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1. INTRODUCTION 

Classically, there exists a strong connection between optmuzation and 
geometry. Often, a set of options ('feasible solutions') can be represented by 
vectors in euclidean space, and a search process for an optimal option ('option 
solution') can be seen as a trip in space. The geometric nature of optimization 
methods like the simplex method, the gradient method, the ellipsoid method, 
the cutting plane method, is suggested already by their names. Thus optimiza
tion illustrates once more that Descartes' idea of analytic geometry can be 
used in tum to study analytic problems geometrically. 

The above being well-known for linear and nonlinear optimization, where 
the feasible solutions generally give a continuous, sometimes even convex, 
region in space, the purpose of this paper is to show the geometric character 
also of several methods and results in combinatorial optimization, where the 
feasible solutions, in the first instance, yield a discrete, discontinuous set. 

Among the geometric methods and results used in combinatorial optimiza-
tion we discuss are: 

the representation of combinatorial optimization problems by polyhedra; 
the ellipsoid method; 
the basis reduction method for lattices; 
the cutting plane method; 
the results of Tutte and Seymour on the representation and decomposition 
of geometric configurations in projective spaces over GF(2). 

We illustrate these ideas by some applications - we focus on two problems (the 
matching problem and the coclique problem), but the methods have a much 
wider applicability (like to trees (directed · or undirected), one- and 
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multicommodity flows, coverings, directed cuts, cliques, disjoint paths m 
graphs, the traveling salesman problem, the acyclic subgraph problem). 

2. REPRESENTING COMBINATORIAL OPTIMIZATION PROBLEMS BY POLYHEDRA 

The idea of using polyhedra in combinatorial optimization is simple. Suppose 
we have a collection ?.f of subsets of a finite set S. (For instance, <J is the collec
tion of matchings in a given graph G =(V,£).) Moreover, a function c:s-'>l. is 
given, and we wish to find 

m~ :Lc(s), 
Ue.t seU 

(1) 

being a generic form of a combinatorial optimization problem. (In the exam
ple above, it amounts to finding a matching of maximum 'weight'.) Usually, 
the collection ?.f is too large to evaluate every U in 'J to determine the max
imum. 'Too large' here means with respect to the data structure given (like the 
number of matchings in a graph is exponentially large in the size of the graph). 
One should find a method more efficient than this 'brute force' method. 

We can represent each subset U of S by its characteristic vector xv in 
{O, 1 }s, i.e., (xu)s =I if s EU, and 0 otherwise. Moreover, the function c can 
be considered as a vector in !Rs. Then problem (I) becomes: 

max{cTxulUE?.f}. (2) 

Clearly, the maximum value in (2) is equal to 

max{ er xlx Econv.hull {xvi U E?.f} }, (3) 

where conv.hull denotes the convex hull in IRS. Since conv.hull {xvi U E?.f} is a 
convex polytope, there exists a matrix A and a column vector b such that this 
polytope is equal to { x IAx .;;;;b} (where the columns of A are indexed by the 
elements of S). This implies that (3) is equal to 

max{cTxlAx.;;;;b}. (4) 

This way we have transformed the combinatorial optimization problem (I) into 
a linear programming problem, and we can appeal to linear programming 
methods to solve the combinatorial problem. We could use the simplex method 
to solve (4) and hence (1) (note that the simplex method gives a vertex of 
{xlAx.;;;;b} as optimal solution, which corresponds to the optimal set in lJ). 
Alternatively, one could apply the ellipsoid method for linear programming, 
which is not a practical method, but which can yield that (l) is solvable in 
polynomial time. 

The mathematical problem now is to determine A and b, given <ff. Although 
the system Ax .;;;;b clearly always exists, there is the problem that in many cases 
the polytope conv.hull {xvi U E?.f} has an enormous number of facets, often too 
difficult to describe. The application of linear programming methods will be 
helpful only in case the system Ax.;;;;b is decent enough - decent in the sense to 
be described in Section 3 below. 

As we shall see also in Section 3, if we are interested in the polynomial-time 
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solvability of combinatorial optimization problems of type (1) (and in fact, we 
are), the above approach of replacing §'by conv.hull {xul U E§} is, at least 
implicitly, unavoidable. 

As a theoretical by-product, if we have written (1) as the LP-problem (4), we 
can apply the Duality theorem of linear programming to (4), saying: 

max{cr x!Ax~b} = min{yrblJi;;..O,yTA =er}. (5) 

Therefore, 

(6) 

which is a min-max relation for the combinatorial problem. If we can prove 
that the minimum in (6) has an integer solution, we obtain a purely combina
torial min-max relation. 

3. APPLICATION OF THE ELLIPSOID METHOD 

The ellipsoid method was shown by KHACHIYAN [15] to solve linear program
ming problems in polynomial time. In this section we discuss an application 
of the ellipsoid method to combinatorial optimization. 

An (undirected) graph is a pair G=(V,E), where Vis a finite set and Eis a 
collection of unordered pairs from V. The elements of V and E are called ver

tices and edges, respectively. 
Suppose we are given, for each graph G = ( V, E), a collection 1!Yc of subsets 

of E. For example: 

(i) % is the collection of matchings in G (a matching is a collec- (7) 
tion of pairwise disjoint edges); 

(ii) % is the collection of trees in G (a tree is a connected set of 
edges not containing a circuit); 

(iii) % is the collection of Hamilton circuits in G (a Hamilton cir
cuit is a circuit containing each vertex of G exactly once). 

With the family (§'clG graph) we can associate the following problem: 

Optimization problem: Given a graph G =(V,E) and cEOE, (8) 
find E'E% maximizing LeEE'c(e). 

So if (1!YclG graph) is as in (i), (ii) and (iii), problem (8) amounts to the prob
lems of finding a maximum weighted matching, a maximum weighted tree, and 
a maximum weighted Hamilton circuit, respectively. The last problem is the 
well-known traveling salesman problem (note that by replacing c by -c, (8) 
becomes a minimization problem). 

Clearly, for each collection (§'alG graph), problem (8) forms a class of prob
lems of type (1 ). 

Especially, we are interested for which families (%IG graph) problem (8) is 
solvable in polynomial time (or polynomially solvable), i.e., solvable by an algo
?thm whose running time is bounded by a polynomial in the input size, which 
IS 
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IVI + IEI + size(c). 

Here size(c): =~eeE size(c(e)), where the size of a rational number pi~ 
logi(IPl+l)+logi(lql). So size (c) is about the space needed to specify c 
binary notation. 

If (%IG graph) is as in (7) (i) or (ii), problem (8) is polynomially solvable 
it is as in (iii) no polynomial-time algorithm has been found, and it is a gene 
belief that no such algorithm exists (see also the Remark below). 

It has been shown by GROTSCHEL, LovAsz and SCHRUVER [11] that, for; 
fixed family (%IG graph), (8) is polynomially solvable, if and only if the 
lowing problem is solvable in polynomial time: 

Separation problem: Given a graph G =(V,E) and x E0£, 
determine if x belongs to conv.hull {xlF E §"0 }, and if not, 
find a separating hyperplane. 

Again 'polynomial-time' means: with running time bounded by a polynon 
in IVl+IEl+~eEE size(x(e)). 

THEOREM I. For any collection ('!IolG graph), the optimization problem (8: 
polynomially solvable, if and only if the separation problem (10) is polynomic 
solvable. 

The theorem implies that with respect to the question of polynomial-time i 

vability, the approach described in Section 2 (studying the convex hull) is m 
or less essential: a combinatorial optimization problem is polynomially sc 
able if and only if the corresponding convex hull can be decently described 
the sense of the polynomial solvability of the separation problem. This c 

also be used in the negative: if a combinatorial optimization problem is : 
polynomially solvable (maybe the traveling salesman problem), then 
corresponding polytopes have no decent description. 

Theorem 1 is proved with the help of the ellipsoid method, for which 
refer to the books by GROTSCHEL, LovAsz and SCHRIJVER [12] and SCHRI1' 
[22). The ellipsoid method does not give practical algorithms, but in some ea 
with Theorem 1 the polynomial solvability of a combinatorial optirnizat 
problem was proved, which next formed a motivation for finding a practi 
polynomial-time algorithm for the problem. 

There are several variations of Theorem 1. For instance, a similar res 
holds if we consider collections §"0 of subsets of the vertex set V, instead 
subsets of the edge set E. E.g., we could take: 

~G is the collection of all cocliques of G ( a coclique is a set of ( 
vertices which are pairwise not adjacent). 

Moreover, a similar theorem holds if we consider classes (~olGe@), where£ 
a subcollection of the set of all graphs. Similarly, we can consider direc 
graphs. 
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REMARK. The question NP =P? amounts to the following. Call a class (<8'clG 
graph) polynomially recognizable if there exists a polynomial-time algorithm for 
the following problem: 

given G = (V,E) and F<;;;,E, decide if F belongs to <8'c. (12) 

It is not difficult to see that each of the examples in (7) gives a polynomially 
recognizable class. 

Now one has: 

NP =P, if and only if for each polynomially recognizable (13) 
class (§"clG graph) the optimization problem is polynomially 
solvable. 

There seems no reason to believe that for every polynomially recognizable class 
the optimization problem is polynomially solvable. However, no counterexam
ple has been found. It has been shown by CooK [4] and KARP [14] that the 
traveling salesman problem (and several other classical combinatorial optimiza
tion problems) is NP-complete. It implies: if the traveling salesman problem is 
polynomially solvable, then for every polynomially recognizable class the 
optimization problem is polynomially solvable. This is one of the reasons why 
a lot of research has been spent on the traveling salesman problem. 

4. LATTICE BASIS REDUCTION, SIMULTANEOUS DIOPHANTINE APPROXIMATION 

AND STRONGLY POLYNOMIAL ALGORITHMS 

The basis reduction method for lattices was given by LENSTRA, LENSTRA and 
LovA.sz [16]. It solves the following problem: 

given a nonsingular rational n X n-matrix A, find a basis (14) 
b 1, ..• , bn for the lattice generated by the columns of A satis-
fying 

_Ln(n -1) 

llb111· ... ·ilbn11.;;;;2 4 ldetAI, 

in time bounded by a polynomial in size(A ): = ~i,J size(aiJ)· Here the lattice 
generated by a 1, ••• , an is the set of vectors .\1a 1 + ... +A.nan with 
AJ. ... , ,\n El.. Any linearly independent set of vectors generating the lattice is 
called a basis for the lattice. 

The basis reduction method has several applications in linear and integer 
programming, in number theory and in cryptography. One consequence is a 
polynomial-time algorithm for simultaneous diophantine approximation: 

THEOREM 2. There exists a polynomial-time algorithm which for given vector 
a EOn and rational £ with O<t:< 1, finds an integer vector p and an integer q 
satisfying 

1 £ +n(n+l) 
Ila - -pll<- and l.;;;;q.;;;;2 £-n. 

q q 
(15) 
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This can be seen by applying the basis reduction method to the matrix 

' 0 

A:= 0 (16) 
' 

0 ..... . 

denoting a= :(ai, ... , an?· 

FRANK and TARDOS (6] showed that this simultaneous diophantine approxima
tion method yields so-called strongly polynomial algorithms. The ellipsoid 
method discussed in Section 3 can derive a polynomial-time algorithm for the 
optimization problem (8) from a polynomial-time algorithm for the separation 
problem (10), and vice versa. The polynomial-time algorithms for (8) derived 
perform a number of arithmetic operations, which number is bounded by a 
polynomial in (9). (Arithmetic operations here are: addition, subtraction, multi
plication, division and comparison of ·numbers.) Although this does not 
conflict the definition of 'polynomial-time', it would be preferable if the size of 
the 'cost' function c only influences the size of the numbers occurring when 
executing the algorithm, but not the number of arithmetic operations. There
fore, an algorithm for the optimization problem (8) is called strongly polynomial 
if it consists of a number of arithmetic operations, bounded by a polynomial 
in WI+ 1£1, on numbers of size bounded by a polynomial in WI+ IEI +size(c). 

FRANK and T ARDOS now showed however the equivalence of the two con
cepts when applied to (8): 

THEOREM 3. For any class (§'GIG graph), there exists a polynomial-time algo
rithm for the optimization problem (8), if and only if there exists a strongly poly
nomial algorithm for (8). 

PROOF. The 'if part being trivial, we sketch a proof of the 'only if part. Sup
pose (8) is polynomially solvable for a certain class (§'clG graph). Let 
G =(V,E) and cEQE be given as input for (8). Determine vectors ci,c 2, ..• suc
cessively as follows. c 1: =c. Suppose c i, ... , c; has been found. If c;=FO, let , l 25n' j 

v:=2-5n llc;lloo C;, (17) 

where n: = IEI, and where l J denotes component-wise lower integer parts. By 
the method of Theorem 2 we can find u; Ezn and q; El such that 

1 1 1 +n<n+I) llv - -u;ll 00 <-·- and J ..;;q;..;;2 (2nt (18) 
q; q; 2n 

(taking c = l/2n). Note that 
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l 

llu;lloo :s;;;,.q;::;;;;;;2n (2nr, 

since llv lloo =I. Let 

llc;ll 00 
C;+J :=c; ---u;. 

q; 

If c; + 1 = 0, stop. Otherwise, repeat with i replaced by i + L 

117 

(19) 

(20) 

Since c; + 1 has at least one 0-component more than c; has, as one easily 
derives from (17), (18) and (20), the algorithm stops after k:s;;;,.n iterations. Let 
ci. . .. ,ck be the sequence generated. Note that by (20), 

llc1 lloo llc2 lloo lick 11 00 
C = UJ + U2 + ... +---uk. (21) 

qi q1 qk 

Now define: 

C-. = 2sn'(k -I>u + 2sn'(k-2)u + + 2sn'u + 
• I 2 ··· k-1 Uk. (22) 

The vector c has the following property: 

for each vector x E {O, + l}n: if cT x<O then (:T x<O. (23) 

Indeed, let x e { 0, ± 1 Y with c T x <0. Choose the smallest i with uT x-:1=0 (i 
exists by (21)). Then 

T llcilloo llc;-ilL'° T T 
c;x=(c- u1- ... - U;- 1)x=cx<O. (24) 

q1 q;-1 

Hence 

uT x = (u; - q;vl x + q;(v - c;)T x + q;cf x 

<llu; - q;vll 00 ·llxll1 + q;"llv - c;i1 00 ·llxll1 
I , , 

.;;;;;2nn + 2n (2nri- 5n n:s;;;,. I, 

implying uT x :s;;;,. -1 (as u; is integral and uT x-:1=0). Therefore, 

(:T x = 2sn'(k-i)uT x + 2sn'(k-i-lluT+1X + ... + u[x 

,,;;;;;; -25n2(k-i) + n·25n 2(k-i-l).24n2 

(25) 

(26) 

= 2sn'(k-i)(- l + n-2-n')<O 

(usinguJxo;;;;;llu1 11 00 ·11xll 1::;;;;;;2n'(2nrn:s;;;,.24n' -cf. (19)). Thisproves(23). 
Having determined C, give the input G =(V,E) and celE to the 

polynomial-time algorithm for (8). It gives a set Fin '!fG maximizing ~eeFc(e). 
Then Falso maximizes ~eEFc(e). For suppose ~eEF'c(e)>~eeFc(e) for some 
F'e6.fo. Then cT(x!'°-x')<O. By (23), cT(x!'°-x)<O, contradicting the fact 
that F maximizes ~eeFc(e). 

The whole procedure consists of a number of arithmetic operations bounded 
by a polynomial in IVl+IEI. Indeed, v in (17) can be determined by binary 
search by 5n2 +I comparisons (for each coordinate). The method of Theorem 
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2 applied to v and t:= l/2n takes time bounded by a polynomial in 
size(v)='9(n 3) and size(t:)=l9(logn). Finally, the algorithm for the optimization 
problem applied to G and c takes time bounded by a polynomial in I VI+ IEI 
and size(c)=(9(n 6 ) (by (19) and (21)). Concluding, we have a strongly polyno
mial algorithm for (8). D 

A similar result holds for the separation problem (10). 

5. TOTALLY UNIMODULAR MATRICES AND BIPARTITE GRAPHS 
We now come to some concrete examples of polyhedral characterizations. A 
prime technique in deriving polyhedral results is based on 'total unimodularity' 
of matrices. A matrix is called totally unimodular if each subdeterminant 
belongs to {0,+1,-1}. In particular, each entry in a totally unimodular 
matrix belongs to {O, + 1, -1 }. 

The following is not difficult to see. 

THEOREM 4. Let A be a totally unimodular m X n-matrix, and let b be an 
integral column vector in ur. Then each vertex of the polyhedron { x jAx .;;;,b} is 
integral. 

PROOF. Let x· be a vertex of {xlAx~b}. Then there exists a nonsingular 
mXm-submatrix A' of A, with corresponding part b' of b, so that A'x*=b'. 
Hence x • =(A')- 1 b'. As detA '= + 1, it follows that x • is integral. D 

This theorem and extensions characterizing total unimodularity were given by 
HOFFMAN and K.RUSKAL [13). 

Let G = ( V, E) be a bipartite graph, i.e., an undirected graph whose vertex set 
V can be split into two classes V' and V" so that each edge consists of a ver
tex in V' and a vertex in V". Let A be the incidence matrix of G, i.e., A is the 
VXE- matrix with 1 in position (v,e) if vEe, and 0 otherwise. 

THEOREM 5. The incidence matrix of a bipartite graph is totally unimodular. 

PROOF. Let B be an mXm-submatrix of A. We show detBE{0,+1} by induc
tion on m, the case m = 1 being trivial. If B contains an all-zero column, then 
detB=O. If B contains a column with exactly one l, we can expand detB by 
this column, yielding detB = +detB' for some (m -1) X (m -1)-submatrix B' 
of B. Then by induction detB E { o[; l{ If each column of B contains exactly 

two l 's, we can decompose B as B" j so that each column of B' has exactly 

one 1, and similarly for B" (possibly after permuting rows of B). Then 

(1, ... , 1, -1, ... , -1) [!:,] =O, and hence detB =O. D 

Theorems 4 and 5 have some direct consequences. For any graph G =(V,E), 
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the polytope conv.hull {t'IM matching} is called the matching polytope of G. 

THEOREM 6. Let G =(V,E) be a graph. Then the matching polytope of G is 
equal to the set of all vectors x EIRE satisfying 

(i) Xe;;;;i.o (eeE), 

(ii) ~ Xe.;;;; 1 (v E V), (27) 
e3v 

if and only if G is bipartite. 

PROOF. 'ir: If G is biJP.~}tle, its incidence matrix A is totally unimodular, and 

hence also the matrix A is totally unimodular. Since the system (27) is the 

same as [-~] x"' [ 1 l · we know that the polytope P defined by (27) has 

integral vertices only (Theorem 4). Since the integral vectors satisfying (27) are 
exactly the vectors t' for matchings M, we know that P is equal to the match
ing polytope of G. 

'only ir: If G is not bipartite, it has an odd circuit C. Let x elllE be defined 
by Xe = f if e belongs to C, and Xe = 0 otherwise. Then x satisfies (27), but x 

does not belong to the matching polytope of G, as one easily checks. D 

This theorem immediately yields a strongly polynomial algorithm for finding a 
maximum-weighted matching in a bipartite graph G =(V,E) (which problem is 
one of the variants of the optimal assignment problem): given a weight function 
cezE, a matching Min G maximizing ~eeMc(e) can be found by solving the 
linear program of maximizing c T x over (27). 

This can be derived also from Theorems l and 3, since solving the separa
tion problem for matching polytopes of bipartite graphs just means testing if a 
given vector x satisfies (27); these constraints can be checked one by one in 
polynomial time (there are I VI+ IEI constraints). This does not reflect the full 
power of Theorem l - we shall see a better illustration in the next section. 

A similar result holds for the coclique polytope of a graph G, being conv.hull 
{xc IC coclique}. 

THEOREM 7. Let G =(V,E) be a graph. 
to the set of all vectors x E Ill£ satisfying 

(i) xv ;;;;i.o (v E V), 

(ii) ~x.~ l (eeE), 
vee 

if and only if G is bipartite. 

Then the coclique polytope of G is equal 

(28) 
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PROOF. Similarly to the proof of Theorem 6 (note that clearly also the tran
spose A T of the incidence matrix of a bipartite graph is totally unimodular). 
0 

Again, one can derive from this that for bipartite graphs a maximum weighted 
coclique can be found in polynomial time. 

The following two related results are classical. The perfect matching polytope 
of a graph is the polytope conv.hull{.t'JM perfect matching}. A perfect match
ing is a matching covering all vertices of the graph exactly once. 

THEOREM 8 (BIRKHOFF-VON NEUMANN THEOREM). Let G =(V,E) be a bipartite 
graph. Then the perfect matching polytope is equal to the set of all vectors x in 
RE satisfying 

(i) xe ;;;ai:Q (e EE), 

(ii) ~Xe =I (vEV). 
(29) 

e3v 

PROOF. The theorem follows from the total unimodularity of the matrix 

(30) 

where A is the incidence matrix of G. 0 

This theorem is better known in the following equivalent formulation: each 
doubly stochastic matrix is a convex combination of permutation matrices. (A 
matrix is doubly stochastic if it is nonnegative and if each row sum and each 
column sum is equal to I.) 

Theorem 8 yields the polynomial-time solvability of the problem of finding a 
maximum (and similarly, a minimum) weighted perfect matching in a bipartite 
graph. 

THEOREM 9 (KONIG-EGERVARY THEOREM}. Let G =(V,E) be a bipartite graph. 
Then 

(i)max{IMI JMmatching}=min{IWI JW<;;;;V;'v'eEE:3vEW:vEe}; (31) 

(ii) max{ I Cl JC coclique} = min{ IFI JFc;E; 'v'vE V: 3eeF: vEe}. 

PROOF. Let A be the incidence matrix of G. Then by the total unimodularity of 
A: 

max{IMI JMmatching} =max{ITxJx;;;ai:O;Ax~l; xintegral} 

= max{IT xJx;;;ai:O;Ax~l} = min{yTIJy;;;ai:O;yT A ;;;i:tT} 

= min{yTt[y;;;ai:O;yT A ;;;i:1T;y integral} (32) 
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= min{ I WI IWCV;'VeeE:3veW: vee}. 

This shows (i). Equation (ii) is shown similarly. O 

REMARK. Similar results can be derived for flows in directed graphs (like the 
max-ftow min-cut theorem), using the fact that any {O, + 1, - I }-matrix with in 
each column at most one I and at most one -I, is totally unimodular. 

Here we mention SEYMOUR'S deep result (24] that each totally unimodular 
matrix can be decomposed, in a certain way, into matrices described in the 
previous sentence and into two certain totally unimodular 5 X 5-matrices. It 
yields a polynomial-time test for the total unimodularity of matrices (clearly, 
checking all subdeterminants would require exponential time). 

6. THE MATCHING POL YTOPE OF AN ARBITRARY GRAPH 
If G is not bipartite, the inequalities (27) are not enough to determine the 
matching polytope. A famous theorem of EDMONDS (5] gives the inequalities 
determining the matching polytope of a not-necessarily bipartite graph. Simi
larly, Edmonds characterized the perfect matching polytope, which we discuss 
first. We follow the proof of [21 ]. 

THEOREM 10 (EDMONDS' MATCHING POLYTOPE THEOREM). For any graph 
G =(V,E) the perfect matching polytope is equal to the set of vectors x in RE 
satisfying 

(i) Xe;;;;i.O 

(ii) ~Xe = l 
e3v 

(eeE), 

(v EV), 

(iii) x(8(U))~l (Uc;;v, I UI odd). 

(33) 

Here 8( U) denotes the set of edges e in E with le n UI =I, and 
x(8( U)): = ~ee8(U)Xe· 

PROOF. Let P be the perfect matching polytope of G, and let Q be the set of 
vectors satisfying (33). As ->(' E Q for each perfect matching M, it follows that 
P CQ - the content of the theorem is the converse inclusion. 

Let G be a smallest graph with Q <j,P (that is, with I VI+ IE minimal), and let 
x be a vertex of Q not contained in P. Then O<xe < l for all e in E - otherwise 
we could delete e from G to obtain a smaller counterexample. Moreover, 
IEl>IVI - otherwise, either G is disconnected (in which case one of the com
ponents of G will be a smaller counterexample), or G has a point v of degree 
one (in which case the edge e incident to v has Xe = l ), or G is an even circuit 
(for which the theorem trivially holds). 

Since x is a vertex of Q, there are IEI independent constraints among (33) 
satisfied by x with equality, and hence there exists a UC V with IUI odd, 
IUl~3,jV\ Ul;;;;i.3 and x(S(U))= l. Let G 1 and G2 arise from G by contracting 
U and V\ U, respectively, and let x 1 and x 2 be the corresponding projections 
of x onto the edge sets of G 1 and G2 , respectively. Since x 1 and x2 satisfy 
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inequalities (33) for the smaller graphs G1 and G2, respectively, it follows that 
x 1 and x 2 can be decomposed as convex combinations of characteristic vectors 
of perfect matchings in G1 and G1, respectively. These decompositions can be 
easily glued together to form a decomposition of x as a convex combination of 
perfect matchings, contradicting our assumption. 

(This glueing can be done, e.g., as follows. By the rationality of x (as it is a 
vertex of Q), there exists a natural number K such that, for i = 1,2, Kx; is the 
sum of the characteristic vectors of the perfect matchings M\ , ... , Mk of G; 
(possibly with repetitions). Since, for each e in 8(U), e is contained in Kx(e) of 
the M) as well as in Kx(e) of the M}, we may assume that M) nM}*0 for 
j = 1, ... , K. It follows that Kx is the sum of the characteristic vectors of the 
perfect matchings Ml U MT, ... , M} U Mk of G, and hence that x itself is a 
convex combination of perfect matchings in G.) D 

Application of Theorem 1 now becomes more illustrative than in Section 5. By 
Theorem 1, we can find a maximum weighted perfect matching in a graph in 
polynomial time, if we can solve the separation problem for the perfect match
ing polytope in polynomial time. This last can be shown as follows (following 
PADBERG and RAo [18]). For a given xEOE we have to test if x satisfies (33). 
Testing the inequalities in (i) and (ii) can be done easily by checking them one 
by one. If one of them is not satisfied, we know that x does not belong to the 
perfect matching polytope, and the violated constraint gives a separating 
hyperplane. So we may assume that x satisfies (33) (i) and (ii). If I VJ is odd, 
then clearly (33) (iii) is not satisfied for U: = V. So we may assume that I VI is 
even. We cannot check the constraints in (iii) one by one in polynomial time, 
simply because there are exponentially many of them. Yet, there is a 
polynomial-time method of checking them. Indeed, first note that from Ford
Fulkerson's max-fiow min-cut algorithm we can derive a polynomial-time algo
rithm having the following as in- and output: 

input: subset W of V; 
output: a subset T of V such that W n T* 0 * W \ T and such that (34) 

x(S(T)) is as small as possible. 

To see this, consider x as a capacity function on E, and determine for each 
pair r,s E W, a cut of minimum capacity separating r and s. That is, we find a 
subset Tr,s of V so that rETr,s• Sfl.Tr,s and such that cap(8(T,,s)):=x(8(T,,s)) 
is minimal. Taking T: = T,,s for that pair r,s for which cap(S(T,,s)) is as small 
as possible, we obtain T as required. 

We next describe recursively an algorithm with the following in- and output: 

input: subset W of V with J WJ even; 
output: subset U of V such that I Wn VI is odd and such that x(S(U)) (35) 

is as small as possible. 

First we find with the algorithm (34) a subset T of V with W n T* 0 * W \ T 
and such that x ( 8( T)) is minimal. If I W n TJ is odd we are done. If I W n TJ i_s 
even, call, recursively, the algorithm (35) for the inputs W n T and W n T, 
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respectively, where T: = V\ T. Let it yield a subset U' of V such that 
1wnrn U'I is odd and x(o(U')) is minimal, and a subset U" of v such that 
I W n T n U"I is odd and x(o( U")) is minimal. Without ~ss of generality, 
w \ Ti_ U' (otherwise replace U' by V \ U') and W \ T cJ, U" (otherwise 
replace U" by V \ U"). _ 

We claim that if x(o(Tn U'))o;;;;,x(oS,_Tn U")) then U: = Tn U' is output of 
(35) for input W, and otherwise U: = T n U" is output of (35) for input W. To 
see that this output is justified, suppose to the contrary that there exists a sub
set Y of V such that 1wn YI is odd and x(8(Y))<x(8(Tn U')) and 
x(8(Y))<x(8(Tn U")). Then either 1wn Yn TI is odd or 1wn Yn TI is odd 
(since 1wn TI is even). Case I: IWn Yn TI is odd. Then x(8(Y));;a.x(8(U')), 
since U' is output of (35) for input WnT. Moreover, x(o(TUU'y);;a.x(o(T)), 
since T is output of (34) for input W, and since 
Wn(TU U')=¥=0=¥=W\(TU U'). Therefore, we have a contradiction: 

x(8(Y));;a.x(o(U'));;;i:x(o(Tn U')) + x(8(TU U')) - x(o(T)) (36) 

;;;i:x(o(Tn U'))>x(8(Y)) 

(the second inequality follows since x(o(A))+x(B(B));;a. 
x(8(A nB))+x(8(A UB)) for all subsets A and B of V). Case 2: 1wn Yn T] is 
odd. Similarly. 

Given the polynomiality of the algorithm for (34), it is not difficult to see 
that also the described algorithm for (35) has polynomially bounded running 
time. 

As a consequence, we can test the inequalities (33) (iii) in polynomial time, 
which implies the polynomial-time solvability of the problem of finding a 
maximum weighted perfect matching. ·1n fact, EDMONDS [5] gave a direct 
polynomial-time algorithm for this problem, yielding Theorem 10 as a by
product. We have followed the above line to illustrate the use of Theorem I. 

By a standard construction, Edmonds' characterization of the matching 
polytope can be derived from Theorem 10. 

THEOREM 11. For any graph G =(V,E), the matching polytope is equal to the set 
of all vectors x in RE satisfying 

(i) xe;;;i:O (e EE), 

(ii) Lxe.;;;;l (v E V), (37) 
e3v 

(iii) 
I 

L Xe,,.;; l21UIJ ( u c; V, IUI odd). 
er;;;,U 

PROOF. Again it is clear that each vector in the matching polytope satisfies 
(37), as x!" satisfies (37) for each matching M. To see that the inequalities (37) 
are enough, let x ERE satisfy (37). Let a· =(V* ,£*) be a disjoint copy of G, 
where the copy of vertex v will be denoted by v •, and the copy of edge 
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e = { v, w} will be denoted by e • = { v ·, w '}. Let G be the graph with vertex set 
VU v• and with edge set EUE* U{{v,v*}lveV}. Define x(e):=x(e*):=x(e) 
fore in£, and x({v,v*}):=l-x(6(v)) for v in V. Now conditions (33) are 
easily derived for x with respect to G. Constraints (i) and (ii) are trivial. To 
prove (iii) in (33), we have to show, for V" V2 CV with !Vil+ IV2I odd, that 
x(8(V1 u ¥;));;is I. Indeed, we may assume, without loss of generality, that 
IV1 \ V21 is odd. Hence 

x(6(V1 u ¥;)) = x(8<V1 \ V2)) + x(6(¥; \ Vi));;;;.i(6(V1 \ V2)) 

= IV1 \ V2I- 2· ~ Xe;;;;.I, (38) 
e<;;;V, \ V, 

by (37) (iii). ~ 
Hence i is a convex combination of perfect matchings in G. By restriction to 

x and G it follows that x is a convex combination of matchings in G. 0 

In a way similar to above one can derive a polynomial-time algorithm finding 
a maximum weighted matching. 

Related to Theorem 11 is the following min-max relation due to TuTrE [26] 
and BERGE [ l J. 

THEOREM 12 (TurrE-BERGE FORMULA). For any graph G =(V,E) 

max{IMI IM matching}= min IVl+IUl-e(V\ U) (39) 
U<;;;V 2 

where e( V \ U) denotes the number of odd components of the graph induced by 
V\U. 

The minimum here can be easily seen to be equal to: 

. I I 
nun{ I VI + ~ l21 V; lj IV, V" .. . , V, CV, so that each edge (40) 

i=I 
intersects Voris contained in one of the V; }. 

The content of the Tutte-Berge formula is that when we write max{ IMI IM 
matching} equivalently as maximizing 1 T x over (37), we obtain a linear pro
gram with integral optimal primal and dual solutions. 

7. CurrING PLANES 

Quite often the problem of characterizing the convex hull of certain {O, 1 }
vectors amounts to characterizing, for some polytope P, the polytope 

P1 := conv.hull {xePlx integral}. (41) 

P 1 is called the integer hull of P. E.g., if G = ( V, E) is a graph, and 

P := {xeRElxe;;;i.O (eeE), ~xe:E;;l (veV)}, (42) 
e3Y 

the integral vectors in P are exactly the characteristic vectors of matchings, 
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and hence P1 is equal to the matching polytope of G. Similarly, for 

P: = {x ERvjx. ;;:.o (v E V), 2:x. ~ 1 (e EE)}, (43) 
VEe 

P1 is the coclique polytope of G. 
There is a way of deriving the inequalities determining P1 from those deter

mining P - the cutting plane method. Its basics were given by GOMORY [ 10]. 
The following description is due to CHVATAL [2] and ScHRIJVER [20]. 

Clearly, if H is a rational halfspace, i.e., H is of form 

H = {xERnjaTx~,8}, (44) 

where aEOn, a=#=O, /JEO, we may assume without loss of generality that a is 
integral, and that the components of a are relatively prime. In that case: 

H1 = {xERnjaT x~ L/JJ }. (45) 

H1 arises from H by shifting its bounding hyperplane until it contains integral 
vectors. 

Now define for any set P: 

P':= n HI> (46) 
H:;JP 

where H ranges over all rational half spaces containing P. Since H -;J P implies 
H1 -:JP1> it follows that P1 r;;;.P'. It can be shown that if Pisa rational 
polyhedron (i.e., a polyhedron determined by linear inequalities with rational 
coefficients), then P' is a polyhedron again. 

To P' we can apply this operation again, yielding P". Generally P"=#=P' -
consider e.g. the following example. 

0 0 0 0 

0 

0 

FIGURE 1 

So there is a sequence of polyhedra containing P1: 

P-;JP 1 -;JP 11 -;JP 111 -;J ... -:JP1. (47) 
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Denoting the (t + 1)-th set in this sequence by p<t>, the following can be 
shown. 

THEOREM 13. For each rational polyhedron P there exists a number t such that 
pCt>=P1. 

The theorem is the theoretical essence of the cutting plane method of Gomory. 
The equation ax = LP J defining H1, or more strictly the hyperplane 
{xlax= LPJ }, is called a cutting plane. 

The smallest t for which pCt> =P1 can be considered as a measure for the 
complexity of P1 relative to that of P. In a sense, P' is conceptually near to P, 
P" to P', etc. 

Let us study some specific po1jhedra related to graphs. Let G =(V,E) be an 
undirected graph, and let P c; R be the polytope determined by the inequali
ties 

(i) xe;;;;i:o (eEE), 

(ii) ~Xe~l (vEV). (48) 

e3v 

So P1 is the matching polytope of G. By Theorem 6, P =P1 if and only if G is 
bipartite. It is not difficult to see that for each graph G, P' is the set of all vec
tors x satisfying ( 48) and satisfying 

I 
~xeoe;;L21UIJ (Uc;V,IUlodd). (49) 

e(;;;U 

(Of course, there are infinitely many halfspaces H containing P, but the 
corresponding inequalities ax oe;; LP J all are implied by the inequalities in ( 48) 
and (49).) So Theorem 11 in fact tells us that P'=P1 for each ~raph G. 

Next consider for any graph G =(V,E) the polytope P c;R determined by 
the inequalities: 

(i) x,;;;;i:o (v e V), 

(ii) ~x.~l (eeE). 
(50) 

vee 

For this P, P1 is the coclique polytope of G. By Theorem 7, P = P 1 if and only 
if G is bipartite. It is not difficult to check that for any graph G, the polytope 
P' is the set of vectors x satisfying (50) and satisfying 

~ x,oe;; LflVCC)IJ (Codd circuit), (51) 
VE V(C) 

where V ( C) is the vertex set of C, and where an odd circuit is a circuit C with 
IV(C)I odd. 

CHvATAL [2) has shown that there exists no fixed t such that p<1> =P1 for 
each graph G. The problem of finding a largest coclique in a graph is NP
complete, and hence probably not polynomially solvable. Therefore, by 
Theorem I, probably there is no 'decent' description of the coclique polytope 
for all graphs. It is conjectured that for each fixed t, when we restrict ourselves 
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to graphs which have p<r> =PJ. the problem of finding a maximum weighted 
coclique is polynomially solvable (in fact, this problem can be shown to belong 
to NP n co-NP). The conjecture is true fort =O and t = 1 (using Theorem 1). 
If we want to show it for t = 2, by Theorem 1 it suffices to show that the fol
lowing problem is polynomially solvable: decide if a given vector x E IR v 
belongs to P", and if not, find a separating hyperplane. 

In Section 9 we shall see a class of graphs with P'=P1 . As a preparation, 
we discuss in Section 8 another geometric tool. 

8. BINARY CONFIGURATIONS 

We now come to a geometric method of a nature different from those dis
cussed above. Let us call a set x i. ... , xk of vectors in some space GF(2t a 
binary configuration. Usually, the zero-vector will not be among x i. ... , xb 

and hence we can consider a binary configuration as a configuration in 
PG(d, 2), the d-dimensional projective space over GF(2). 

A well-known binary configuration is the Fano-conjiguration (=PG (2, 2)) 
which is the binary configuration represented by the columns of 

[~ ~ ~ ~ ~ ~ ~ l (52) 
0010111 

and whose 7 points and 7 lines can be represented as: 

FIGURE 2 

The lines are represented by 6 line segments and one circle. The reader fami
liar with the Pano-configuration might have tried to draw it on the paper in 
such a way that all 7 lines become straight line segments, so that not all 7 
points are on one and the same line in the plane. After some trials one will be 
convinced that this is not possible, and it is not hard to show this algebrai
cally. 

In fact, Fano is in a sense a critical example. A famous and deep theorem of 
TUITE [26] states that a binary configuration can be embedded in euclidean 
space so that each subset of points span a space of the same dimension in the 
binary space as they do in euclidean space, if and only if the binary 
configuration does not 'contain' the Pano-configuration or its 'dual'. 

We shall make terms more precise. Call a binary configuration x i. ... , xk 
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in GF(2t embeddable in euclidean space if there exists a function 
q,:{x i. ... ,xk}~Rn so that for each subset T of {xi, ... , xk }, the dimension 
of <T> in GF(2t is equal to the dimension of «i>{T]> in !Rn. The function 
4> is called an embedding. 

Deleting x 1 from xi. ... ,xk means replacing Xi. ... ,xk by x 2, ... ,xk. 
Projecting along x 1 or contracting x 1 means replacing x 1 , ••• , xk by 

x 21<x1 >, ... ,xkl<x1 >, (53) 

where . ./ <x 1 > means projecting .. into the quotient space GF(2t I <x 1 >. 
Two binary configurations x i. ... , xk and x' i. ... , x' k are called geometri
cally the same if there is a linear transformation bringing x 1, ... , xk one-to
one to x' I> ••• , x' k. Thus the Fano-configuration is geometrically the same as 
the set of columns of 

1 1 1 0 0 0 
100110 
0 0 1 0 

001011 

(54) 

A binary configuration Y is called a minor of a binary configuration X, if Y 
can be obtained from X by deletion, projection and permutation of vectors, up 
to being geometrically the same. 

Trivially, embeddability in euclidean space is maintained under deletion. It 
is also not difficult to see that it is maintained under projection. Indeed, if 
q,: { x 1' ... , xk }~Rn forms an embedding, then also 
x;l<x 1 >f-+</>(x;)l<4>(x 1)> forms an embedding. It follows that embeddabil
ity in euclidean space is maintained under taking minors. 

The dual of the Fano-configuration is the configuration represented by the 
columns of 

1000110 
0 1 0 0 l 0 

0 0 1 0 0 

000111 

(55) 

Geometrically, the dual of the Fano-configuration is formed by the 7 points 
obtained from PG(3,2) by deleting one projective plane and one further (arbi
trary) point. Also this configuration is not embeddable in euclidean space. 

Now Tutte's theorem is: 

THEOREM 14. A binary configuration x 1, ... , xk is embeddable in euclidean 
space, if and only if it has no minor equal to the Pano-configuration or its dual. 

In order to interprete and use this difficult theorem, we first make a further 
study of binary configurations. To each binary configuration x 1, •.• , xk we 
can associate the binary space or binary code C of all vectors z in GF(2l 
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satisfying [x 1> • • • , xk ]z = 0 ( considerinp x ., . . . , xk as column vectors). 
Clearly, each linear subspace of GF(2) is associated in this way to some 
binary configuration. Two binary configurations are geometrically the same if 
and only if the associated binary codes are the same. 

The binary configuration y 1 , ••• ,yk is called dual to x 1, .•• , xk if the asso
ciated binary codes are each others orthogonal complements. Note that the 
well-known Hamming code is associated this way with the Pano-configuration, 
and the dual Hamming code to the dual of the Pano-configuration. 

If C is the binary code associated to the binary configuration x 1 , • • • , xk, 

and if we delete x" the associated binary code becomes { z I [ ~] e C); if we 

would project along x 1, the associated code becomes { z I [~] e C o• [ ! ] e C). 

Thus a binary configuration contains the Pano-configuration or its dual as a 
minor, if and only if by these operations the associated binary code can be 
transformed into the Hamming code or its dual. 

This is all quite standard linear algebra. More specific is the following 
definition. A subspace C of GF(2t is said to be orientable if we can associate 
with each xEC a vector x' in {O,+ly and with eachyeCl. a vector y" in 
{O, + 1 y in such a way that: 

(i) Vx EC: x and x' have the same support; 
(ii) VyeC:y andy" have the same support; (56) 
(iii) Vx E c, Vy E cl. :(x')7 y" = 0. 

The following theorem now is not so difficult to prove: 

THEOREM 15. A binary conjigu,ration is embeddable in euclidean space, if and 
only if the associated binary code is orientable. 

REMARK.. Another deep theorem characterizing binary configurations embedd
able in euclidean space is due to SEYMOUR [24). To describe this we need some 
concepts. 

A binary configuration is called graphic if it is geometrically the same as a 
binary configuration x., ... , xk where each vector x; has exactly two 1 's. It 
follows that the associated binary code is the 'cycle space' of a graph. A binary 
configuration is cographic if it is the dual of a graphic configuration. So the 
associated binary code is the 'cocycle space' of a graph. It is not difficult to see 
that graphic and cographic configurations are embeddable in euclidean space. 

Let be given two binary configurations x 1, ••• , xk and y 1, ••• ·Yr• not con
taining the zero-vector, and let d : = dim <x 1, ••• , xk > + dim 
<yi. ... ,y1> (where < .. > denotes projective space generated by .. , and dim 
denotes projective dimension). 

First, the two configurations can be embedded into PG(d, 2) so that 
<x., ... ,xk> n <y1 •... ,y,>= 0. If k;;;a.l, 1;;;..1, then the binary 
configuration x I> ••. , xk, y 1, ••• ,y, is called the I-sum of x i. ... , xk and 
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Yi.··· ·Yr· 
Second, the two configurations can be embedded into PG(d, 2) so that 

x 1 =y 1 and <xi. ... ,xk>n<y1> ... ,yr>={xi}. If k~3, t~3. then the 
binary configuration x 1 , .•• ,xk> y 1 , •.. ,yk is called a 2-sum of XJ. ... ,xk 

and Y1> · ···Yi· 
Third, let xhx 1,x3 form a line and let yi.y1 ,y3 form a line. Then the two 

configurations can be embedded into PG(d, 2) so that x1 =yl> x2 =y2, x 3=y3 
and <x1> ... ,xk>n<y1> ... ,y1 >={x1>x1 ,x3}. If k~7. t~7, then the 
binary configuration x 4 , ••. ,xk> y 4 , ••. ·Yr is called a 3-sum of XJ. ... ,xk 
andyl> ... ·Yr· 

Now Seymour's theorem is: 

THEOREM 16. A binary configuration is embeddable in euclidean space if and 
only if it can be obtained by making 1-, 2- and 3-sums from graphic 
configurations, cographic configurations, and the binary configuration made by the 
columns of 

1000011 00 
0100001 0 
0 0 1 0 0 0 0 1 (57) 
00010 00 
0 0 0 0 1 1 1 0 0 

Note that Tutte's theorem makes 'not embeddable in euclidean space' con
structible, while Seymour's theorem makes 'embeddable in euclidean space' 
constructible. 

Seymour's theorem has the following implication for totally unimodular 
matrices. Let A be a totally unimodular matrix. Then the binary configuration 
represented by the columns of the matrix [/A] (forgetting the - signs) is 
embeddable in euclidean space (as can be seen by not forgetting the - signs). 
Hence Seymour's theorem implies that A can be decomposed into 'network 
matrices', their transposes, and the following two matrices: 

-1 -1 0 0 1 1 1 
0 -1 -1 0 1 1 0 0 
0 0 -1 1 -1 and 0 1 0 (58) 

-1 0 0 -1 0 0 1 
-1 0 0 -1 1 0 0 1 

The meaning of 'can be decomposed into' becomes clear after elaborating the 
meaning of 1-, 2-, and 3-sum. Seymour's theorem also yields a polynomial-time 
test for total unimodularity. 
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9. BINARY CONFIGURATIONS AND COMBINATORIAL OPTIMIZATION 

There are several applications of the geometric results discussed in Section 8, 
e.g., to 2-commodity flows, the maximum cut problem, the Chinese postman 
problem, matchings - see SEYMOUR [23, 25]. We here restrict ourselves to one 
application to the coclique problem. 

Let G = ( V,E) be an undirected gi::aph, and consider the linear subspace CG 

of {O, I} X {O, l}E of all vectors [~] where Fis a collection of edges so that 

each vertex of G is incident to an even number of edges in F, where x!' 
denotes the characteristic vector of F in { 0, I} E, and where f = 0 if !FI is even 
and t:= I if !FI is odd. Let KG be the binary configuration (unique up to being 
geometrically the same) associated with CG. Note that 

Ci° = {[~]It:= 0 and F = 8(W) for some We;; V, or t: =I (59) 

and F= V\8(W) for some WCV}. 

The following lemma is easy to check: 

LEMMA. KG does not contain the Fano-configuration or its dual as a minor, if 
and only if G has no subgraph isomorphic to one of the following graphs: 

(60) 

~---------~ 

~ ~ ' ,, ' ,, ' / ' ,, ' ,, ' ,, ' , 
' , ' , (ldd 
',~/ 

FIGURE 3 'odd-K4' FIGURE 4 'odd-K~' 

Here wriggled lines represent paths of positive length and dotted lines 
represent lines of positive or zero length; odd in a face means that the circuit 
enclosing it has an odd number of edges. 

The following theorem is due to GERARDS [7]. 

THEOREM 17. A graph G has no subgraph isomorphic to one of the graphs in 
(60), if and only if we can orient the edges of G in such a way that in each circuit, 
the number of edges directed one way differs by at most one from the number of 
edges directed in the other way. 
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PROOF. The 'if part follows easily, since the graphs in (60) do not have the 
required orientation, as one easily checks. 

To see the 'only if part, we may assume that G is connected. From the 
Lemma we know that KG does not contain the Fano-configuration or its dual 
as a minor. By Tutte's theorem (Theorem 14), KG is embeddable in euclidean 
space. Hence, by Theorem 15, CG is orientable. Let the oriented vectors be 
indicated by' and" as in (56). So for each xECG, x'E{O, -+-1} X {O, +l}E and 
for eachyECi°,y"E{O,-+-l}X{0,-+-1}£. Without loss of generality 

[~ r l~ J (61) 

since we can multiply a certain coordinate by - 1 throughout in all x' and all 
y", not violating (56). 

Let M be the matrix with columns all vectors 

(62) 

for v in V. Let T be a spanning tree in G. Since replacing y" by - y" does not 
change (56), we may assume that in any row of M corresponding to an edge in 
T there is exactly one 1 and one - I. 

Now consider any other row, corresponding to edge e f1; T. There exist edges 

e,, ... , e, m Tso that e,, . : . ,e,, e fonn a ci<cuit, say C. Sffice [ :c r is a 

{O, -+-1 }-vector with MT [ :c] =O, it follows that the e-th row of Mis a linear 

combination of the rows e 1, ••• , ek. Since each of the rows e 1 , ••• , ek has 
row sum 0, also row e has row sum 0, i.e., it has exactly one 1 and one - 1. 

So all rows of M (except for the top row) have exactly one 1 and one - I. 
This gives us an orientation of G: orient any edge e from v to w if M has a + 1 
in position (e,v) and a -1 in position (e,w). 

We show that this is an orientation as required. Let C be a circuit in G. Let 
£=0 if ICJ is even, and€= 1 if !CJ is odd. Now, since 

M7 [:c r ~ 0 (63) 

we know that the cootdinates e whete [ :c r is + I and - I, respectively, 

corresponds to edges e in C oriented one way and the other way, respectively. 
Since 

(64) 
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(cf. (61)), it follows that in C the orientation satisfies the condition described 
in the theorem. 0 

Gerards showed that Theorem 17 implies the following result of GERARDS and 
SCHRIJVER [9]. 

THEOREM 18. Let G =(V,E) be a graph, without isolated vertices not containing 
a subgraph isomorphic to the odd-K4 in (60). Then the coclique polytope of G is 
equal to the set of all vectors x in R v satisfj;ing 

(i) xv ;;;;.Q (v E V), 

(ii) 2;xv.;;;; 1 (eEE), (65) 
VEe 

(iii) (C circuit with JV(C)I odd). 

PROOF (sketch). Let P be the set of vectors satisfying (65). Let G =(V,E) be a 
counterexample to the theorem with I VI as small as possible. First one shows 
that a minimal counterexample to the theorem should be 3-connected (i.e., 
there are no two vertices whose removal makes the graph disconnected) -
otherwise one could make a smaller counterexample. It is not difficult to check 
that if a graph is 3-connected and does not contain an odd-K4 , then it neither 
contains an odd-K~. It follows by Theorem 17 that G can be oriented so that: 

in any circuit, the number of edges oriented one way differs (66) 
by at most one from the number of edges oriented the other 
way. 

Let A denote the set of oriented edges, and let A- 1 :={(v,w)l(w,v)EA}. We 
now first show the following claim. 

CLAIM. A vector x belongs to P if and only if there exist vectors y,z E ~ v such 
that 

(i) O.;;;;xv .;;;;yv + Zv 

(ii) Jv + Zw.;;;; l 

(iii) Yv + Zw .;;;;Q 

(v E V), 

((v,w)EA), 

((v,w)EA- 1). 

(67) 

PROOF OF THE CLAIM. 'if: If there exist y,z satisfying (67), condition (i) in (65) 
is trivial. Condition (ii) holds as for any {v,w}EE 

Xv+ Xw.;;;;(Yv + Zv) + (yw + Zw) = (Yv + Zw) + (yw + Zv)~l, (68) 

since either (v,w) or (w,v) belongs to A. 
To check condition (iii), let C be an odd circuit in G. Let v0, v i. ... , vk =vo 

be a cyclic order of the vertices in C so that 
I I IA n {(v;-i,V;)li = 1, ... ,k}I = L 2k J = L 2JV(C)IJ. Then 
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k k k 
L Xv= LXv, ~ L (yv, + Zv,) = L(yv,_ 1 + Zv,) (69) 

v e V( C) i = l i = l i = l 
. I 

..;IA n{(v;- 1,v;)Ji = 1, ... ,k}I = L2JV(C)IJ. 

'only if: Define a 'length' function /:A UA - 1 ~1R by: 

/(v,w) :=I - Xv if (v,w)EA, 

l(v,w):= -xv if (v,w)EA- 1• 
(70) 

Note that each directed cycle C in the directed graph ( V,A U A - 1 ) has nonne
gative length 2.ae cl (a), since 

Ll(a) = L /(a)+ L /(a)= - L xv+ JCnAl;;;;.O, (71) 
aeC aeCnA aeCnA- 1 veV(C) 

since JCnAl;;;;.L~\V(C)IJ by (66) and LveV(c)xv.;;;;L{JV(C)IJ as xEP (where 

V ( C) : = set of vertices in C). 
Since each directed cycle in (V,A UA- 1) has nonnegative length, there exists 

a vector zEIRv so that zw-zv~l(v,w) for each (v,w)EA UA- 1 (we could take 
Zv : = the minimum length of any directed path in ( V,A U A - 1) ending in v -
then trivially zw~zv+l(v,w) for each (v,w)EA UA- 1). Hence 

Zw - Zv.;;;;I - Xv if (v,w)EA, (72) 

Zw - z,.;;;; - Xv if (v,w)EA- 1• 

Definingyv: =xv -zv we obtain x,y,z satisfying (67). End of proof of the Claim. 

Now let Q be the set of all vectors ~] ERvxRVxev satisfying (67). Then Q 

is a polyhedron, and it is equal to the convex hull of the integral vectors in Q, 
i.e., Q = Q1. This follows from the total unimodularity of the constraint matrix 
in (67), which is of type 

[~ ~ ~ l· (73) 

where I is a VX V-identity matrix, and where M and N are {O, 1 }-matrices so 
that every row of M and every row of N contains exactly one I. By Theorem 
5, matrix (73) is totally unimodular, and hence Q = Q1. 

Since by the Claim, P is a projection of Q, all vertices of P are integral. 
Hence, each vertex of P is the characteristic vector of some coclique of G, 
implying that P is the coclique polytope of G. D 

Note that the inequalities (iii) in (65) are the cutting planes added to (i) and 
(ii). So the theorem states that, if G contains no odd-K4 as a subgraph, then 
the coclique polytope is equal to {x EIR ~!xv+ xw.;;;; I ({v, w} EE)}'. 

With the help of Theorem I one can derive from Theorem 18 the 
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polynomial-time solvability of the maximum-weighted coclique problem for 
graphs without odd-K4. Indeed, one must show that (i), (ii) and (iii) in (65) 
can be checked in polynomial time. Conditions (i) and (ii) are easily checked 
one by one. Condition (iii) however consists of exponentially many inequali
ties. To check them in polynomial time, define a 'length' function /:E~R + by 
f(e):=I-xv-xw if e={v,w}. Then checking (iii) is equivalent to testing if 
each odd circuit has length at least 1. This last is not difficult to do in polyno
mial time, by adaptation of a shortest path algorithm. 

GERARDS [8] also derived the following min-max relation. 

THEOREM 19. Let G =(V,E) be a graph without isolated vertices, not containing 
an odd-K4 as a subgraph. Then 

max{ICllCcoclique }= min{IFI + :± LfiV(C;)IJIF~E;Ci. ... ,C1 (74) 
i=I 

I 

odd circuits so that V = U e U U V(C;)}. 
eEF i=I 

So the minimum ranges over all sets of edges and odd circuits which together 
cover all vertices of G. Note the similarity to Theorem 12. 

The theorem means that if we write rnax{ IC I IC coclique} as the problem of 
maximizing 1 T x over vectors x satisfying (65), we obtain a linear program with 
integral optimum primal and dual solutions. 

FINAL REMARK. In this paper we saw the polynomial-time solvability of two 
combinatorial optimization problems: 

(i) finding a maximum-weighted matching in a graph; (75) 
(ii) finding a maximum-weighted coclique in a graph without odd-K4. 

In fact, a maximum-weighted matching in a graph H can be considered as a 
maximum-weighted coclique in the line-graph L ( G) of G. MINTY [ 17] and 
SBIHI [ 19] showed that more generally, the maximum-weighted coclique prob
lem for clawfree graphs is polynomially solvable, i.e., for graphs not contain
ing 

c ) 

as an induced subgraph. By Theorem 1 it implies that the separation problem 
for coclique polytopes of claw-free graphs is polynomially solvable. However, 
no explicit description by inequalities for these polytopes has been found. It 
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has been shown by CHvATAL [3] that there exists no fixed t so that for claw
free graphs the coclique polytope is equal to { x E Ill ~ lxv + Xw ~ l 
({v,w} EE)r, in the notation of Section 7. 
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