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Abstract
One of the most important emerging developments for improving the user/computer interface
has been the addition of multimedia facilities to high-performance workstations. Although the
mention of multimedia I/O often conjures up visions of moving images, talking text and elec-
tronic music, multimedia I/O is not synonymous with interface bells and whistles. Instead,
multimedia should be synonymous with the synchronization of bells and whistles so that
application programs can integrate data from a broad spectrum of independent sources
(including those with strict timing requirements). This paper considers the role of the operat-
ing system (in general) and UNIX (in particular) in supporting multimedia synchronization.
The first section reviews the requirements and characteristics that are inherent to the problem
of synchronizing a number of otherwise autonomous data sets. We then consider the ability of
UNIX to support decentralized data and complex data synchronization requirements. While
our conclusions on the viability of UNIX for supporting generalized multimedia are not
optimistic, we offer an approach to solving some of the synchronization problems of mul-
timedia I/O without losing the benefits of a standard UNIX environment. The basis of our
approach is to integrate a distributed operating system kernel as a multimedia co-processor.
This co-processor is a programmable device that can implement synchronization relationships
in a manner that decouples I/O management from (user) process support. The principal
benefit of this approach is that it integrates the potential of distributed I/O support with the
standardization provided by a ‘‘real’’ UNIX kernel.

1. Introduction

One way of measuring progress in computer architectures is to study the evolution of the
user/computer I/O interface. Ten years ago, the departmental minicomputer provided a dumb
terminal and the occasional intelligent peripheral input or output device as the standard for
user/computer interaction. Five years ago, the microprocessor-based personal workstation
replaced the dumb terminal with a keyboard, a mouse and a high resolution bit-mapped
display, as well as a network connection for accessing files and remote I/O devices.
Currently, RISC-based workstations embody the standard of modern I/O support, adding 8-bit
color displays, local disks, large main memories and a local I/O bus to the user’s desktop.
During this ten-year period, many of the implementation details of the user/computer inter-
face have changed, providing faster generation and presentation of information through vastly
increased processor speed, improved realism through special-purpose output technology, and
(to a lessor extent) improved information precision through the use of enhanced data input
facilities. Throughout this period, however, the fundamental user/computer I/O model has
remained unchanged: information is first collected from one or more disjoint input sources,
then transformed and filtered by a controlling application, and then passed on to one or more
disjoint output destinations. The selection of I/O devices has also remained relatively static
during the past decade, with input coming primarily from text- and pointer-based devices and
output going to text- and picture-based devices.

While the expressive nature of the user/computer interface has seen little development
during the past decade, it appears that its next evolutionary step will provide a fundamental
change in the types of information that can be processed. The essence of this change is the
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introduction of temporal relationships among data sets. Consider that new workstations
already provide the user with device-level access to DAT-quality stereo sound, 24-bit color
images and live video input and output facilities. Taken alone, the independent manipulation
of each separate information medium does not provide anything particularly new. Taken
together, however, the integrated manipulation of this ‘‘multimedia’’ information provides
the potential for dynamically creating new, user-directed composite data sets. (A review of
the characteristics that can be expected from future multimedia workstations is provided in
[1].) Unfortunately, the technology aspects of the user/computer interface have evolved more
rapidly than the operating systems and programming languages interfaces for supporting
dynamic temporal data relationships. As a result, it is clear that the essential problem of mul-
timedia is not simply providing I/O support for sound and video. Rather, the essential prob-
lem of multimedia is that support must be provided for synchronizing otherwise autonomous
data transfers within and across workstations.

To appreciate the scope of the multimedia support problem, consider that the develop-
ment of programming languages, application-programmer interfaces, operating systems and
device controllers have all been based on a model of user/computer interaction that treats I/O
activity as a series of unrelated data movement operations on a set of independent (device)
files. The UNIX1 operating system is a good example of how I/O is currently managed. Here,
each I/O request is passed to a device driver layer within the UNIX kernel; this layer is
responsible for scheduling (possibly buffered) device transfers in such a way that the applica-
tion in presented with a uniform sequential I/O model. The driver usually does not interpret
any of the the data it is moving, leaving the coordination of multiple I/O operations within a
process to the application layer. Since each driver is designed to manage activity within one
device queue, low-level coordination of multiple resources is left to a first-come, first-serve
contention strategy or to individual characteristics of the underlying hardware architecture.
As a result of the UNIX I/O model, there is no way for an application to request coordinated
input from multiple devices as an operating system primitive action, there is no way for the
operating to conveniently coordinate separately specified I/O actions, and there is no way for
a device controller to know how to effectively schedule itself in cooperation with other I/O
devices. The situation becomes even more complicated when the sources and/or destinations
of information are located on different workstations in a network. Here, no amount of ad hoc
operating systems hacking will provide a comprehensive model for the synchronization of
distributed time-based data.

In this paper, we consider the impact of supporting multimedia synchronization in a
UNIX environment. (We use UNIX as a model for study because of it is representative of the
types of operating environments that a multimedia user can expect to encounter.) We begin
with a study of the scope of the problem by discussing two classes of multimedia data
models: multimedia data location models and multimedia data synchronization models. We
then consider these models in terms of the processing hierarchy provided by UNIX to see if
UNIX is ‘‘multimedia ready’’. In so doing, we concentrate on current workstation-based
user/computer I/O in local and distributed environments. We conclude by offering an alterna-
tive approach that we are studying as part of the CWI/Multimedia project [2,3] to better sup-
port distributed multimedia applications; this approach seeks to combine the benefits of pro-
viding a standard UNIX user interface model for common applications use with a co-equal
distributed I/O subsystem that can be scheduled to implement multimedia data synchroniza-
tion across a network of workstations.
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1 UNIX is a registered trademark of AT&T/USL in the United States and other countries.



2. Two Models of Data Interaction in Multimedia Systems

The broadest notion of multimedia encompasses the integration of arbitrary spatial and tem-
poral data sets to encode and/or present information. In defining general support for this
integration, it is important to model two aspects of information interaction. The first model
defines the allowable data location relationships that exist among information sources and
destinations; the second model defines the allowable synchronization relationships that exist
among data sets. Both of these models are considered in the following sections.

2.1. Multimedia Data Location Models

The location of multimedia information determines the amount of operating systems support
that is required to gather and route scattered data. Figure 1 reviews four general models that
can describe the sources and destinations for multimedia information.

a) Local single source. This model has all data originating at a single source and routed to
several destinations. An example is a CD-ROM that contains sound, text and picture
information. This model provides the least synchronization complexity because all
intra-sample synchronization is the responsibility of the source material designer.
Inter-sample synchronization is implemented by fetching input blocks at a predefined
rate and then routing them (by either the device controller, the operating system kernel
or the application) to one or more output devices.

b) Local multiple sources. This model is similar to (a), except that source data is scattered
across several devices. An example of this type of interaction is combining voice anno-
tation with images in an electronic slide-show. The principal difference between single
and multiple source data is the need for external (to the data) synchronization among the
data streams.

c) Distributed single source. In this model, we assume that a single source of information
exists that is located on a remote location relative to the workstation managing the
user/computer interface. The single-source nature of data means that no multi-stream
synchronization is necessary but that the remote location of the data will require com-
pensation for transfer delays.

d) Distributed multiple sources. This is the most general model of data location. Informa-
tion may be gathered from many sources on many workstations, and destinations may
also be spread over several places. Synchronization problems include I/O scheduling
across a set of workstation, transfer delays across several connections and processing
delays at one or more sites.

The central issue in supporting the various location models is determining where synchroni-
zation is implemented in a system’s processing hierarchy. (The hierarchy is: application
code, operating systems code, device controller.) In the local single source model, the choice
depends on the input sampling rate of the data. In the local multiple source model, the
required synchronization can be placed in either user application code or within the operating
system kernel; synchronization at the user level will yield more flexibility while synchroniza-
tion at the kernel level will yield better performance. In the distributed single source model,
the transfer-based synchronization can be accomplished by buffering data at the source or the
destination; note that whatever option is used, data control is distributed over at least two
kernels—the sending and receiving—as well as several protocol layers and at least one user
layer. The distributed multiple source mode is the most interesting because it combines
aspects of synchronization problems with transfer delays and raw information scheduling.
The impact of data location on the processing hierarchy for UNIX systems will be discussed
in detail in section 3, after we first consider exactly what we mean by synchronization.



2.2. Multimedia Data Synchronization Models

Regardless of the location of data, the data itself can contain synchronization information
(that is, it can be self-synchronizing) or it may require synchronization through an external
mechanism. The illustration in figure 2 can be used to get an intuitive feel for the general
synchronization relationships that can exist among multimedia data streams. In this picture,
we define five information streams that interact to provide a composite multimedia story.
Each stream is made up of a number of blocks of information, with the timing of the presenta-
tion of each block dependent in some way on the presentation of information in other blocks.
The details of the inter- and intra-stream relationships are beyond the scope of this paper.
(Interested readers are referred to [3].) What is important is notion that synchronization con-
cerns cover a broad spectrum. In this section, we consider four aspects that affect the parti-
tioning of tasks among the application software, the OS and the device controller(s). These
are: the basic type of relationship among data streams, the scope of synchronization informa-
tion, the determination of the controlling party in a synchronization relationship, and issues
regarding the precision of synchronization required.

a) Synchronization classes. There are two basic classes of synchronization within a mul-
timedia framework: serial synchronization and parallel synchronization. Serial syn-
chronization requirements determine the rate at which events must occur within a single
data stream; this includes the rate at which sound information is processed, or video
information is fetched, etc. Parallel synchronization requirements determine the relative
scheduling of separate synchronization streams. In most non-trivial multimedia applica-
tions, each stream will have a serial synchronization requirement and a parallel relation-
ship with other streams. Note that a special case of serial synchronization can be defined
as composite or embedded synchronization; in this case, each serial block of data con-
tains information for parallel output streams. In this case, the parallel synchronization
among blocks is embedded in a serial stream.

b) Synchronization scope. We can distinguish between point and continuous synchroniza-
tion. Point synchronization requires only that a single point of one block coincides with
a single point of another. Continuous synchronization requires close synchronization of
two events of longer duration. In general, point synchronization can be managed by the
applications layer while continuous synchronization will need to be managed by a dev-
ice controller or a high-performance, low-overhead portion of the operating system.

c) Synchronization masters. The third distinction regards the controlling entity in a (set of)
stream(s). Sometimes we have two channels that are equally important, but sometimes
one channel is the ‘‘master’’ and the other the ‘‘slave’’. It is also possible that an exter-
nal clock plays the role of the master, either for all of the streams or for a subset of
time-critical ones.

d) Synchronization precision. Finally, there are levels of precision. Stereo sound channels
must be synchronized very closely (within 1 to 0.1 millisecond), because perception of
the stereo effect is based on minimal phase differences. A lip-synchronous sound track
to go with a video movie requires a precision of 10 to 100 milliseconds. Subtitles only
require a 0.1 to 1 second of imprecision. Sometimes even longer deviations are accept-
able (background music, slides). Note that in all cases the cumulative difference
between the channels is what matters, not the speed difference.

In general, the diversity in individual device characteristics makes the level of support for a
combination of media a challenging design issue. Most vendors of current commercial equip-
ment use embedded synchronization that is mapped onto a serial stream of data. As a result,
they need to consider only point-type synchronization scope with a single master device. The



precision is determined by the characteristics of the input source and the system load; most of
the synchronization precision is supported by managing interrupt contention between the
input and output devices. While this approach can lead to dramatic results, it is not sufficient
if the user is to be given more control over the data being processed or if information needs to
be combined from several sources (either locally or from distributed points in a network).

3. The Impact of the UNIX I/O Subsystem on Multimedia Interaction

The previous section has characterized aspects of multimedia information. In this section, we
consider the impact of multimedia information on UNIX (and vice-versa). We begin with a
discussion of data location models and then consider synchronization topics.

3.1. Location Models

As illustrated in figure 3, processing within a typical UNIX system can take place at the fol-
lowing levels: within a physical I/O controller, within the operating system kernel, and within
an application thread and/or process. Processing that occurs within an I/O controller is done
in parallel with other activity in the system. Processing within the kernel is done in system
mode, either in process context (that is, as part of the low-level support activity for a particu-
lar process) or in interrupt context (which is time that is not directly associated with the sup-
port of a particular process’s threads). Processing within at the thread/process level is always
done in user mode in the context of a particular process.

If controller-based I/O processing is supported, then information can be fetched, syn-
chronized and output transparently within a particular device controller. (This assumes that
the device controller can manage all the required data sources and destinations.) Operating
system kernel I/O processing includes the conventional activity of device drivers, both in the
interrupt and the process contexts. Thread/process I/O processing includes all user-level I/O
synchronization. In general, controller I/O is immune from interrupt overhead. Kernel I/O
will be immune from preemption (that is, a process switch resulting from the scheduler’s
determination that a higher priority process became ready to run), but it will typically not be
immune from interrupts. Thread/process I/O is subject to both preemption and interrupts.

We can measure the effectiveness of the UNIX I/O system by considering the impact of
the multimedia location models for each of the types of control considered above:

� Controller-managed I/O. In spite of its potentially attractive performance characteris-
tics, controller-managed I/O can only play a minor role in general multimedia process-
ing. The single benefit of this type of I/O control is that information can be quickly
fetched, synchronized and routed without interference from other system activity.
Unfortunately, since the entire point of providing multimedia services is to give the user
the ability to integrate separate information streams, some measure of ‘‘interference’’
beyond start/stop/rewind/search will nearly always be required. In terms of our models
of location, controller-managed I/O may be useful for local single source data that is
self-synchronizing, but as soon as any management of separate streams is required, the
limited scope of the controller will restrict its usefulness.

� Kernel-managed I/O. For reasons of performance, kernel-managed I/O can potentially
play a dominant role in providing multimedia support. One example of this is the use of
interrupt context processing to provide high-speed control and routing of incoming data.
Another example is the use of multiplexing device drivers to coordinate the activity of a
number of I/O streams. This model is especially useful for local multiple source data
and (to a lessor degree) with distributed data. Unfortunately, kernel-managed I/O has a
number of severe limitations, the most restrictive of which is that few application



program builders have the option of writing new device drivers to cope with in-kernel
I/O processing. This is especially true for applications that need to share I/O devices
with other applications; in this case, driver modules simply cannot be unlinked and
relinked efficiently enough to provide the flexibility required by several applications.
Note that for distributed data, even in-kernel manipulation of data will be limited by the
fact that there is no cross-kernel buffer sharing possbile among separate UNIX systems.

� Thread-managed and process-managed I/O. Application-based interaction in a multi-
threaded model provides the most general form of support for all types of multimedia
data processing. The application programmer can dispatch as many threads as is neces-
sary to handle each type of data. Unfortunately, there is a cost for this flexibility: perfor-
mance. The non-deterministic scheduling characteristics of UNIX systems make them
unreliable at the thread level for collecting and processing information. To understand
the limitations of processing at the thread level, consider that it takes about 40
microseconds for a 20-mHz processor to switch from user-mode to kernel-mode in exe-
cuting a system call. (This is raw system call overhead; processing time is extra.) This
means that even if we provide a set of device drivers with a great deal of memory to
buffer incoming and/or outgoing data, an application still loses nearly 100 microseconds
just in changing the modes necessary to initiate a data transfer between an input and an
output device. Since each multimedia transfer will typically cause at least three systems
calls for trivial I/O (one for fetching composite data and two for writing it out to two
devices), this overhead can be substantial. Add to this the perilous scheduling situation
that all threads must endure and the fact that at the thread level only limited resource
management facilities exist in UNIX (such as memory locking or explicit control over
kernel buffer management), then the situation at the thread level is not particularly
encouraging.

Our consideration of the impact of data location on performance with the UNIX has concen-
trated on local data location models. The situation is even worse for distributed data, since
here multiple thread layers and multiple kernel layers and multiple controllers must be tran-
sited by data as it moves from one machine to the other. We return to this point in section 4.

3.2. Synchronization Models

While the discussion above focused on the abstract gathering, processing and scattering of
multimedia data, in this section we focus on the particular problems that arise in a UNIX
environment for handling synchronization processing. The primary obstacle here is the UNIX
scheduler. The priority-based scheduling mechanism offered by most kernel implementations
is inflexible in responding to short-term constraints that can occur while synchronizing multi-
ple data streams. This is a consequence of basic UNIX design; even so-called real-time
scheduling classes within recent implementations of UNIX do not provide a user with a great
deal of dynamic scheduling control to respond to transient critical conditions. Although the
scheduler could conceivably be changed, most users will not have this as an option.

In terms of our detailed list of synchronization types, we can make the following obser-
vations about the ability of UNIX to support multimedia processing:

� Synchronization classes: UNIX can do reasonably well in supporting serial synchroniza-
tion of data if the sampling rates are sufficiently low to not cause a burden on the sys-
tem. The block-oriented fetching of data can significantly increase the number of sam-
ples processed by an application, although the limited scheduling control of each thread
will not ensure the constancy required by high-bandwidth devices. For parallel syn-
chronization, the prospects are less promising: the sequential nature of UNIX I/O will



result in either a loss of data resolution or in a limit on the number of parallel tracks that
can be processed. One reason for this is the form of the generic I/O system call; all I/O
is done on a single file descriptor at a time, with separate file descriptors requiring
separate system calls. It may be possible to build multiplexing drivers to combine I/O
on a number of file descriptors, but this will not offer a general solution to most applica-
tions builders. Another possibility may be the development of multi-file I/O system
calls (with particular synchronization semantics defined in the system call argument
list), but even if these were to become accepted by the growing list of standards organi-
zations, most languages would be unable to cope with the notions of parallel I/O
accesses. For the time being, the best one can hope to do is to provide either an
applications-based multi-threaded scheduling solution to parallel stream synchronization
(with all of the performance limitations discussed above) or to rely on smarter controll-
ers to by-pass the CPU altogether.

� Synchronization scope: Of the two types of synchronization scope defined above, point
synchronization can be relatively well managed by the thread level, but continuous syn-
chronization can only be managed if the input and output data rates are sufficiently low.
Once again, the scope of the synchronization is not only restricted by the implementa-
tion concerns of the UNIX I/O system, but also by the ability of applications code to
flexibly access data at a low-enough layer in the system.

� Synchronization masters: the easiest way to support synchronization within a UNIX
environment is to have a master clock regulate the gathering of samples and the
dispatching of samples to various output devices. In order for such a clock to function,
it will need to be able to influence processing in a number of threads in the same way
that real-time clock can influence the scheduling of various real-time processes. (The
problems are, of course, not simply similar, they are identical.) Unfortunately, the level
of real-time support in UNIX systems has never been particularly good. As for peer-
level synchronization, the problems with guaranteed scheduling time under UNIX once
again limit the amount of coordinated processing that can be realistically accomplished.

� Synchronization precision: depending on the level of precision, processing can be imple-
mented at any of the five layers in the UNIX hierarchy. If stereo channels need to be
synchronized, then it can only occur at the controller or interrupt level (unless the data
need only be resynchronized at a much lower rate). If, on the other hand, subtitles need
to be added to a running video sequence, then this can easily be done at the thread level.

The general dilemma of processing multimedia data remains that those applications requiring
the most processing support are probably the least likely to get it in a general UNIX environ-
ment. This is not really surprising: manufacturers of high-performance output devices (such
as graphics controllers or even disk subsystems) have long realized that the only way to really
improve over-all system performance is to migrate this processing out of the UNIX subsys-
tems. Unfortunately, doing so is difficult for multimedia applications, since the type of pro-
cessing required over a number of input and output streams is usually beyond the scope of the
implementation of any one special-purpose I/O processor.

3.3. Is UNIX Multimedia Ready?

The discussions in the preceding sections can lead us to two initial conclusions:

(1) The fastest and most responsive layers in the UNIX I/O hierarchy are the device con-
troller and the interrupt layers; these layers enjoy high-priority scheduling and can be
invoked with relatively little overhead. In terms of processing efficiency, it can be
argued that once you reach either the normal kernel or thread/process layers, it is



probably too difficult to provide efficient and deterministic multimedia processing.

(2) It can be assumed that for all but the most trivial types of fetch-and-deposit mul-
timedia operations, it is both desirable and necessary to provide a layer of applica-
tions support to manage the synchronization interactions among the various incoming
and outgoing data streams. (Recall that the entire reason for having computerized
multimedia systems is the measure of control a user can have over the sequencing and
presentation of pieces of data.) This type of processing is ‘‘easily’’ done at the
thread/process layers, it is possible (but often impractical) at the device driver layer, it
is improbable at the interrupt layer and it is usually totally unavailable at the con-
troller layer.

The net effect of these conclusions is that it is desirable to supply a new programmable layer
in the UNIX hierarchy that combine the performance benefits of the existing lower layers with
the flexibility of the existing upper layers. In providing this layer, it is probably not useful to
simply steal cycles from the CPU—doing this is, in effect, only replacing the existing UNIX
scheduler with a semi-real-time one. If we assume that all of the normal services available to
a user must continue in addition to multimedia processing, then some form of co-processing
will be required to satisfy both the UNIX user and the multimedia application.

In the next section, we provide a brief description of an approach being studied at CWI
for providing multimedia applications support. This approach, which is based on a distri-
buted I/O and processing architecture, is a generalization of existing approaches for offering
high-performance graphics and computation processing on a workstation: the special-purpose
co-processor.

4. An Alternative Approach to Providing Multimedia Synchronization Support

Supporting multimedia synchronization on a local workstation requires a balance between I/O
data rates, system scheduling and user interaction control. In a local environment (such as in
the local single source and local multiple source models), it is possible that a combination of
clever implementation techniques, creative kernel hacking and low user expectations can pro-
duce interesting multimedia results. (The wealth of personal computer multimedia applica-
tions prove this to be true.) Unfortunately, for many users, clever kernel hacking is not an
option; they expect to run standard applications on standard systems that exhibit standard (if
not always exciting) functionality. Even if it were possible to modify local UNIX implemen-
tations to improve I/O performance, the result can be the isolation of data and user/computer
functionality just at a time when data sharing across applications in a networked environment
is at the heart of modern computer evolution.

Decentralized data sharing requires a level of communication and coordination that sur-
passes that which can be cleverly added to a single kernel. This coordination may consist of
bandwidth reservation algorithms for efficient network use or intelligent algorithms for infor-
mation transfer. An example of the latter type of algorithm may be a transport-style com-
munications layer that knows to bias its service towards one type of media—such as audio—
at the expense of others—such as video—if bandwidth become limited during a transmission.
If one were to try this in a typical UNIX kernel, then the process and mode switching time
may well be longer than the adaptive period of transmission delay!

In order to address the twin issues of decentralized data sharing and local UNIX stan-
dardization, we have been investigating the development of alternative workstation support
for multimedia synchronization. Figure 4 illustrates the placement of a multimedia co-
processor (MmCP) as a component of a workstation architecture. The MmCP is assumed to
be a programmable device that can be cross-loaded from the master UNIX processor. It is



assumed that the MmCP can execute arbitrarily complex processing sequences, and that it
will have access to all or a part of the workstation’s memory. As with arithmetic co-
processors, a simple interface should exist to control information flow from the UNIX proces-
sor. Unlike normal co-processors, however, we assume that the MmCP will be driven by a
separate distributed operating system that will provide communications support between its
hosting workstation and other workstations in a network environment. This distributed sup-
port (Fig. 4b) will provide for coordination among the various sources and destinations in the
local and distributed location models discussed in section 2.

The development of the MmCP is driven by the following three observations:

(1) It should be clear from the sections above that the general motivation for a pro-
grammable, high-performance processing layer exists. It may be argued that this
need will be satisfied at the thread/process layer by faster processors, although we feel
that such processors will only stimulate the requirements for even higher processing
rather than satisfying it.

(2) The considerable standardization effort currently being undertaken for UNIX (and
UNIX-like) systems demonstrates the fundamental importance of providing a compa-
tible user interface for running a variety of application programs. While a totally new
operating system could be developed with a better scheduler, a lighter-weight I/O sys-
tem and a more flexible user/system interface, such a system would inevitably need to
be loaded down with a UNIX support layer to gain general acceptance. Other
approaches, such as assuming that UNIX will go on a functionality diet and be
transformed into a lean-and-mean multimedia operating system, have no basis is
recent history; in fact, all recent versions of UNIX have gotten functionally fatter as a
part of the standardization process.

(3) A parallel development that encourages our work is the rapid development of multi-
processor workstation architectures. Although many of these systems are little more
than trade-press rumors, several systems already provide moderate-cost multiproces-
sor workstations coupled with a wide array of input and output subsystems. There is
no inherent reason why these systems can not simultaneously support multiple operat-
ing systems (one or more for the MmCP and the rest for UNIX processing.)

The MmCP provides a reasonable balance between keeping the benefit of nearly fifteen years
of UNIX development and providing new, high performance services for tasks such as syn-
chronization.

If we examine the location models in section two, we can see that the MmCP will prob-
ably achieve the greatest benefit for distributed data. Its impact on controlling local I/O can
also be substantial, however. In fact, one way of viewing the MmCP is as a very intelligent
(and programmable) device controller rather than a second operating system. As far as syn-
chronization support is concerned, mechanisms will be necessary to provide the required
primitives for application program support, but these primitives can be developed in a much
more flexible environment than that of the UNIX kernel.

Our work is currently centered around evaluating the use of the Amoeba operating sys-
tem as the basis for an MmCP [4,5]. Amoeba has two main advantages in our research: first,
it has excellent communications characteristics that appear to make it suitable for light-
weight protocol development; second, it is mature but relatively unused—meaning that it is
still an open, experimental system that is unencumbered by hundreds of users or thousands of
standardization committee members. It should be pointed out that we are investigating bas-
ing our work on Amoeba, not adding multimedia functionality to Amoeba. It is expected that
various tasks that can be performed by the UNIX processors need not necessarily be



duplicated in the MmCP. Also, unlike other operating systems research projects [6,7], we are
not intending to develop a ‘‘micro-kernel’’ as such (that is, a kernel with core services for use
in controlling activity on a workstation), but rather something which could be called a
‘‘nano-kernel’’: a kernel that handles a particular subset of services that can be allocated to
one or more users of on a general workstation. (Figure 5.) In this sense, our work is aimed at
replacing the partitioned intelligence in device controllers with a layer of shared intelligence
at a super-controller level. This has the advantages of providing a full (and standard) UNIX
environment plus a programmable interface layer for high-performance support.

5. Summary

We have attempted to argue that the conventional UNIX environment for workstation
computing—as useful as it is for many applications—may not be idealy suited for high-
performance multimedia computing. Although some of the factors that constrain UNIX are
technology dependent, much of this problem lies with fundamental design issues that were a
part of the original uniprocessor, sequential serial I/O model developed for UNIX in the
1970’s. The approach of the multimedia co-processor that we have presented here is an
attempt to overcome many of these problems without sacrificing the positive aspects of a uni-
form UNIX interface.
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Figure 1: Four location models for multimedia data.
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Figure 2: Synchronization in a composite multimedia document [3].
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Figure 3: Elements of the UNIX processing hierarchy.
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Figure 4: The Multimedia Co-Processor (MmCP).
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Figure 5: Multimedia support using an embedded distributed operating system.


