kernel if and 
only if the medial graph M( G) is tight. 

Proof. Observe that the two types of opening a vertex of M(G) correspond to 
deletion and contraction. Then by ( 40) the theorem follows. D 

Theorem 22 combined with Theorem 20 gives the following. 
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Theorem 23. Let G and H be kernels with Pc= PH. Then H can be obtained from 
G by a series of the following operations: 

(i) shifting the graph over the torus; 

(i) taking the surface dual of the graph; 

(iii) L1 Y-exchange. (41) 

(Here L!Y-exchange means replacing a triangular face F by a vertex in the face 
connected to the three vertices incident with F, or conversely. (This operation 
was introduced by Steintz [20], who called it the 19-process.)) 

Proof. Note that the radial graph is unique up to duality, and that the operation 
(37) in the medial graph M(G) corresponds to L!Y-exchange in G. D 

The extension of Theorem 23 to general compact orientable surfaces is given in 
(16]. For the torus, a stronger statement can be proved (cf. [18]). Let G and H be 
graphs embedded on the torus. We call a graph H a L!Y-minor of G if H arises 
from some embedded minor of G by the operations (41) (maintaining the 
embedding throughout). 

Theorem 24. Let G and H be graphs embedded on the torus, where G is a kernel. 
Then G is a L!Y-minor of H if and only if Pc£;;; PH. 

Proof. Necessity of the condition is easy, since Pa is maintained under the 
operations (41), while Pa£;;; PH if G is a minor of H. 

To see sufficiency, assume Pa£;;; PH· We assume that each face of His an open 
disk (in particular, H is connected)-if this is not the case we can derive the 
theorem quite directly from Theorem 2. Let M(G) and M(H) be the medial 
graphs of G and H respectively. Since G is a kernel, M(G) is tight, and hence the 
straight decomposition of M( G) is a minimally crossing system of simple closed 
curves D 1, ••• , Dk. 

Then P0 , +···+Po.£;;; P;.,,(Cl = 2 ·Pa£;;; 2 ·PH= P;.,,(H)· Hence by Theorem 19, 
M(H) contains closed curves v;, ... , D~. so that no edge of G is traversed more 
than once, and so that v; - D; for i = 1, ... , k. (The parity condition can be 
easily checked.) 

It is not difficult to see that we may assume that D;, ... , D~ form a minimally 
crossing system of simple nontrivial closed curves, traversing each edge of M(H) 
exactly once. 

Now at any 'touching' of two D; and Dj (possibly i = j), we can 'open' the 
graph as in (18). Doing this at each touching we have transformed M(H) to a 
graph M' that is the union of a minimally crossing system of simple closed curves 
D'{, ... , D'k, with Dj'- D! for i = 1, ... , k. Since openings of M(H) correspond 
to deleting and contracting edges of H, M' is the medial graph of some minor H' 
of H. 
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By Theorem 8, M' is tight, and hence, by Theorem 22, H' is a kernel. By (40), 
Pw = !P~(H') = !P~ca> =Pa. Concluding, by Theorem 23, H' arises by opera­
tions (41) from G. So G is L1Y-minor of H. D 

This theorem states that for each 0-symmetric integer polygon P there exists a 
unique minor-minimal graph among all graphs G with P 0 2 P-unique up to the 
operations (41). This is more general than Theorem 23, which states that there 
exists a unique minor-minimal graph among all graphs G with Pa= P. 

Finally we note that the above also implies the following. 

Theorem 25. Let P be a 0-symmetric integer polygon in IR 2• Then there exists a 
kernel G such that P =Pa. This graph is unique up to the operations (41). 

Proof. By Theorem 21, there exists a tight graph M such that P~ = 2P. We can 
move the curves making M slightly so as to make it 4-regular. Since each vertex 
of P has even integers as components, we know that M is the medial graph of 
some kernel G. Then 2P = P~(G) = 2P0 • Uniqueness follows directly from 
Theorem 23. D 

In particular we have Theorem 7. 

12. Grid minors 

We describe a consequence of the results described in Sections 9-11 to 
'toroidal grids' given in [6]. Let k ~ 3. The product Ck x Ck of two copies of the 
k-circuit Ck is called the toroidal k-grid. Clearly, the toroidal k-grid can be 
embedded on the torus, in fact in a unique way, up to homeomorphisms of the 
torus and of the grid. 

Let H be the embedding of Ck x Ck on the torus, consisting of k disjoint 
circuits freely homotopic to C1,0 crossed by k disjoint circuits freely homotopic to 

Co,1· 
Then His a kernel (as its medial graph M(H) is tight, as is easy to check with 

Theorem 8). Since it is self-dual and does not allow L1 ¥-exchange (as all vertices 
have degree 4 and each face is bounded by 4 edges), Theorem 24 implies the 
following. 

Theorem 26. Let G be a graph embedded on the torus. Then G contains Has an 
embedded minor if and only if P0 contains (k, 0) and (0, k). 

Proof. This follows directly from Theorem 24, since PH is the convex hull of 
±(k, 0) and ±(0, k). D 



432 A. Schrijver 

By Theorem 2, Theorem 26 is equivalent to the plausible statement: a graph G 
embedded on the torus contains H as an embedded minor, if and only if G 
contains k pairwise disjoint closed curves each freely homotopic to C1.o and G 
contains k pairwise disjoint closed curves each freely homotopic to C1.o· (We do 
not have a direct proof of this statement.) 

Theorem 26 directly gives the following. 

Theorem 27. Let G be a graph embedded on the torus, and let k ~ 3. Then G 
contains a toroidal k-grid as a minor if and only if (1/ k)Pa contains two linearly 
independent integer vectors. 

Proof. Directly from Theorem 26. D 

We apply this theorem as follows. Robertson and Seymour [ 11] showed 

for each graph H embedded on a compact surface S there exists 
an integer PH so that each graph G embedded on S with rG) ~PH 
contains H as a minor. 

The following is shown in [6]. 

(42) 

Theorem 28. Each graph G embedded on the torus T contains a k x k grid as a 
minor, with k: = l~r( G)J. The factor ~ is best possible. 

In fact, in [6] it is shown that for each fixed r(G)~5 the number l~r(G)J is 
best possible. Since each graph embedded on the torus is obviously a minor of 
some toroidal grid, Theorem 28 implies (42) for the torus. 

Theorem 28 again is equivalent to a result in the geometry of numbers. For any 
0-symmetric compact convex set P in ~n and i = 1, ... , n one defines: 

A;(P) := min{A I).· P contains i linearly independent integer vectors}. (43) 

So A1(P) = A(P). Then (see [6]) we have the following. 

Theorem 29. For each 0-symmetric compact convex set P in !R 2 one has 
Ai(P) · J.. 1(P*) ~ ~- The number~ is best possible. 

Similarly to the equivalence of Theorems 3 and 4 one sees (using Theorem 27) 
the equivalence of Theorems 28 and 29. 
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