
DataCell: Exploiting the Power of Relational Databases for 
Efficient Stream Processing

by Erietta Liarou and Martin Kersten

Designed for complex event processing, DataCell is a research prototype 
database system in the area of sensor stream systems. Under development at 
CWI, it belongs to the MonetDB database system family. CWI researchers 
innovatively built a stream engine directly on top of a database kernel, thus 
exploiting and merging technologies from the stream world and the rich area of 
database literature. The results are very promising.

Rather than simply transmitting the raw measured data, current state-of-the-art 
sensors are capable of a limited amount of processing. This feature has many 
positive effects, such as keeping the network usage and costs as low as possible. 
However, this is not enough to replace the role of well-equipped nodes that gather 
streaming sensor data from multiple sources and which account for the biggest 
share of the processing cost. These nodes should be able to perform complex 
query processing on large amounts of incoming data, meeting strict real-time 
deadlines even in periods when the frequency of incoming data explodes.

Our work focuses on this part of the sensor research. We are designing and 
developing a system called the DataCell, which is capable of efficiently collecting 
and processing high volumes of stream data. We are currently studying the 
DataCell over the stream application scenario of an ambient home setting. The 
DataCell is positioned as a data refinery cell that acts as an easily programmable 
data hub in a multi-network environment. Its task is to collect, filter and aggregate 
information from different sources to enable complex decision making, such as 
control of the lighting based on audio/video presentations. The challenge in an 
ambient environment is to hide the computer from the casual user, even while it is 
actively steering the environment. An example query in the ambient scenario could 
be, tune the television to my favourite show when I sit on the couch; ie depending 
on the weight measured by a sensor in the seat, and the time of day, different TV 
shows will appear on the screen.

In stream applications, we need mechanisms to support long-standing queries over 
data that is continuously updated from the environment. This requirement is 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


significantly different from what happens in a traditional database system, where 
data are stored in static tables and users fire one-time queries to be evaluated over 
the existing data. Given this critical difference, the pioneering architects of the data 
stream management system naturally considered existing database architectures 
inadequate to achieve the desired performance: instead they designed new 
architectures from scratch.

However, working from scratch makes it difficult to exploit the existing knowledge 
and techniques of relational databases. This disadvantage became more 
pronounced as the stream applications demanded more functionality. In DataCell 
therefore, we started at the other end of the spectrum, building an efficient data 
stream management system on top of an extensible database kernel. With careful 
design, this allows us to reuse the sophisticated algorithms and techniques of 
traditional databases. We can provide support for any kind of complex functionality 
without having to reinvent solutions and algorithms for problems and cases for 
which a rich database literature already exists. Furthermore, it allows for more 
flexible and efficient query processing by allowing batch processing of stream 
tuples, as well as non-consecutive processing by selectively picking the tuples to 
process.

The idea is that when stream tuples arrive in the system, they are immediately 
stored in (appended to) a new kind of table called a basket. By collecting tuples 
into baskets, we can evaluate the continuous queries (which are already submitted 
to the system and are waiting for future incoming data) over related baskets as if 
they were normal one-time queries. This allows us to reuse any kind of algorithm 
and optimization designed for a modern database system. Each query has at least 
one input and one output basket. It continuously reads data from the input baskets, 
processes this data and creates a result which it then places in its output baskets. 
Once a tuple has been seen by all relevant queries, it is dropped from its basket.



Figure 1: The DataCell in the ambient scenario.

This description of the process is somewhat simplified, since this process allows 
the exploration of quite flexible strategies. For example, the same tuple may be 
thrown into multiple baskets where multiple queries are waiting, query plans may 
be split into parts, and baskets may be shared between similar operators (or 
groups of operators) of different queries, allowing results to be reused.

The periphery of a sensor stream engine is formed by adapters, eg software 
components to interact with devices, RSS feeds and SOAP Web services. The 
communication protocols range from simple messages to complex XML documents 
transported using either UDP or TCP/IP. The adapters for the DataCell consist of 
receptors and emitters. A receptor is a separate thread that continuously picks up 
incoming events from a communication channel and forwards them to the DataCell 
kernel for processing. Likewise, an emitter is a separate thread that picks up events 
prepared by the DataCell kernel and delivers them to interested clients, ie those 
that have subscribed to a query result.



We designed and developed the DataCell at CWI in Amsterdam, funded by the 
BRICKS project. It is implemented on top of the MonetDB, an open-source column-
oriented database system. Currently it is a research prototype and the goal is to be 
able to disseminate the DataCell soon as part of MonetDB.

Link:
http://monetdb.cwi.nl/

Please contact:
Erietta Liarou 
CWI, The Netherlands
Tel: +31 20 59 24 127
E-mail: erietta cwi.nl

Martin Kersten
CWI, The Netherlands
Tel: +31 20 59 24 066
E-mail: mk cwi.nl

http://monetdb.cwi.nl/

