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ABSTRACT
Distributed database systems exploit static workload characteristics
to steer data fragmentation and data allocation schemes. However,
the grand challenge of distributed query processing is to come up
with a self-organizing architecture, which exploits all resources to
manage the hot data set, minimize query response time, and maxi-
mize throughput without global co-ordination.

In this paper, we introduce the Data Cyclotron architecture which
addresses the challenges using turbulent data movement through a
storage ring built from distributed main memory capitalizing mod-
ern remote-DMA facilities. Queries assigned to individual nodes
interact with the Data Cyclotron by picking up data fragments con-
tinuously flowing around, i.e., the hot set.

Each data fragment carries a level of interest (LOI) metric, which
represents the cumulative query interest as the fragment passes a-
round the ring multiple times. A fragment with a LOI below a
given threshold, inversely proportional to the ring load, is pulled
out to free up resources. This threshold is dynamically adjusted in
a distributed manor based on ring characteristics and query needs.
It optimizes the resource utilization keeping the average data access
delay low.

The proposed architecture has a modest impact on existing query
execution engines. This is illustrated using an extensive validated
simulation study for the Data Cyclotron protocols. The results un-
derpin their robustness in turbulent workload scenarios as well as
in the TPC-H scenario. Furthermore, we think that using state-of-
the-art network technology, e.g., RDMA, could lead to even more
promising results.

The Data Cyclotron architecture opens a new vista for modern
distributed database architectures with a plethora of research chal-
lenges barely scratched upon.

1. INTRODUCTION
The motivation for distributed query processing has always been

to exploit a large resource pool; n nodes can potentially handle a
larger workload more efficiently than a single node. It has been a
focal area of database research for more than three decades. The
state of the art has evolved from static schemes over a limited num-
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ber of processing nodes to architectures with no single point of fail-
ure, high resistance to network churn, flexible replication policies,
efficient routing protocols, etc. [11, 22, 27]. Their architectural
design is focused on two orthogonal, yet intertwined issues: data
allocation and workload behavior.

Sticky Data. Most architectures are based on the premises that a
node is made a priori responsible for a specific part of the database
using a key range or hash function. The query optimizer exploits
the allocation function by contracting subqueries to specific nodes
or issuing selective data movements and data replication between
nodes. Unfortunately, the optimizer search space increases signifi-
cantly, too, making it harder to exploit resources optimally. Sticky
data calls for a predictable workload to optimally use the system.

Workload Behavior. Workload behavior is, however, often not
predictable. Therefore, an active query monitoring system is needed,
a database design wizard [9, 28, 23] to advice on indices and ma-
terialized views, and followed up with scheduled database mainte-
nance actions. The problem is magnified in the presence of skew-
ness in the query workload and in combination with a poor data
allocation function.

Furthermore, workload characteristics are not stable over time
either, i.e., datawarehouses and scientific database applications shift
their focus almost with every session. This leads to a short reten-
tion period for data- and workload- allocation decisions. Resource
utilization may quickly deteriorate.

Thinking Outside the Box. The ultimate goal in this field is
to design a self-organizing architecture, which maximizes resource
utilization without global coordination, even in the presence of skew-
ed and volatile workloads [9].

There is certainly place to design new data allocation functions
[17], grid-base algorithms [8], distributed optimization techniques
and associated workload scheduling policies [24]. Also several
companies, e.g., Greenplum, Asterdata, Infobright, exploit the clus-
ter and compute cloud infrastructures to increase the performance
for business intelligence applications using modestly changed com-
modity open-source database systems. Even reduced, but scal-
able database functionality is entering the market, e.g., SimpleDB
(Amazon) and Bigtable (Google).

However, it is clear that following a research track explored for
three decades gets us up to a certain point regarding improved re-
source utilization. We may end up in a local optimum without a
clear view how to find a better one.

On the other hand, hardware trends are on our side, which makes
massive processing, huge main memories, and fast interconnects
affordable for experimentation with novel architectures [16].

Therefore, in the spirit of an earlier attempt on this field [18, 6],
we propose the Data Cyclotron architecture, a different approach to
distributed query processing by reconsidering de-facto guidelines
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of the past [20]. It provides an outlook on a research landscape
barely explored.

Remote Memory at Your Finger Tips. A key observation is
that most distributed database systems from the past concentrate
on reducing network cost. This was definitely a valid approach for
the slow network connections of the past. However, with the con-
tinuous advancement of technology it is time to reconsider this ap-
proach. Nowadays, we can have network connections of 1.25 GB/s
(10 Gb/s Ethernet) and more. Furthermore, Remote Direct Mem-
ory Access (RDMA)1 technology enables fast transfer of complete
memory blocks from one machine to another in a single (fast) step,
i.e., without intervention of the operating system. Receiving data
stored in main memory of a remote node, even ignoring the disk
latency, can be as fast as (and even faster than) a state-of-the-art
RAID system with its typical bandwidth of 400 MB/s.

While it is widely available in compute clusters, it continues a
bit unknown for the database community. Its functionality and ap-
pliance as well as the benefits of using such modern hardware are
summarized in section 2.

Turbulent Data. With the outlook of RDMA and fast intercon-
nects, we designed the Data Cyclotron around processing nodes,
comprised of state-of-the-art multi-core systems with sizable main
memories, RDMA facilities, running an enhanced database sys-
tem, and a Data Cyclotron service. The Data Cyclotron service
organizes the processing nodes into a virtual storage ring topology,
which is used to send the database hot set continuously around2. A
query can be executed at any node in the ring; all that it has to do
is to announce its interest and to wait for the data to pass by.

This way, continuous data movement becomes the key architec-
tural characteristic of the Data Cyclotron. It is what database de-
velopers have been trying to avoid since the dawn of distributed
query processing. It immediately raises numerous concerns and
objections, which are better called research challenges. The query
response time, query throughput, network latency, network man-
agement, routing, etc., are all areas that call for a re-evaluation. We
argue that the recent hardware trends call for such fresh look and
an assessment of the opportunities they create.

Load Balancing. In the Data Cyclotron a node is not assigned to
any specific responsibility other than to manage hot data in memory
and cold data on its attached disks. Instead, each query searches a
lightly loaded node to execute; the data needed will pass by. This
way, the load is not spread based on data assignment, but purely on
the node’s characteristics and on the storage ring load. This inno-
vative and simple strategy avoids hot spots that result from errors
in the data allocation and query plan algorithms.

Continuous Self-organization. Adaptation to changes in the
workload is an often complex, expensive and slow procedure. With
the nodes tightly bound to a given data set, we first need to identify
the workload change and the new workload pattern, then assign the
new responsibilities, move the proper data to the proper nodes, and
let everyone know about the new distribution.

In the Data Cyclotron a workload change affects the hot data set
on the ring, which is triggered by query requests for data access.
Its self-organization in a distributed manner, keeping an optimal
resource utilization, replaces gradually the data in the ring to ac-
commodate the current workload. During this process a high query
throughput and a low query latency is assured.

Simplifying Optimizers. The Data Cyclotron design character-
istics affect the query optimizers significantly. Less information is
available to select an optimal plan, i.e., the whereabouts of data is
1http://www.rdmaconsortium.org/
2For convenience and without loss of generality, we assume that all
data flows in the same direction, say clockwise.

not a priori known, nor control over the storage ring infrastructure
for movements of intermediate results. Instead, the optimal pro-
cessing of a query load is a collective responsibility of all nodes re-
flected in the amount and the frequency of data fragments flowing
through the ring. The effect is a much more limited role for dis-
tributed query optimizers, cost models and statistics, because deci-
sions are delegated to the self-organizing behavior of the Data Cy-
clotron service components that maintain the hot data set flow, their
frequency of storage ring occupancy, and possible replicas flowing
around.

The remainder of this paper is organized as follows. Section 2
introduces RDMA in more detail. Section 3 provides a short in-
troduction of the database engine used in our prototype. Section 4
describes in detail the architecture and algorithms of the Data Cy-
clotron, Section 5 provides an in depth analysis of the proposed
architecture using a network simulator to validate the protocols and
assess the system behavior. An outlook of the opportunities cre-
ated by the architecture that call for more intense research is given
in Section 6. The positioning of our work is covered in the related
research Section 7.

2. REMOTE DIRECT MEMORY ACCESS
RDMA enables direct access to the main memory of a remote

host (read and write). While it allows a simple network protocol
design, it also significantly reduces the local I/O cost in terms of
memory bus utilization and CPU load when transferring data at
very high speeds.

2.1 Applying RDMA
Before starting network transfers, application memory regions

must be explicitly registered with the network adapter. This serves
two purposes: First, the memory is pinned and prevented from be-
ing swapped out to disk. Secondly, the adapter stores the physical
address corresponding to the application virtual address. Now it is
able to directly access local memory using its DMA engine and to
do remote data exchanges. Inbound/outbound data can directly be
placed/fetched by the adapter to/from the address in main memory
where the application keeps it.

The transfer of data is done entirely by the RNICs. They can
handle high-speed network I/O (≥ 10 Gb/s) between two hosts with
minimal involvement of either CPU. A key concept behind RDMA
is direct data placement which is a mechanism whereby data is
enriched with local placement information such that the RNIC is
able to directly access the data in main-memory using DMA.

Thanks to this RNIC, the CPU(s) of neither host are involved in
the data transfer and are free to perform other tasks. The RNIC
also has a TCP offload engine built in such that it can perform the
network stack processing autonomously.

2.2 RDMA Benefits
The most apparent benefit of using RDMA is the CPU load re-

duction thanks to the aforementioned direct data placement (avoid
intermediate data copies) and OS bypassing techniques (reduced
context switch rate) [5]. A rule of thumb in network processing
states that about 1 GHz in CPU performance is necessary for every
1 Gb/s network throughput [12]. Experiments on our cluster con-
firmed this rule: even under full CPU load, our 2.33 GHz quad-core
system was barely able to saturate the 10 Gb/s link.

Figure 1 depicts the CPU load breakdown for legacy network in-
terfaces under heavy load and contrasts them with the latest RDMA
technology. As can be seen, the dominating cost is the intermedi-
ate data copying—required by most legacy transport protocols—



100%

50%

0%
Everything

on CPU

Network Stack

on NIC
RDMA

C
P
U
 l
o
a
d

network
stack

driver

context
switches

data
copying

Figure 1: Only RDMA is able to significantly reduce the local
I/O overhead induced at high speed data transfers [13].

to transfer data between the network and the local main memory.
Therefore, offloading only the network stack processing to the NIC
is not sufficient (middle chart) but data copying must be avoided
as well. Thus only RDMA is able to deliver a high throughput at
negligible CPU load.

A second effect is less obvious: RDMA also significantly re-
duces the memory bus load as the data is directly DMAed to/from
its location in main-memory. Therefore, the data crosses the mem-
ory bus only once per transfer. The kernel TCP/IP stack on the
other hand requires several such crossings. This may lead to notice-
able contention on the memory bus under high network I/O. Thus,
adding additional CPU cores to the system is not a replacement for
RDMA.

2.3 The perfect match
By design, the RDMA interface is quite different from a classical

Socket interface. A key difference is the asynchronous execution
of the data transfer operations which allows overlapping of com-
munication and computation thereby hiding the network delay.

Taking full advantage of RDMA is not trivial as it has hidden
costs [15] with regard to its explicit buffer management.

The ideal scenario to benefit from RDMA is when the buffer ele-
ments have big sizes, a dozen or hundreds megabytes. Furthermore,
due to the need of memory registration, normally an expensive op-
eration, the connections between the nodes should be point to point.

Due to these costs and requirement, not every application can
fully benefit from RDMA. However, the Data Cyclotron is an ar-
chitecture that clearly can. It aims to transfer big chunks of data
and it uses a ring topology, i.e., each node has a point to point con-
nection with its neighbors.

The Data Cyclotron is built for scenarios where the workloads
require huge blocks of data to be shifted from node to node at high
speed. These are requirements satisfied by the latest reports on
the network technology. The infiniband bandwidth will reach the
1000Gb/s in next three years. The roadmap for RDMA shows the
possibility of having 12 lines of 20GB/s on RDMA cards 3.

3. BACKGROUND
The Data Cyclotron is designed from the outset to extend the

functionality of an existing DBMS. For this we use MonetDB, since
its inner workings are well known and expertise is close at hands.
As will be clarified shortly, this does not limit the solution proposed
3http://www.infinibandta.org/img/technology/roadmapi_diagram.gif

function user.s1_2():void;
X1 := sql.bind("sys","t","id",0);
X6 := sql.bind("sys","c","t_id",0);
X9 := bat.reverse(X6);
X10 := algebra.join(X1, X9);
X13 := algebra.markT(X10,0@0);
X14 := bat.reverse(X13);
X15 := algebra.join(X14, X1);
X16 := sql.resultSet(1,1,X15);
sql.rsCol(X16,"sys.c","t_id","int",32,0,X15);
X22 := io.stdout();
sql.exportResult(X22,X16);

end s1_2;

Table 1: Selection over two tables

as realization of the Data Cyclotron differs only slightly on other
platforms. We briefly review MonetDB’s basic building blocks,
its architecture, and its execution model to make this paper self-
contained focusing on the processing model and illustrated by an
SQL:2003 example 4.

3.1 Architecture
MonetDB is a modern fully functional column-store database

system [7, 29, 10]. It stores data column-wise in binary structures,
called Binary Association Tables, or BATs, which represent a map-
ping from an OID to a base type value. The storage structure is
equivalent to large, memory-mapped dense arrays. It is comple-
mented with hash-structures for fast lookup on OID and attribute
values. Additional BAT properties are used to steer selection of
more efficient algorithms, e.g., sorted columns lead to sort-merge
join operations.

The software stack of MonetDB consists of three layers. The
bottom layer, the kernel, is formed by a library that implements
a binary-column storage engine. This engine is programmed us-
ing the MonetDB Assembly Language (MAL). The next layer, be-
tween the kernel and front-end, is formed by a series of targeted
query optimizers. They perform plan transformations, i.e., take a
MAL program and transform it into an improved one. The top layer
consists of front-end compilers (SQL, XQuery), that translate high-
level queries into MAL plans.

3.2 Query Processing
The SQL front-end is used to exemplify how a MAL plan is cre-

ated. An SQL query is translated into a parametrized representa-
tion, called a query template, by factoring out its literal constants.
This means that a query execution plan in MonetDB is not optimal
in terms of a cost-model, because range selectivity do not have a
strong influence on the plan structure. They do, however, exploit
both well-known heuristic rewrite rules, e.g., selection push-down,
and foreign-key properties, i.e., join indices. The query templates
are kept in a query cache. Table 1 illustrates the MAL plan pro-
duced for a select over two tables5:

select c.t_id from t, c where c.t_id = t.id;

From top to bottom, the query plan localizes the persistent BATs
in the SQL catalog for ID and T_ID attributes using the bind oper-
ation. The major part is the binary relational algebra plan itself. It
contains several instruction threads, starting at binding a persistent
4The system including our extensions can be downloaded from
http://monetdb.cwi.nl
5Details on the plan and MAL optimizers can be found on
http://monetdb.cwi.nl
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column, reducing it using a filter expression or joining it with an-
other column, until the results tuples are constructed. The last part
constructs the query result table.

The query template is processed by a SQL-specific chain of op-
timizers before taking it into execution. The MAL program is in-
terpreted in a linear fashion. The overhead of the interpreter is kept
low, well below one µsec per instruction.

4. DATA CYCLOTRON ARCHITECTURE
The Data Cyclotron (DC) system architecture is initially built

around a ring with homogeneous nodes. Each node consists of
three layers: the DBMS layer, the Data Cyclotron layer, and the
network layer (see Figure 2). The Data Cyclotron layer contains
the DC runtime itself and a DC data loader. The network layer
encapsulates the envisioned RDMA infrastructure and traditional
UDP/TCP functionality as a fall-back solution.

The system is started with a list of nodes to participate in the ring.
The data is spread upfront over the disks attached to the nodes us-
ing any feasible partitioning scheme. For the remainder, we assume
each partition to be an individual BAT easily fitting in main mem-
ory of the individual nodes. Furthermore, the BATs are randomly
assigned to nodes in the ring where the local DC data loader be-
comes their owner and administers them in its own catalog (Struc-
ture S1 Figure 2). The BAT owner node is responsible for putting
it into or pulling it out of the hot set occupying the storage ring. In-
frequently used BATs are retained on a local disk at the discretion
of the DC data loader.

Subsequently, queries are compiled by MonetDB into plans that
call upon the Data Cyclotron layer to request or to receive a data
partition, i.e., a BAT. These requests are the core information used
by the Data Cyclotron to interact with the network layer for the
maintenance of the hot set in the storage ring. The network layer
has two queues, i.e., network buffers to encapsulate the details of
passing the BAT requests and BATs around. The data is moved
through the ring clockwise, i.e., a node sends BATs, stored in BAT
queue, to its successor and it receives BATs from its predecessor.
The BAT requests, stored in request queue, are sent anti-clockwise
to reduce the latency when a requested BAT is already on its way.

The behavior of each layer and their interaction is studied in
more detail in the subsequent sections.

function user.s1_2():void;
X2 := datacyclotron.request("sys","t","id",0);
X3 := datacyclotron.request("sys","c","t_id",0);
X6 := datacyclotron.pin(X3);
X9 := bat.reverse(X6);
X1 := datacyclotron.pin(X2);
X10 := algebra.join(X1, X9);
X13 := algebra.markT(X10,0@0);
X14 := bat.reverse(X13);
X15 := algebra.join(X14, X1);
X16 := sql.resultSet(1,1,X15);
sql.rsCol(X16,"sys.c","t_id","int",32,0,X15);
X22 := io.stdout();
sql.exportResult(X22,X16);
datacyclotron.unpin(X6);
datacyclotron.unpin(X1);

end s1_2;

Table 2: MAL plan after DcOptimizer

4.1 The DBMS Layer
The MonetDB server receives an SQL query and compiles it into

a MAL plan. This plan is analyzed by the Data Cyclotron opti-
mizer, which injects three calls request(), pin() and unpin(). The re-
quest() identifies the required BATs. The pin() and the unpin() mark
the time when a BAT is needed and subsequently released. They
exchange resource management information between the DBMS
layer and the DC runtime.

The optimizer replaces each BAT bind call by a request() call and
keeps a list of all outstanding BAT requests. For each relational
operator argument, it checks if it comes from the Data Cyclotron
layer. Its first utilization leads to injection of a pin() call into the
plan. Likewise, the last reference of a variable is localized and an
unpin() call is injected.

The code in Table 2 is the MAL program from Table 1 after be-
ing massaged by the DC optimizer. The MAL plan is executed
using concurrent interpreter threads following the dataflow depen-
dencies. Unlike the pin() call, the request() and unpin() calls do not
block threads. For the pin() call the thread blocks until the BAT is
available at the DBMS layer.

Note that such plan transformations are straightforward to inte-
grate in a wide range of query optimizers and execution engines.
Including the buffer manager of a traditional relational database
engine.

4.2 The Data Cyclotron Layer
The Data Cyclotron layer is the control center and it serves three

message streams, those composed by a) the requests from the lo-
cal MonetDB instance, b) the predecessor’s BATs, and c) the suc-
cessor’s requests from the network layer. The catalog structure
S1 contains information about all BATs owned by the local node.
The structure S2 administers the outstanding requests for all active
queries, organized by BAT identifier. The structure S3 contains the
identity of the BATs needed urgently as indicated by the pin calls.

4.2.1 DBMS and Data Cyclotron interaction
Consider the steps taken to execute the plan in Table 2. If the

BAT is owned by the local DC data loader, it is retrieved from disk
or local memory and put into the DBMS space. Otherwise, the call
leads to an update of S2 (the shaded squares in Figure 2). A BAT
request message is then sent off to the ring, traveling anti-clockwise
towards its owner. Thereafter, the BAT travels clockwise towards
the requesting node.

The pin() request checks the local cache for availability. If it



Request Propagation
input: the request node’s origin owner and the requests id reqid
output: forwards the request or schedules the load of the requested BAT

01: /∗ check if the request returned to its origin ∗/
02: if ( owner == node_id )
03: unregister_request( &S2, reqid );
04: unregister_request_queries ( &S3, reqid );
05: exit;
06:
07: /∗ check if the node is the BAT owner ∗/
08: if ( node_is_owner_( &S1, reqid ) )
09: if ( bat_is_loaded( &S1, reqid) )
10: exit;
11: if ( bat_can_be_loaded( reqid ) )
12: if ( bat_is_already_pending(reqid) )
13: bat_load( reqid, chk_size);
14: untag_bat_pending(reqid);
15: exit ;
16: else
17: if ( !bat_is_already_pending(reqid) )
18: tag_bat_pending(reqid);
19: exit;
20:
21: /∗ check if there is the same request locally ∗/
22: if ( request_is_mine(reqid) )
23: if ( !request_is_sent(reqid) )
24: /∗ send if it has not been sent ∗/
25: load_request(node_id, reqid);
26: exit;
27:
28: forward_request(owner, reqid);

Figure 3: Request Propagation Algorithm

not available, query execution blocks and the pin() call is stored
in catalog S3. It remains blocked until the BAT is received from
the predecessor node. The BAT request is removed from S3 by the
unpin() call. The interaction between the layers ends with the last
unpin() call, which removes the query from S3.

4.2.2 Peer interaction
The Request Propagation algorithm, illustrated in Figure 3, han-

dles the requests in S2. There are six possible outcomes for this
algorithm. First outcome, if the message is received by the request
originator node, i.e., the BAT request is back to its origin, it is un-
registered from S2 and the associated queries raise an exception;
the BAT does not exist (anymore) in the database.

Second outcome, if the node is the BAT owner, but the BAT was
already (re-) loaded into the hot set, the request is ignored. Third
outcome, if the BAT was not yet loaded, but the storage ring is
full the BAT is marked as pending, i.e., the load is postponed until
hot set adjustment decisions are made. Fourth outcome, if the ring
is not full, the BAT is loaded from the node’s local storage and
becomes part of the storage ring hot set.

Fifth outcome, if the node is not the BAT’s owner, nor the re-
quest originator, but has the same request outstanding, the request
is absorbed. Otherwise, it is just forwarded.

The preferred outcome of a request is to make a BAT part of the
hot set, i.e., to enter the storage ring and travel from node to node
until it is not needed anymore thereby removed by its owner. BAT
propagation from the predecessor node to the successor node is car-
ried out by the BAT Propagation algorithm as depicted in Figure 4.

For each BAT received, the algorithm searches for an outstand-
ing request in S2. Once found, it checks the catalog S3 and un-
blocks related queries blocked in a pin() call handing over the BAT
received as a pointer to a memory mapped region. For example, in
Table 1, a reference for the BAT t_id, is passed through the variable
X1. This memory region is freed by the unpin() call.

BAT Propagation
input: the bat loader’s id owner, bat_id, loi, copies, hops ,cycles
output: forwards the BAT

01: /∗ check if there is a local request for the bat ∗/
02: hops++;
03: if ( bat_has_request(bat_id) )
04: request_set_sent(bat_id);
05:
06: if ( request_has_pin_calls( bat_id )
07: copies++;
08: /∗check if it was pinned for all the associated queries ∗/
09: if ( request_is_pinned_all( bat_id ) )
10: request_unregister( bat_id);
11:
12: forward_bat(owner, bat_id, loi, copies, hops, cycles);

Figure 4: BAT Propagation Algorithm

The Data Cyclotron data loader is aware of the memory con-
sumption in the local node only. If there is not enough space, the
BAT will continue its journey and the queries waiting for it remain
blocked for one more cycle.

4.2.3 Storage Ring Management
The BATs in the storage ring carry an administrative header used

by its owner for hot set management. The BAT Propagation algo-
rithm (Fig. 4) updates the variables hops and copies. The former
denotes the number of hops since it left its owner, a metric for the
age of the BAT on the storage ring. The variable copies counter
designates how many nodes actually used it for query processing.

The runtime system has two more functions for resources man-
agement. A resend() function is triggered by a timeout on the ro-
tational delay for BATs requested into the storage ring. It indicates
a package loss. The loadAll() executes postponed BAT loads, i.e.,
BATs marked as pending in the third outcome of the Request Prop-
agation algorithm. Every T msec, it starts the load for the oldest
ones. If a BAT does not fit in the BAT queue, it tries the next one
and so on until it fills up the queue. The leftovers stay for the next
call. This type of load optimizes the queue utilization. The prior-
ity for entering the storage ring is derived from both the size and
the waiting time. These functions make the Data Cyclotron robust
against request losses and starvation due to scheduling anomalies.

4.3 The Network Layer
The network layer of the Data Cyclotron manages the stream of

BAT messages in the storage ring and their request messages. BAT
messages contain the fields owner, bat_id, bat_size, loi, copies,
hops, and cycles. If the local node is the BAT’s owner, the al-
gorithm hot data management (cf., Figure 5) is called for hot set
adjustments. Otherwise, it calls the BAT Propagation algorithm
(Fig. 4). BAT request messages contain the variables, owner and
bat_id. The Request Propagation algorithm (Fig. 3) is called for
this type of message. All messages are managed by the network
layer on a first-come-first-serve basis.

The underlying network is configured as asynchronous channels
with guaranteed order of arrival. The data transfer and the queues
management are optimized depending on the protocol being used.
The ring latency and the exploitation of its storage capacity is de-
pendent on success of this optimization.

4.4 Hot Set Management
The BATs in circulation are considered hot data. They flow as

long as they are considered important for the query workload. The
metric to measure this is called the level of interest, LOI for short,



New level of interest
input: the bat_id, loi, copies, hops, cycles
output: forwards the BAT or unloads the BAT.

01: /∗ Check if the node is the BAT loader ∗/
02: if ( node_is_the_loader(bat_id) )
03: cycles++;
04: new_loi =

(loi + ((copies / hops) * cycles)) /
cycles);

05: copies = 0;
06: hops = 0;
07: if ( new_loi < loit(n) )
08: unload_bat( bat_id );
09: else
10: forward_bat(bat_id, new_loi, copies, hops, cycles);

Figure 5: Hot Data Set Management

which fluctuates over time.
The number of copies, the number of hops, the number of cycles,

and the previous LOI are used to derive a new level of interest each
time it passes at the owner node. The variable copies and hops are
updated at each node. The variable cycles is only updated by the
BAT’s owner when it completes a cycle. Subsequently, the new loi
is then calculated as follows:

CAVG =
copies
hops

newLOI = LOI
cycles + CAVG

(1)

The previous LOI for a BAT carries its history of the ring’s in-
terest during previous cycles. However, the latest cycle has more
weight than the older ones. This weight is imposed by the multipli-
cation of the number of copies average CAVG in the last cycle by
the actual cycles value:

copies
hops

× cycles (2)

The division by the number of cycles applies an age weight to the
formula. Old BATs carry a low level of interest, unless re-newed in
each pass through the ring. The new LOI value is then compared
with the minimum level of interest maintained per node, i.e., the
level of interest threshold LOITn . If the new LOI is lower than
LOITn the BAT is removed from circulation. If not, the LOI vari-
able is set with the new LOI value and the BAT is sent back to the
ring. This hot data management algorithm (Figure 5) is executed
at the Data Cyclotron layer for all BATs received from the prede-
cessor node. The minimum level of interest, i.e., LOITn , is the
threshold between what is considered hot data and cold data. Each
node has its own LOITn and its value is derived from the local
BAT queue load.

An overloaded ring increases the probability to postpone a BAT
load due to the lack of space. It increases the latency to fulfill a re-
mote request. In this situation, Data Cyclotron reduces the number
of BATs in the ring by increasing the threshold LOITn . LOITn

is stepwise increased until the pending local BATs can start mov-
ing. However, if the threshold is increased too much, the life of a
BAT in the ring will reduce. This can lead to a thrashing behavior.
The impact of the threshold choice is studied in more detail in sec-
tion "Experiments". The model to manage the hot set might not be
optimal, but it is robust and behaves as expected. Alternatives are
described in an upcoming paper.

5. EXPERIMENTS
We study the Data Cyclotron behavior using NS-26, a popular

simulator in the scientific community.
Setup. The simulator runs on a Linux computer equipped with

an Intel Core2 Quad CPU at 2.40 GHz, 8 GB RAM and 1 TB disk.
No direct modifications were applied to the kernel of the simulator.

The base topology in our study is a ring composed of ten nodes.
Each pair of nodes is interconnected through a duplex-link with
10 Gb/s bandwidth, 350 us delay, and DropTail as full queue pol-
icy, i.e., drop packets from the tail of the queue. Each node con-
tains 200 MB for the BAT queue, i.e., network buffers, resulting
in a total ring capacity of 2 GB. These characteristics comply with
our RDMA-equipped compute cluster, the target for the complete
system.

In our detailed analysis we use a raw data-set of 8 GB composed
of 1000 BATs with sizes varying from 1 MB to 10 MB. The BATs
are uniformly distributed over all nodes, giving ownership over
about 0.8 GB of data per node.

The workload is restricted to queries that access remote BATs
only. For, we are primarily interested in the adaptive behavior of
the ring structure itself.

Experimental outline. We start our experimental evaluation us-
ing micro-benchmarks to validate the correctness of the Data Cy-
clotron protocols. We discuss three workload scenarios in detail.
In the first scenario, we study the impact of the LOITn on the
query latency and throughput in a ring with limited capacity. In
the second scenario, we test the robustness of the Data Cyclotron
against skewed workloads with hot sets varying over time. In the
third scenario, we demonstrate the Data Cyclotron behavior for
non-uniform access patterns.

The experimental section is completed with a real benchmark,
TPC-H. It highlights the capability of Data Cyclotron to handle
real workloads and to achieve high throughput rates.

5.1 Limited Ring Capacity
The Data Cyclotron aims to keep only the hot-data in rotation by

adjusting the minimum level of interest for BATs on the move. The
minimum level of interest (LOITn ) is the threshold which defines
if a BAT is considered hot or cold. A high LOITn level means a
short life time for the BATs in the ring, and vice verse. The right
LOITn level and its dynamic adaptation are the issues to be ex-
plored with this experiment.

The experiment consists of firing 80 queries per second on each
of the 10 nodes over a period of 60 seconds, and then letting the
system run until the execution of all 48000 queries have finished.
We use a synthetic workload that consists of queries requesting be-
tween one and five randomly chosen BATs. The net query execu-
tion times, i.e., assuming all required data is available in local mem-
ory, are arbitrarily determined by scoring each accessed BAT with a
randomly chosen processing time between 100 msec and 200 msec.

To analyze the impact of LOITn on the Data Cyclotron per-
formance behavior, we repeat the experiment 11 times, increasing
LOITn from 0.1 to 1.1 in steps of 0.1. Between two runs, the ring
buffers are cleared, i.e., all the data is unloaded to the local disk.

Figure 6 a) shows the Data Cyclotron throughput for each LOITn

iteration, i.e., the cumulative number of queries finished over time.
The line registered queries represents the cumulative number of
queries fired to the ring over time.

The experiment shows that a low LOITn leads to a higher num-
ber of pending queries in the system. For LOITn = 0.1 at instant

6NS-2 was developed by UC Berkeley and is maintained by USC;
cf., http://www.isi.edu/nsnam/ns/



 0

 10000

 20000

 30000

 40000

 50000

 0  20  40  60  80  100  120  140  160  180

#q
ue

rie
s

#seconds

regist. queries
executed queries

LoiT 1.1
LoiT 1.0
LoiT 0.9
LoiT 0.8
LoiT 0.7
LoiT 0.6
LoiT 0.5
LoiT 0.4
LoiT 0.3
LoiT 0.2
LoiT 0.1

(a) Query Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140  160  180

#q
ue

rie
s

#seconds

LoiT 1.1
LoiT 0.5
LoiT 0.1

(b) Query Life time

Figure 6: Multiple LOITn levels

40 seconds, only 8000 out of the 30000 registered queries are fin-
ished. However, for LOITn = 1.1 at the same instant, almost
25000 queries were finished. We observe that the query throughput
is monotonously increasing with increasing LOITn .

Query latency is also affected by low LOITn values. The graph
in Figure 6 b) shows the query life time distribution (histogram) for
three LOITn levels. The query life time is its gross execution time,
i.e., the time spent from its arrival in the system til its execution has
finished.

The results show that a high LOITn leads to lower life time of a
query. For example, the LOITn = 0.1 has a peak in the number
of queries resolved in less than 5 secs, but then it has the remaining
queries pending for at least 100 seconds.

The reason for these differences stems from the amount of data
removed from the ring over the time and the BATs size. The work-
load hot set is bigger than the ring capacity which increases the
competition for the free space in the ring. Using a low LOITn , the
removal of the hot BATs is delayed, i.e., the pending BATs list at
each node grows. Consequently, execution of queries that wait for
the pending BATs is delayed.

With optimized load for pending BATs, presented in Section 4.4,
and a low drop rate, the tendency is to leave the big BATs for last.
Whenever the least interesting BAT is dropped from the ring, the
available slot can only by filled with a pending BAT of at most
the size of the dropped one. Consequently, the ring gets loaded
with more and more small BATs, decreasing the chance of big BAT
loads even further. Only once there are no more pending request for
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Figure 7: Ring Load

small BATs, the ring slowly empties, finally making room for the
pending bigger BATs. The graphs in Figure 7 a) and b) identify the
BAT size trend over time. The correlation between the ring load in
bytes (Fig. 7a) and the ring load in BATs (Fig. 7b), shows the BAT
length in the hot set over time. With a continuously overloaded ring
and a diminish in the number of BATs loaded, the graphs depict
that the load of big BATs is being postponed. Therefore, the queries
waiting for these BATs stay pending almost until the end. The delay
gets more evident for low LOITn levels.

This experiment confirmed our intuition that the LOITn is in-
versely proportional to the local BAT queue load. It also proves
that LOITn should not be static. It should dynamically adapt us-
ing the local BAT queue load as reference. In the next experiment
we show how this dynamic LOITn behaves when the hot set is
changing all the time and how well it exploits the ring resources.

5.2 Skewed Workloads
The Data Cyclotron is also tested for a turbulent scenario. In

this experiment it is confronted with several skewed workloads SW,
brute changes in the hot set H, and resource competition by the
disjoint hot sets DH.

A skewed workload SWi only uses a subset of the entire database.
The hot set Hi used by SWi has disjoint data DHi which is not used
by any other skewed workload.

Each SWi can enter in the Data Cyclotron at different times. In
some cases they meet in the system, in other cases they initialize
after the end of the previous ones. These arbitrary initializations
require a dynamic and fast reaction by the Data Cyclotron. If SWj



workload SW1 SW2 SW3 SW4
skewed 3 5 7 9

start(sec) 0 15 37.5 67.5
end(sec) 30 45 67.5 97.5

queries/sec 200 300 400 500

Table 3: Workload details

enters the ring while SWi is still in execution, the Data Cyclotron
needs to share resources between the DHi and DHj. The Data Cy-
clotron must remove DHi BATs with low LOI to load the new
DHj data to keep the throughput high. However, the BATs from
DHi needed to finish SWi queries, must remain in the ring to keep
the latency low.

This dynamic and quick adaptation is studied here to answer the
three major questions: How fast is the Data Cyclotron reaction to
load data for the new workload? Are the queries from the previ-
ous workload delayed? How does the Data Cyclotron exploit the
available resources?

The scenario created has four workloads (SW1, SW2, SW3, and
SW4). Each SWi accesses uniformly a subset of the database (Di).
Each Di has a disjoint subset DHi, i.e., DHi is not in Dj, Dk, Dl,
with exception for DH4 which is contained in DH1. Each Di is
composed by BATs for which the modulo of their id and a skewed
value is equal to zero. The time overlap percentage between the
SW1 and SW2 is 50%, 25% for SW2 and SW3, and no overlap for
SW3 and SW4. Table 3 describes each workload.

From the previous experiment, we learned that the LOITn should
be inversely proportional to the buffer load. The dynamic adaption
of the LOITn is done using the local buffer load at each node. Ev-
ery time the buffer load is above 80% of its capacity, the LOITn is
increased one level. On the other hand, if it is below the 40% of its
capacity, the LOITn is decreased one level. For this experiment,
we used three levels, 0.1, 0.6, 1.1.

The Graph 8 a) shows the space used, in the ring, by each DHi.
While, Graph 8 b) shows the amount of queries finished for each
DHi.

Reactive behavior. The results show how quickly the Data Cy-
clotron reacts to the change of workload characteristics. The graph
in Figure 8 b) shows between the 14th and 16th seconds a peak
of 2000 finished DH2 queries. The graph 8 a) in the same period
shows a peak in the load of DH2 BATs. With the initialization of
SW2 at 15 second, the peak confirms the quick reaction time. The
same phenomenon is visible for all the other workloads.

Post workload changes. The ring was loaded with data from
DH2, however, the data from DH1 was not completely removed.
This is a consequence of the 50% time overlapping between SW1
and SW2. In Graph 8 b) is visible SW1 queries until the 43th sec-
ond. The BATs to resolve these queries are kept around as it is
shown in Graph 8 a). The Data Cyclotron in the presence of a new
workload does not remove all the data from the previous workload
until all the queries are finished. It shares the resources between
both workloads as predicted. Observe that the sharing of ring re-
sources gets lower as the time overlapping between SW decreases.

Exploiting the available resources. The SW3 workload shows
an interesting reaction of Data Cyclotron when it encounters a semi-
empty ring.

The DH3 started to be loaded and the ring is near to its limit.
The LOITn is at its maximum level to free as much space as possi-
ble. No more SW1 and SW2 queries exist in the system. Therefore,
the last BATs for DH1 and DH2 start to be removed from the ring.
Their removal drops the ring load down to 37,5% of its capacity,
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Figure 8: Skewed workload

below the 40% barrier defined for this experiment. With this load
the LOITn is set to its minimum level, i.e, the BATs are now stay-
ing longer in the ring.

With a big percentage of DH3 queries concluded, Data Cyclotron
does not remove the DH3 BATs. It keeps loading the missing DH3
data. The ring gets loaded and it remains with the same load for
almost 10 seconds. The Data Cyclotron exploits the available re-
sources by maintaining the DH3 BATs longer, i.e, expecting they
will be used in near future.

The abundance of resources is over when the SW4 workload ini-
tializes. The ring becomes again overloaded moving the LOITn to
higher levels. Therefore, the DH3 data starts to be removed.

5.3 Non-uniform Workloads
So far we have studied the Data Cyclotron architecture using uni-

form distributions for the BATs size and the data access. Leaving
the uniform scenarios behind, we move towards workloads with
different data access distributions.

In the previous experiments, the study of the BAT LOI focused
on their age. The average of copies per cycle, i.e., the ring interest,
was not included due to the uniform BAT access. Therefore, we
initiated an experiment to stress it using a Gaussian data access
distribution. However, the uniform distribution for BAT sizes is
retained, because a uniform partition scheme can be used to break
non-uniform BATs into uniform BATs.

The used scenario is the one defined in section 5.1 with excep-
tion for the data access distribution. The Gaussian distribution is
centered around BAT id 500 with a standard deviation of 50. All
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the nodes use the same distribution.
In the presence of this type of workload, the Data Cyclotron

keeps the popular BATs longer in the ring and exploits the remain-
ing ring space for the less popular BATs.

The distribution of this workload is represented as green curve
in graph 9 a). The in vogue group is constituted by the BATs with
id between 350 and 600 which were touched more than 250 times.
The BATs in the border of this group, the standard BATs, have
a lower rate of touches. The remaining ones, with less than 20
touches, are the unpopular BATs.

The in vogue BATs are highly used by the query workload, i.e.,
their LOI is always on high levels. Therefore, they are kept longer
in the ring. Their low load rate, pictured as blue in graph 9 b) is
explained by the Data Cyclotron cold down process. With a over-
loaded ring and the LOITn at its highest level, the Data Cyclotron
removes BATs to get room for new data. The first ones to be re-
moved are the ones with low LOI , i.e., first the unpopular then the
standard BATs. For this reason the in vogue are the ones staying
longer periods as hot BATs.

The standard BATs are then requested by queries triggering their
load. It is this resource management to maintain the latency in low
values, that makes the standard BATs to be more frequently in and
out of the ring.

The low rate of requests, represented as red, for the in vogue
BATs contradicts the common believe that in vogue BATs should be
the ones with high rate of requests, thereby high rate of loads. The
reason is the requests management at the Data Cyclotron runtime
layer. A request is only removed, if all its queries pinned it. Having

a high number of queries entering the system, the probability for a
in vogue BAT request to be pinned for all its queries, at once, is too
low. As a consequence, the requests stays longer in the node.

The experiment results show a good management of the hot set,
by the Data Cyclotron, for a Gaussian distribution. The high through-
put is assured by keeping the in vogue BATs as long as possible in
the ring. For a low latency, the LOITn is used at its high level to
reduce the time access to the many standard BATs.

5.4 TPC-H Workload
Our last experiment starts with a calibration of the simulator

using traces from TPC-H ran against a single node MonetDB in-
stance. For each of the 22 TPC-H queries we trace their execution
for scale factor five (SF-05). Such traces contain the execution time
for each operator as well as the information about intermediate re-
sult sizes.

Calibration. The data-set is composed of BATs used by each
query in TPC-H. They are the columns touched by the queries and
the indexes created for the TPC-H tables to speed up foreign key
processing. For them, request calls are scheduled.

The scheduling algorithm for the pin calls can be exemplified
using the code in Table 2. The first pin call, pin(X3), is scheduled
OpT1 msec after the query registration. The second one, is sched-
uled OpT2 msec after the X3 reception by the previous pin call. The
OpTx for a pin call is the sum of all operators execution times, since
the last pin call, until the actual pin call.

A query is finished T msec after, the sum of the remaining oper-
ators’ execution times, after the last pin call. The execution time of
a query with X pin calls is the sum of all Optx plus T.

Setup. In total, the workload for each node contains 1200 queries.
The query registration rate is 8 queries per second, i.e., it takes 150
seconds to register all queries.

The scheduling of the queries follows a Gaussian distribution
with mean 10 and standard deviation 2. On this distribution the
fastest queries are the ones with higher probability to be scheduled.
With this workload distribution we stress the latency for data de-
livering instead of the node resources, i.e., main memory and CPU
processing cost.

Each node is composed by four cores and the calls scheduling is
distributed amongst them. For simplicity of our first exploration,
we assume that all nodes have ample main memory to hold the
intermediate results.

The scheduling at each core is done using a time line. An opera-
tor execution is scheduled at certain moment and it has a duration,
Tx msec. A core can only be used for a single operator. The differ-
ence between the simulation duration and the sum of the operators
duration defines the idle time of the core.

In theory, the execution time of a complete workload on a sim-
ulated single node and on MonetDB should be the same because
all the data is local, i.e., there is no latency for remote data access.
However, as shown in table 4, it is not the case under all circum-
stances. The reason is the optimal parallelization achieved in the
simulator. The CPU utilization is near to optimal, 99%, while in
MonetDB the threads management and the context switches be-
tween clients brings the CPU load to lower values (the value pre-
sented is average of the CPU loads reported by the top command in
Linux).

To increase throughput, i.e., the number of queries per second,
more nodes are added to the ring. It leads to increase latency in
accessing the data. This is the only extra cost added to the queries
execution time when the CPU utilization is optimal.

In table 4 the execution time is considerably increased when a
second node is added to the ring. However, the throughput in-



#nodes exec(sec) throughput throughP/node CPU%
MonetDB 420 2.8 2.8 70

1 317 3.8 3.8 99.7
2 346.7 6.9 3.4 92.0
3 350.1 10.3 3.4 91.5
4 351.1 13.7 3.4 88.8
5 352.3 17.0 3.4 89.4
6 360.7 19.9 3.3 88.2
7 366.2 22.9 3.2 86.5
8 371.27 25.8 3.2 85.3

Table 4: TPC-H SF-5

creased 55%. The gain gets more evident with the addition of
more nodes. From 3 to 5 nodes, the execution time has a low
variance, but the system throughput increases 33% for each added
node. Moreover, the throughput per node remains the same.

Addition of more nodes increases the throughput, but also has
draw-backs. A diminishing return on investment becomes visible
after a limited number of nodes. The throughput for a ring with six
nodes or more increases 33%, but the queries execution time gets
too high and the throughput per node decreases.

The CPU utilization shows the latency added to the system. From
a optimal CPU utilization on a single node, the CPU utilization
came slowly down to 15% of its capacity, i.e., 4% per core, for 8
nodes ring. Converting to seconds, each core had a total idle period
of 14 seconds out of the 371.27 seconds. The same value can be
derived from difference between the queries execution times of one
node and the eight nodes ring.

The experiment shows that the Data Cyclotron is capable to keep
the CPU utilization at high levels even if extra network latency is
added to the global latency.

The optimal utilization is not the case for a real DBMS, as pic-
tured by the MonetDB results. Furthermore, in [14] the simple
prototype of a distributed join implementation using RDMA un-
covered the limiting performance factor, i.e., main-memory speed.
These points stress our conviction that ring structured storage ring
and the continuous data movement is not as evil as it seems in the
first place. It enables to achieve high throughput with reasonable
extra latency in Data Cyclotron.

6. FUTURE OUTLOOK
The Data Cyclotron outlined is an innovative architecture with a

large scope of scientific challenges. In this section, the surface of
the most prominent areas is scratched upon, e.g., query processing,
result caching, structural adaptation to changes in the workload,
and updates.

6.1 Query Processing
A query is not bound to stay and be executed at the node where

it enters the Data Cyclotron. In fact, the ultimate goal is to achieve
a self-organizing, adaptive load balance using the aggregated au-
tonomous behavior of each node.

Hence, once the BAT requests are sent off, a query can start with
a nomadic phase, “chasing” the data requests upstream to find a
more satisfactory node to settle for its execution. At each node
visited, we ask for a bid to execute the query locally. The price is
the result of a heuristic cost model for solving the query, based on
its data needs and the node’s current workload.

In addition, the Data Cyclotron architecture allows for highly ef-
ficient shared-nothing intra-query parallelism. During the nomadic
phase, a query can be split into independent sub-queries to con-
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sume disjoint data subsets. The number of sub-queries depend on
the price attached dynamically. All sub-queries are then processed
concurrently, each settling on a different node following the basic
procedures of a normal query. The individual intermediate results
are combined to form the final query result.

6.2 Result Caching
Multi-query processing can be boosted by reusing (intermediate)

query results to avoid (part of) the processing cost, i.e., they are
simply treated as persistent data and pushed into the storage ring
for queries being interested. Like base data, intermediate results
are characterized by their age and their popularity on the ring. They
only keep flowing as long as there is interest.

The scheme becomes even more interesting when combined with
the intra-query parallelism. Then multiple sub-queries originating
from a single query in execution create a large flow of intermediate
results to boost others.

There is a plethora of optimization scenarios to consider. A node
can throw all intermediate results it creates into the ring. Alterna-
tively, intermediates can stay alive in the local cache of their creator
node as long as possible. If a request is issued, they enter the ring,
otherwise they are gradually removed from the cache to make room
for new intermediates.

6.3 Pulsating Rings
The workload is not stable over time. The immediate conse-

quence is that a Data Cyclotron ring structure may not always be
optimal in terms of resource utilization and performance. For ex-
ample, having more nodes than strictly necessary increases the la-
tency in data access. Contrary, having too few nodes reduces the
resources for efficient processing. The challenge is to detect such
deviations quickly and to adapt the structure of the ring.

For this, we introduce the notion of pulsating rings that adap-
tively shrink or grow to match the requirements of the workload,
i.e., nodes are removed from the ring to reduce the latency or are
thrown back in when they are needed for their storage and process-
ing resources. Updates to the ring are localized to its two (envi-
sioned) neighbors.

The decision to leave a ring can be made locally, in a self-organi-
zing way, based on the amount of data and requests flowing by the
nodes. For example, a node individually decides to leave a ring if
its resources are not being exploited over a satisfying threshold.

Extending a ring calls for a named service, where nodes are
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awaiting a call of duty. When an overload occurs at one of the
nodes, e.g., a strong increase of the query load, then this service is
called for.

A peek- preview experiment, with the scenario defined in sec-
tion 5.3, illustrates the impact on the latency when the ring grows
or shrinks. The workload in the system, i.e., the total number of
queries, is kept stable while the number of nodes is increased from
5 up to 20. During the experiment we observed, for every five nodes
added, a latency growth of 75% in the BAT cycle duration.

The assumption that a low latency in the data access decreases
requests latency is not complete correct. The experiment shows
that the ring with highest number of nodes is the one with the lower
maximum request latency, see Figure 10. The explanation is pic-
tured in Figure 11, which shows the maximum number of cycles
per BAT. The ring with 20 nodes, has in vogue BATs with more or
less 38 cycles, i.e., the life of them is almost the duration of the ex-
periment. Therefore the access cost to these BATs is only affected
by the latency of its movement in the ring.

The ring with 5 nodes has a low BAT move latency, but the access
cost is affected by the ring capacity. With low capacity, the in vogue
BATs have short life (red curve in Figure 11), therefore, they are
cooled down more frequently. The access cost then also includes
the cost for re-loading the BATs from disk.

6.4 The Space for Updates.
Let us now briefly discuss the issue of updates. As a first step, we

exploit the fact that a single copy of each relation is flowing through
a Data Cyclotron as a set of disjoint BATs. This way, each BAT can
be updated separately by any node without needing to synchronize
the process with the other BATs.

We use a multi-version approach to support simple updates. Up-
date requests are handled in the same fashion as queries. An update
query searches for a controlling node N to settle and waits for rel-
evant BATs to pass by. The only difference is that when a node
N processes an update request, for a BAT f , it propagates f with
a tag: “updating". This way, any concurrent updates, waiting in
the rest of the ring, refrain from processing f , recognizing its stale
state; they have to wait for the new version. Alternatively, they can
be sent directly to N . Read-only queries that do not necessarily re-
quire the latest updated version can continue using the flowing old
version.

The effect of updates is that the system becomes polluted with
several versions of a BAT. The maintenance of these versions is as
the rest of the data, i.e., using its LOI .

7. RELATED WORK
Distributed query processing to exploit remote memories and

high speed networks to improve performance in OLTP has been
studied in [19]. It is also addressed in the area of distributed sys-
tems as data broadcasting and multi-cast messaging, such as [18,
6, 1, 2, 4]. Solutions include scheduling techniques at the server
side[1, 3], caching techniques at the client side[1], integration of
push-based and pull-based broadcasts [2], and pre-fetching tech-
niques [4]. Most systems ignore the data content and their char-
acteristics [21]. The seminal DataCycle [18] and Broadcast Disks
approach [1] are exceptional systems to be looked at more care-
fully.

The DataCycle [18, 6] makes data items available by repetitive
broadcast of the entire database stored in a central pump. The
broadcasted database is filtered on-the-fly by microprocessors op-
timized for synchronous high-speed search, i.e., evaluation of all
terms of a search predicate concurrently in the critical data move-
ment path. It eliminates index creation and maintenance costs. The
cycle time, i.e., the time to broadcast the entire database, is the ma-
jor performance factor. It only depends on the speed of hardware
components, the filter selectivity, and the network bandwidth.

The Data Cyclotron and DataCycle have some commonalities,
however they differ on four salient points. The Data Cyclotron uses
a pull model to propagate the hot set for the query workload only.
It does distinguish amongst the participants, all nodes access the
data and contribute with data, i.e., there is no central pump. Each
node bulk loads database content structured by a relational scheme
and not as tuple stream. Finally, the Data Cyclotron performance
relies on its self-organizing protocols which exploit the available
resources, such as ring capacity and speed. These self-organizing
protocols are key for the success of our architecture compared to
DataCycle.

The Broadcast Disk [1] superimposes multiple disks spinning
at different speeds on a single broadcast channel creating an arbi-
trarily fine-grained memory hierarchy. It uses a novel multi-disk
structuring mechanism that allows data items to be broadcasted
non-uniformly, i.e., bandwidth can be allocated to data items in
proportion to their importance. Furthermore, it provides client-side
storage management algorithms for data caching and prefetching
tailored to the multi-disk broadcast.

The Broadcast Disk is designed for asymmetric communication
environments. The central pump broadcasts according to a peri-
odic schedule, in anticipation of client requests. In later work a
pull-back channel was integrated to allow clients to send explicit
requests for data to the server. It does not combine client requests
to reduce the stress on the channel.

In [2] the authors address the threshold between the pull and the
push approach. For a lightly loaded server the pull-based policy
is the preferred one. Contrary, the pure push-based policy works
best on a saturated server. Using both techniques in a system with
widely varying loads can lead to significant degradation of the per-
formance, since they fail to scale once the server load moves away
from their optimality niche. The IPP algorithm, a merge between
both extremes pull- and push-based algorithm, provided reasonably
consistent performance over the entire spectrum of the system load.

The Data Cyclotron differs in two main aspects, a) it is not de-
signed for asymmetric communication environments and b) it does
not have a central pump. All nodes participate in the data and re-
quests flow. Furthermore, requests are combined to reduce the up-
stream traffic. Therefore, we do not encounter problems using a
pure push model which, according to [2], is suited for systems with
dynamic loads. Finally, for data propagation, the bandwidth is used
uniformly by the data items, i.e, we do not have a multi-disk struc-



turing mechanism.
A more recent attempt to harness the potentials of distributed

processing are the P2P and the Grid architectures. They are built
on the assumption that a node is statically bound to a specific part
of the data space. For example, in a Distributed Hash Table (DHT),
such as [25, 26], each node is responsible for all queries and tuples
whose hash-values fall within a given range. The position of a node
in the overlay ring defines this range. This is a significantly more
dynamic approach as a node can, in a quick and inexpensive way,
change its position in the DHT. It effectively transfers part of its
load to another node. The main difference with the Data Cyclotron
is our reliance on a full fledged database engine to solve the queries,
and shipping large data fragments around rather then individual tu-
ples selected by their hash value.

8. CONCLUSIONS
The Data Cyclotron architecture is a response to the call-of-arms

in [20], which challenges the research community to explore novel
architectures for distributed database processing.

The key idea is to turn data movement between network nodes
from being an evil to avoid at all cost into an ally for improved
system performance, flexibility, and query throughput. To achieve
this goal we let the database hot set continuously move around in a
closed path of processing nodes.

The Data Cyclotron delineation of its components leads to an ar-
chitecture which can be integrated readily within an existing DBMS
and by injecting simple calls into the query execution plan. The
performance penalty comes from waiting for parts of the hot set
to become available for local processing and the capability of the
system to adjust to changes in the workload set quickly.

The performance consequences are studied extensively with a
network simulator using the Data Cyclotron protocols and cali-
brated by performance traces from MonetDB on TPC-H. They con-
firm our intuition that a storage ring based on the hot set can achieve
high throughput and low latency. Moreover, the experiments stipu-
late the robustness of the setup under skewed workloads.

The paper opens a vista on a research landscape of novel ways
to implement distributed query processing. Cross fertilization from
distributed systems, hardware trends, and analytical modeling in
ring-structured services seems prudent. Likewise, the query exe-
cution strategies, the algorithms underpinning the relational opera-
tors, and the query optimization strategies and updates all require a
thorough re-evaluation in this context.
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