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Abstract. In the evaluation of recommender systems, the quality of
recommendations made by a newly proposed algorithm is compared to
the state-of-the-art, using a given quality measure and dataset. Validity
of the evaluation depends on the assumption that the evaluation does
not exhibit artefacts resulting from the process of collecting the dataset.
The main difference between online and offline evaluation is that in the
online setting, the user’s response to a recommendation is only observed
once. We used the NewsREEL challenge to gain a deeper understanding
of the implications of this difference for making comparisons between
different recommender systems. The experiments aim to quantify the
expected degree of variation in performance that cannot be attributed to
differences between systems. We classify and discuss the non-algorithmic
causes of performance differences observed.

1 Introduction

The literature on recommender systems shows that offline and online recom-
mender system evaluations may not concur with each other [1,3,6]. This is to
say that recommender systems may behave differently in offline and online eval-
uations, both in terms of absolute and relative performance. This has a serious
implication for recommender system research, because the whole point of offline
evaluation is the assumption that at least the relative performance of recom-
mender systems is indicative of their relative online performance and thus an
important step for selecting algorithms that can be deployed in a live recom-
mendation setting.

Prior literature has pointed out a variety of explanations for the performance
discrepancy between online and offline evaluations [6,7]. First, offline evaluations
can only measure accuracy in a static manner, leaving out the differences between
resulting from actual user behaviour. Naturally, offline datasets provide only
an incomplete and imprecise model of the real world. The abstraction from
user behaviour and context by taking a snapshot of recommendations and user
responses may deviate too much from reality to allow for a valid comparison
between different recommender systems.
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The online evaluation of recommender systems overcomes some of these lim-
itations, because we can observe the actual user’s responses to recommendations
originating from a specific system. A drawback of this setup, however, is the addi-
tional “randomness” in the evaluation process that will have to be accounted for.
As, each recommendation can only be presented to a single user in his or her real
context. The research presented here attempts to improve our understanding of
how to accommodate for this element of chance, and still make the right infer-
ences from the evaluation data obtained in CLEF NewsREEL. To identify factors
that may explain observed performance differences in online recommender sys-
tem evaluation, we conduct experiments using several algorithms, two of which
are distinct instances of the exact same algorithm. We use the experimental
results obtained to quantify the effect of randomness in online evaluation on the
measured performance.

The paper is organized as follows. In Sect. 2, we discuss our approach, followed
by experiments in Sect. 3. In Sects. 4 and 5, we discuss the evaluation results,
and identify explanations for the performance differences observed. Section 6
summarizes the lessons learned.

2 Approach

In 2015, we participated in the Living Lab setting of the CLEF News Recommen-
dations Evaluation Lab (NewsREEL) [4]. CLEF NewsREEL is a campaign-like
online recommender system evaluation, where participants in need of testing
their algorithms are connected with real-life online information portals in need
of recommendation services.

In order to investigate the effect of the online setting on the performance mea-
surement of recommendation algorithms, we devised several simple but effective
algorithms. Among our algorithms, we included two instances of the same algo-
rithm, with the objective to measure the differences in performance that would
have to be attributed to randomness - differences between distinct instances of
the exact same algorithm, deployed in the same online recommendation sce-
nario, during the exact same period of operation. A direct comparison of the
results that should be identical provides us with the opportunity to consider one
instance as the baseline, and obtain a quantitative measure of the performance
difference that can only originate from non-algorithmic factors. By also logging
the recommendation requests, responses, and clicks, we can recreate the recom-
mendation scenario of one algorithm and compare its results to those that would
have been given by the other algorithms. Mixing online and offline evaluation
methods provides a more controlled way of measuring differences between differ-
ent recommender systems, that we can use to estimate the part of the difference
in performance that should be attributed to chance.

3 Experiments

We experimented with five algorithms, all of them modifications of a straight-
forward approach to recommendation based on recency. The Recency algorithm
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takes into account recency and popularity of an item, and it has been shown to
be a strong baseline in previous online evaluations. The algorithmic variations
that we experimented with are listed below.

Recency: This algorithm keeps the 100 most recently viewed items for each pub-
lisher in consideration for being recommended to the user. The most recently
read items are returned in response to a recommendation request. We run two
instances of this algorithm to get a sense of the randomness involved in the selec-
tion of algorithms by the Plista framework [2] and/or clicks on recommendations
by users.

RecencyRandom: Instead of recommending the five or six most recently
viewed items, this approach returns a random selection from the top 100 most
recently viewed items.

GeoRec: The geographical recommender takes the geographical region (states
to be specific) of users and the local category of news items into account when
generating recommendations. We generate two sets of recommendations, one by
the recency recommender and one by a purely geographical recommender. For
the purely geographical recommender, we take the 100 most recently viewed
items and sort them according to their geographic conditional likelihood scores
generated by Eq. 1:

rua,ik = P (cik |gua
) (1)

where cik is a binary corresponding to the local category of item ik and gua

is the state-level geographical information of the user ua, that is, the state the
user belongs to. We combine geographical recommendations with recency recom-
mendations as follows. First, we intersect twice the number of recommendations
requested from the geographic recommender with the requested number of rec-
ommendations from the recency recommender. If the resulting set is smaller than
the number of recommendations requested, we append half − 1 items from the
geographic recommender and another half + 1 from the recency recommender.

GeoRecHistory: This modification of the GeoRec recommender excludes items
that the user has already visited from recommendation.

We have run recommendation systems that implement these algorithms over
a period of 86 days, between April 12th and July 6th, with one exception; the
RecencyRandom algorithm was started 12 days later, on April 24th.

4 Results and Analysis

We present two types of performance scores: cumulative and daily click-through
rates (CTR). The cumulative CTR is presented in Table 1. We see that the
performance differences are small. If we would rank the algorithms based on their
performance, however, we see that the GeoRec recommender leads, followed by
Recency and GeoRecHistory. Figure 1 shows the performance measurements by
day, for the first 53 days. Figure 2 shows cumulative CTR as a function of the
number of days, for the same period.
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Table 1. Live performance of the five algorithms

Algorithms Requests Clicks CTR(%)

Recency 56,350 478 0.85

Recency2 53,863 420 0.78

GeoRec 54,338 470 0.86

GeoRecHistory 47,001 395 0.84

RecencyRandom 39,616 283 0.71

Fig. 1. The daily CTR performances of the five algorithms

From the daily (Fig. 1) and cumulative (Fig. 2) plots, we see that the per-
formance measurements vary considerably. In the cumulative plot, we see that
the results for Recency and Recency2 differ considerably during a large part of
the evaluation period, although, eventually, converging to a stable situation. If
one were to continuously monitor the measured performance of the two algo-
rithms, one might easily conclude (wrongly) that the Recency algorithm is a
better approach to recommendation than Recency2.

When observed for a period that is too short, we need appropriate tools
to help differentiate the identical recommender systems from their competitors.
Imagine for example an experimenter peeking at the experiments every day,
to make a decision to choose the best among the competing algorithms. How
many times would the experimenter declare statistically significant differences
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Fig. 2. The cumulative CTR performances of the five algorithms as they progress on
a daily basis

between the different algorithms? To compute statistical significance, we used
Thumbtack’s Abba, a test for binomial experiments [5]. We examined this by
using two baselines: the random recommender (RecencyRandom) and Recency2.
The results when using the RecencyRandom recommender as a baseline are given
in Table 2. Similarly, the results for the baseline of Recency2 are given in Table 3.
We see that, when RecencyRandom is used as the baseline, Recency, GeoRec and
GeoRecHistory achieve significantly different performance for a majority of the
days tested. With Recency2 as the baseline, we see that these percentages are
lower; the difference with Recency is considered significant according to the test
on two days (perhaps surprising, but a percentage that is in line with the p-value
chosen).

The two instances of the same algorithm show large enough differences in
performance that there is a chance of concluding one is better than itself. This
observation raises questions regarding interpreting the results of the evaluation;
it is not so easy to conclude that one algorithm is better than another one based
on just an observed difference in performance, even if a statistical test supports
that decision. Given the dynamic nature of user-item interactions and the result-
ing differences in the particular settings that the algorithms operate in, we should
be careful when interpreting a small but seemingly significant performance dif-
ference. Recommendation evaluations that involve user-item interactions must
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Table 2. Statistical significance over the baseline of RecencyRandom. Bracket results
are obtained by a recent run.

Algorithm Days of significance Percentage (%)

Recency 20 27.4

GeoRec 41 56.2

GeoRecHistory 42 57.5

Table 3. Statistical significance over the baseline of Recency2.

Algorithm Days of significance Percentage (%)

Recency 2 2.7

GeoRec 25 34.3

GeoRecHistory 26 35.6

account for some level of randomness, and perhaps a more strict level of statis-
tical significance should be considered than the commonly used 5 %.

5 Causes of Performance Differences

We have seen above that the two instances of the same algorithm can achieve
statistically significant difference in performance in an online setting. This is
indicative of the extent of performance difference that can arise due to non-
algorithmic factors. The two instances of the same algorithm receive different
user-item interactions from the evaluation framework. Although they operate in
the same recommendation setting, the users and items that they deal with create
a unique setting for each instance. We distinguish three types of non-algorithmic
factors that may cause the differences in performance: (1) operational differences
in the evaluation framework, (2) differences in user-item pairs for which recom-
mendations have been observed, and (3) remaining differences that we consider
randomness.

5.1 Operation Causes

By non-algorithmic operational causes, we refer to decisions in the evaluation
framework that could affect the observed performance of the recommender sys-
tems evaluated. Recommendation systems under evaluation are served requests
by a system that distributes the incoming requests in a supposedly “fair” man-
ner. From the perspective of the CLEF NewsREEL participant, fairness of this
process is a matter of faith, and difficult to assess. We know that some publishers
are more likely to trigger clicks on recommendations than others, such that biases
in the distribution of recommendation requests can easily result in performance
differences between the algorithms under evaluation. The approach of assigning
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recommendation requests to participant systems may exhibit an (implicit) bias
with respect to pairing some teams and/or systems with a subset of publishers,
or assigning specific users (e.g., those logged-in) to some teams or algorithms,
or serving a skewed subset of items from specific categories (e.g., political), or a
combination of such factors.

5.2 User-Item Causes

Another source of differences in performance that are not algorithmic could arise
due to differences in the sets of items and users that are assigned to the two
algorithms. Every algorithm under evaluation receives a different subset of all
recommendation requests, resulting in inherent differences in performance if, by
chance, certain user-item interactions are incomparable (which would also render
the measured results incomparable). In the evaluation of information retrieval
systems, for example, it is well known that results obtained on different test
collections cannot be compared directly; here, to some extent, we could consider
the different performance measurements to result from different test collections,
and direct comparison may suffer from the same problems as in the information
retrieval evaluation case.

5.3 Random Causes

We refer to all remaining factors that might cause performance differences as ran-
dom causes, including factors like the user’s mood as well as causes that result
from idiosyncrasies of the particular datasets (settings, in the online case). Imag-
ine an offline setting with two algorithm (algorithm one and algorithm two) and
two datasets (dataset one and dataset two). If on dataset one, algorithm one per-
forms better than algorithm two, but on dataset two the situation is vice versa,
the difference between the performance measurements cannot be attributed to
the difference in users and items.

One of the advantages of running four algorithms at the same time is that
we have datasets that have one big advantage over disparate datasets used for
research and that is that we have their online behavior and performance. These
logs are, therefore, very important to the performance difference that arises as
a result of the random causes in an online setting, as discussed below.

5.4 Overlap in Performance

How can we find out that the random causes (idiosyncrasies of the particular
settings) are having an impact on the performance differences of algorithms? To
measure the effect of artifacts in evaluation data on performance estimates in an
offline setting, we could evaluate two different algorithms on two datasets, and
measure the performance differences between the algorithms on each individual
dataset. The absolute difference between these two differences can be considered
an estimate of the “dataset artifact” on performance. For, if there is no differ-
ence, then the measurements are accurate, and both datasets lead to the same
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conclusions. However, if a difference is observed, then we would seek the cause
for these variations in the differences between the evaluation data. In an online
setting, it is not possible to follow this exact procedure, but it is possible to
quantify a part of this dataset (setting) artifact using a similar method.

Imagine an ideal world where you can run two algorithms simultaneously
in an exactly the same environment for the two algorithms. Users, items, and
time are exactly the same. The only things that differ in this ideal world are
the recommendations responses by the algorithms. Table 4 shows how differ-
ent (similar) the recommendation by other algorithms on the different settings
would be. The scores are the percentages of shared recommendation over the
total number of recommendations. The Table gives two scores for each pair, the
first being the exact similarity per recommendation response both in order and
content (the number given in each table cell), and the other being the set sim-
ilarity per recommendation response (order can vary, given between brackets).
Each cell corresponds to the similarity measured when the algorithm listed in
the column is applied to a dataset constructed from the log obtained when using
the algorithm listed in the row. GeoRec-Recency and GeoRec-Recency2 show
large similarities, which is not surprising since the GeoRec recommender is only
a minor modification of the recency recommender that diversifies its results;
which apparently does not diversify the results very much in practice.

Table 4. Shared recommendations. The score in each cell is the percentage of the
lists that the two recommendations shared, and the second number, between brackets,
is a percentage of the sets of recommendations that the algorithms shared. GeoRec-
Recency2 and GeoRec-Recency show the highest similarities.

Algorithms Recency GeoRec RecencyRandom

Recency 100 85.82(97.96) 0.0(74.11)

Recency2 100 85.79(97.97) 0.0(73.84)

GeoRec 50.99(91.64) 100 0.0(76.18)

RecencyRandom 0.01(73.28) 0.01(73.40) 100

The idealized system described above would enable us to determine, in the
true sense, the algorithm that is the better one; at least, in the evaluation frame-
work in which the algorithms in question are being tested. In practice, such a test
would be an approximation, since it does not account to the many factors that
can cause performance differences. Obviously such an idealized system is hard
to create, but we can create one aspect of that idealized system. That aspect is
the overlap in performance that two algorithms would have if they were to be
run in the idealized system. The overlap in performance is defined in Eq. 2.

SettingAOverlapAB =
ClicksAB

RecommendationsAB
(2)

In Eq. 2, SettingA is the log generated by running algorithm A, and
SettingAOverlapAB is the overlap in performance of algorithms A and B in
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dataset SettingA. ClicksAB and RecommendationAB are counted from inter-
section of recommended items and the intersections of recommended-and-clicked
items respectively of algorithms A and B, when they would be run in an exact
online setting that would generate SettingA. The overlap in performance is the
ratio of the intersection of recommended-and-clicked items and the intersection
of recommended items that two online-deployed algorithms would share if they
were to be run in the idealized system. We use this overlap in performance to
quantify a part of the performance difference as a result of the random causes
by comparing the overlap in performance of two algorithms in two datasets.

To explain how we would obtain the overlap in performance, consider the two
algorithms which we used in the NewsREEL challenge. For each algorithm, we
have logged the recommendation request, recommendation response, and clicks.
If we rerun the other algorithm on the logs of the first algorithm, everything
remains the same except the recommendation responses. By determining to what
extent the recommendations are the same for the two algorithms, and the ratio
of the clicks received by the online-deployed algorithm could also have been
obtained by the competing algorithm running on the logs, we obtain the overlap
in performance. To obtain the overlap in performance of two algorithms in the
idealized system we described, one does not need to run both algorithms online.
Running one algorithm online to obtain logs that form a dataset for evaluation,
and subsequently running the other algorithm on these logs, is sufficient; for,
it is only the overlap of the two algorithms that we are interested, and not the
overall performances of the algorithms.

Difference in Overlap. If we have two online-deployed algorithms and record
both of their logs, we can determine a measure of overlap between the two
algorithms on each of these logs. We call the difference between the two measures
of overlap the difference in overlap, its definition given by Eq. 3. Note that to
compute this difference in overlap, we need to deploy both algorithms and collect
their respective logs. If there are no differences in behavior of these algorithms on
the same logs, this difference would be zero. The difference in overlap therefore
gives us then a measure that quantifies the overall difference in performance that
should be attributed to non-algorithmic causes.

DiffinOverlapSettingASettingB = |SettingAOverlapAB − SettingBOverlapAB |
(3)

Since we have four algorithms that ran during the complete evaluation cam-
paign (excluding GeoRecHistory), we can quantify differences in overlap between
several pairs of algorithms, and, together, these differences in overlap will give us
a clue of the extent to which performance differences between algorithms should
be attributed to chance. In other words, even though the full difference in over-
lap cannot be measured, as we can not create the idealized system where two
different algorithms would receive the exact same recommendation requests for
the exact same user and item combinations, by zooming in on the performance
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Table 5. Difference in overlap of our algorithms. Each entry is obtained by subtracting
overlap in performance in one dataset of two algorithms from their overlap in perfor-
mance in another dataset. GeoRec-Recency2 and GeoRec-RecencyRandom show the
highest overlap difference

Algorithms Recency Recency2 GeoRec RecencyRandom

Recency 0 0 0.001 0.006

Recency2 0 0.026 0.004

GeoRec 0.026

overlap we can still obtain an estimate of the level of non-algorithmic differences
in the evaluation.

To calculate the difference in overlap, we make one assumption, and that is
that we do not take into account the order of the recommended items. If two
algorithms have recommended two lists of the same items, but in different order
and a click happened on the online deployment, we consider a click happened
on the latter too, regardless of the order. Also, the CTR scores were expressed
as percentages before any calculations. We take the absolute value as we are
interested in the magnitude only. The results are presented in Table 5. To help
interpret the Table, the score listed in the cell Recency2-GeoRec corresponds
to the difference in overlap between Recency2 and GeoRec obtained as the dif-
ference between the overlaps in performances of Recency2 and GeoRec when
they ran in two identical online settings (which are represented by the logs of
Recency2 and the logs of GeoRec).

The highest differences in overlap observed are between Recency2 and Geo-
Rec and between GeoRec and RecencyRandom, each equal to 0.026. Given that
GeoRec and Recency are closely related algorithms, and Recency and Recency2
are identical, one would expect that the differences in overlaps of GeoRec-
Recency, and GeoRec-Recency2 should have been the same, and smaller than
the difference in overlap of Georec-RecencyRandom. In an ideal evaluation envi-
ronment, we would expect the difference in overlap to equal 0, because we would
assume that the two settings under which the two algorithms run should affect
the two algorithms in similar ways. Why do the two settings then affect the two
algorithms in different ways? The positive scores of differences in overlap, we
argue, are a results of the idiosyncrasies of the particular settings.

6 Conclusion

We set out to investigate the performance differences in online algorithms. We
employed several algorithms among which were two instances of the same algo-
rithm. We demonstrated that two instances of the same algorithms may diverge,
and occasionally even to the extent of showing statistically significant differ-
ences in performance. The difference in performance seems to indicate that care
must be taken to take into account some degree of randomness in recommender
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systems evaluation that involve users in a live setting, in addition to statistical
significance tests using commonly used statistical significance levels.

We classified and discussed the possible causes of performances differences
between online-deployed algorithms and argued that even in the absence of obvi-
ous causes of performance differences such as operational biases and the selection
of users and items observed in the experiment, performances can vary due to
other artifacts in the data collected. These artifacts will also exist in offline
datasets, but in the online setting, the researcher is much more susceptible to
being mislead by such artifacts, as it involves users and items and their dynamic
interactions. We cannot claim that these artifacts are the sole reason for observed
significant performance differences between two instances of the same algorithm;
and forming an important confounding factor when comparing any two algo-
rithms in general. We may however conclude that we have to take into account
these random biases that can only be smoothed out over a sufficiently long eval-
uation period.

Our results suggest that we should be reluctant in adopting small (statisti-
cally significant) improvements as indicative of real performance differences when
the evaluation involves real world settings, users and items. We have proposed a
new method to quantify the effect of randomness in the evaluation by zooming
in on the differences in overlap of the results obtained from two competing algo-
rithms, that are tested on two settings simultaneously. In future work, we plan
to develop this approach further to help understand the level of randomness that
we should take into account when we compare the performance measurements
obtained in an online experiment, to help improve inferences about the quality
of different recommender systems.
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