
Average-Case Quantum Query Complexity

Andris Ambainis1* and Ronald de Wolf2,3

1 Computer Science Department, University of California, Berkeley CA 94720,
ambainis©cs.berkeley.edu

2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands,
rdewolf©cwi.nl

3 ILLC, University of Amsterdam

Abstract. We compare classical and quantum query complexities of to
tal Boolean functions. It is known that for worst-case complexity, the gap
between quantum and classical can be at most polynomial [3]. We show
that for average-rose complexity under the uniform distribution, quan
tum algorithms can be exponentially faster than classical algorithms.
Under non-uniform distributions the gap can even be super-exponential.
We also prove some general bounds for average-case complexity and show
that the average-case quantum complexity of MAJORITY under the uni
form distribution is nearly quadratically better than the classical com
plexity.

1 Introduction

The field of quantum computation studies the power of computers based on quan
tum mechanical principles. So far, most quantum algorithms-and all physically
implemented ones-have operated in the so-called black-box setting. Examples
are [9,18,11,7,8]; even period-finding, which is the core of Shor's factoring algo
rithm [17], can be viewed as a black-box problem. Here the input of the function
f that we want to compute can only be accessed by means of queries to a "black
box". This returns the ith bit of the input when queried on i. The complexity
of computing f is measured by the required number of queries. In this setting
we want quantum algorithm that use significantly fewer queries than the best
classical algorithms.

We restrict attention to computing total Boolean functions f on N vari
ables. The query complexity of f depends on the kind of errors one allows.
For example, we can distinguish between exact computation, zero-error com
putation (a.k.a. Las Vegas), and bounded-error computation (Monte Carlo). In
each of these models, worst-case complexity is usually considered: the complex
ity is the number of queries required for the "hardest" input. Let D(f), R(f)
and Q(f) denote the worst-case query complexity of computing f for classical
deterministic algorithms, classical randomized bounded-error algorithms, and
quantum bounded-error algorithms, respectively. Clearly Q(f) s R(f) s D(f).

• Part of this work was done when visiting Microsoft Research.

H. Reichel and S. Tison (Eds.): STACS 2000, LNCS 1770, pp. 133-144, 2000.
© Springer-Verlag Berlin Heidelberg 2000

134 Andris Ambainis and Ronald de Wolf

The main quantum success here is Grover's algorithm [11]. It can compute the
OR-function with bounded-error using 8(VN) queries (this is optimal [4,5,20]).
Thus Q(OR) E 8(VN), whereas D(OR) = N and R(OR) E 8(N). This is
the biggest gap known between quantum and classical worst-case complexities
for total functions. (In contrast, for partial Boolean functions the gap can be
much bigger [9,18].) A recent result is that the gap between D(f) and Q(f) is at
most polynomial for every total f: D(f) E O(Q(f) 6) [3]. This is similar to the
best-known relation between classical deterministic and randomized algorithms:
D(f) E O(R(f) 3) [16].

Given some probability distributionµ on the set of inputs {O, l}N one may
also consider average-case complexity instead of worst-case complexity. Average
case complexity concerns the expected number of queries needed when the input
is distributed according to µ. If the hard inputs receive little µ-probability, then
average-case complexity can be significantly smaller than worst-case complexity.
Let Dµ(f), Rµ(f), and Qµ(f) denote the average-case analogues of D(f), R(j),
and Q(J), respectively. Again Qµ(f) ::; Rµ(f) ::; Dµ(f). The objective of this
paper is to compare these measures and to investigate the possible gaps between
them. Our main results are:

- Under uniformµ, Qµ(J) and Rµ(J) can be super-exponentially smaller than
Dµ(f).

- Under uniform µ, Qµ(J) can be exponentially smaller than Rµ(f). Thus
the [3]-result for worst-case quantum complexity does not carry over to the
average-case setting.

- Under non-uniform µ the gap can be even larger: we give distributions µ
where Qµ(OR) is constant, whereas Rµ(OR) is almost ffi. (Both this gap
and the previous one still remains if we require the quantum algorithm to
work with zero-error instead of bounded-error.)

- For every f andµ, Rµ(f) is lower bounded by the expected block sensitivity
Eµ[bs(f)] and Qµ(J) is lower bounded by Eµ[JbS(J)].

- For the MAJORITY-function under uniformµ, we have Qµ(f) E O(N112+0)

for every c > 0, and Qµ(f) E D(N112). In contrast, Rµ(f) E D(N).
- For the PARITY-function, the gap between Qµ and Rµ can be quadratic,

but not more. Under uniform µ, PARITY has Qµ(J) E D(N).

2 Definitions

Let f: {O,l}N---> {0,1} be a Boolean function. It is symmetric if f(X) only
depends on IX!, the Hamming weight (number of ls) of X. 0 denotes the input
with weight 0. We will in particular consider the following functions: OR(X) = 1
iff !XI 2:: 1; MAJ(X) = 1 iff IX! > N/2; PARITY(X) = 1 iff IX! is odd. If
X E {O, l}N is an input and S a set of (indices of) variables, we use xs to
denote the input obtained by flipping the values of the S-variables in X. The
block sensitivity bsx (f) of f on input X is the maximal number b for which
there are b disjoint sets of variables 8 1 , ... , Sb such that f(X) =f. f(X 5 ·) for all
1 ::; i::; b. The block sensitivity bs(f) off is maxx bsx(f).

Average-Case Quantum Query Complexity 135

We focus on three kinds of algorithms for computing f: classical determinis
tic, classical randomized bounded-error, and quantum bounded-error algorithms.
If A is an algorithm (quantum or classical) and b E {O, 1}, we use Pr[A(X) = b]
to denote the probability that A answers b on input X. We use TA(X) for
the expected number of queries that A uses on input X .1 Note that this only
depends on A and X, not on the input distribution µ. For deterministic A,
Pr[A(X) = b] E {O, l} and the expected number of queries TA(X) is the same
as the actual number of queries.

Let D(f) denote the set of classical deterministic algorithms that compute
f. Let R(f) = {classical A I '<IX E {O, l}N : Pr[A(X) = f(X)] 2'. 2/3} be
the set of classical randomized algorithms that compute f with bounded error
probability. Similarly let Q(f) be the set of quantum algorithms that compute
f with bounded-error. We define the following worst-case complexities:

D(f) = min max TA(X)
AED(f) XE{O,l}N

R(f) = min max TA(X)
AER(f) XE{O,l}N

Q(f) = min max TA (X)
AEQ(f) XE{O,l}N

D (!) is also known as the decision tree complexity of f and R(f) as the bounded
error decision tree complexity off. Since quantum generalizes randomized and
randomized generalizes deterministic computation, we have Q(f) :S: R(f) :S:
D(f) for all f. The three worst-case complexities are polynomially related:
D(j) E O(R(f)3) [16] and D(f) E O(Q(f)6) [3] for all total f.

Letµ: {O, l}N _, [O, I] be a probability distribution. We define the average
case complexity of an algorithm A with respect to a distribution µ as:

T~ = L µ(X)TA(X).
XE{O,l}N

The average-case deterministic, randomized, and quantum complexities off with
respect to µ are

Dµ (!) = min Tµ
AED(f) A

Rl>(f) = min Tµ
AER(f) A

Qµ(f) = min Tµ
AEQ(f) A

Note that the algorithms still have to output the correct answer on all inputs,
even on X that have µ(X) = 0. Clearly Qµ(j) S Rµ(f) S Dµ(f) for allµ and

1 See [3] for definitions and references for the quantum circuit model. A satisfactory
formal definition of expected number of queries TA(X) for a quantum algorithm A is
a hairy issue, involving the notion of a stopping criterion. We will not give such a
definition here, since in the bounded-error case, expected and worst-case number of
queries can be made the same up to a small constant factor.

136 Andris Atnba:In±Ycfud Ronald de Wolf

f. Our goal is to examine how large the gaps between these measures can be, in
particular for the uniform distribution unif(X) = 2-N.

The above treatment of average-case complexity is the standard one used
in average-case analysis of algorithms [19]. One counter-intuitive consequence
of these definitions, however, is that the average-case performance of polynomi
ally related algorithms can be superpolynomially apart (we will see this happen
in Section 5). This seemingly paradoxical effect makes these definitions unsuit
able for dealing with polynomial-time reducibilities and average-case complexity
classes, which is what led Levin to his alternative definition of "polynomial time
on average" [13).2 Nevertheless, we feel the above definitions are the appropri
ate ones for our query complexity setting: they just are the average number of
queries that one needs when the input is drawn according to distributionµ.

3 Super-Exponential Gap between nunif(J) and Qunif(J)

Here we show that Dunif(J) can be much larger then Runif(J) and Qunif(J):

Theorem 1. Define f on N variables such that f(X) = 1 iff IXI 2:: N /10. Then
Qunif(!) and Runif(!) are 0(1) and Dunif(J) E .fl(N).

Proof Suppose we randomly sample k bits of the input. Let a= IXl/N denote
the fraction of ls in the input and a the fraction of ls in the sample. Standard
Chernoff bounds imply that there is a constant c > 0 such that

Pr[a < 2/10 I a 2:: 3/10) :s: rck.

Now consider the following randomized algorithm for f:

1. Leti=l.
2. Sample ki = i/c bits. If the fraction iii of ls is 2:: 2/10, output 1 and stop.
3. If i < log N, increase i by 1 and repeat step 2.
4. If i 2:: log N, count N exactly using N queries and output the correct answer.

It is easily seen that this is a bounded-error algorithm for f. Let us bound its
average-case complexity under the uniform distribution.

If a 2: 3/10, the expected number of queries for step 2 is

~N .

L Pr[a1 :S: 2/10, ... ,ai-1 :S: 2/10 I a> 3/10] ·.: :S:
i=l c

logN . logN .

L Pr[ai-1 :s: 2/10 I a> 3/10) · _: :s: L rCi-I) . .: E 0(1).
i=l c i=l c

The probability that step 4 is needed (given a 2:: 3/10) is at most 2-clogN/c =
1/N. This adds /:tN = 1 to the expected number of queries.

2 We thank Umesh Vazirani for drawing our attention to this.

Average-Case Quantum Query Complexity 137

The probability of a < 3/10 is 2-c'N for some constant d. This case con
tributes at most 2-c' N (N + (log N)2) E o(l) to the expected number of queries.
Thus in total the algorithm uses 0(1) queries on average, hence Runif(J) E 0(1).

It is easy to see that any deterministic classical algorithm for f must make
at least N/10 queries on every input, hence nunif(J) ;:::: N/10. 0

Accordingly, we can have huge gaps between nunif(J) and Qunif(J). However,
this example tells us nothing about the gaps between quantum and classical
bounded-error algorithms. In the next section we exhibit an f where Qunif(J) is
exponentially smaller than Runif(J).

4 Exponential Gap between Runif(J) and Qu.nif (!)

4.1 The Function

We use the following modification of Simon's problem [18]:3

Input: X = (x1 , ... , X2n), where each Xi E {O, l}n.
Output: f(X) = 1 iff there is a non-zero k E {O, l}n such that Xiffik = Xi 'Vi.

Here we treat i E {O, l}n both as an n-bit string and as a number, and EB
denotes bitwise XOR. Note that this function is total (unlike Simon's). Formally,
f is not a Boolean function because the variables are {O, l}n-valued. However,
we can replace every variable Xi by n Boolean variables and then f becomes a
Boolean function of N = n2n variables. The number of queries needed to com
pute the Boolean function is at least the number of queries needed to compute
the function with {O, l}n-valued variables (because we can simulate a query to
the Boolean oracle with a query to the {O, 1 }n-valued oracle by just throwing
away the rest of the information) and at most n times the number of queries
to the {O, l}n-valued oracle (because one {O, l}n-valued query can be simulated
using n Boolean queries). As the numbers of queries are so closely related, it
does not make a big difference whether we use the {O, 1 }n-valued oracle or the
Boolean oracle. For simplicity we count queries to the {O, 1 }n-valued oracle.

The main result is the following exponential gap:

Theorem 2. For f as above, Qunif (f) :S 22n + 1 and Runif (f) E il(2nf2).

4.2 Quantum Upper Bound

The quantum algorithm is similar to Simon's. Start with the 2-register super
position I:iE{O,l}" \i) \0) (for convenience we ignore normalizing factors). Apply
the oracle once to obtain

:L \i)\xi)·
iE{O,l}"

3 The recent preprint [12] proves a related but incomparable result about another
modification of Simon's problem.

138 Andris Ambainis and Ronald de Wolf

Measuring the second register gives some j and collapses the first register to

L Ii).
i:x;=j

Applying a Hadamard transform H to each qubit of the first register gives

I: I: (-1/i,i')li'). (1)
i:x;=j i'E{O,i}"

(a, b) denotes inner product mod 2; if (a, b) = 0 we say a and b are orthogonal.
If f(X) = 1, then there is a non-zero k such that Xi = XiEflk for all i. In

particular, Xi =jiff XiEflk = j. Then the final state (1) can be rewritten as

"e t,;_l. ,,~}-1 i '·''l Ii') ~ ,. ,t,;_ i· c~, ~ ((-1) (•,•'1 + (-1) (•@>.n)) Ji')

~ ,.,t,;_1. c~, <-1{·''1 (1 + (-1)("n>) Ii').

Notice that Ii') has non-zero amplitude only if (k, i') = 0. Hence if f(X) = 1,
then measuring the final state gives some i' orthogonal to the unknown k.

To decide if f(X) = 1, we repeat the above process m = 22n times. Let
ii, .. ., im E { 0, 1 }n be the results of the m measurements. If J (X) = 1, there
must be a non-zero k that is orthogonal to all ir. Compute the subspace S ~
{O, 1 }n that is generated by ii, ... , im (i.e. Sis the set of binary vectors obtained
by taking linear combinations of ii, ... , im over GF(2)). If S = {O, l}n, then the
only k that is orthogonal to all ir is k =on, so then we know that f (X) = 0. If
S '# {O, l}n, we just query all 2n values xo ... o, .. .,xi...i and then compute f(X).
This latter step is of course very expensive, but it is needed only rarely:

Lemma 1. Assume that X = (xo ... o, ... , xi. .. i) is chosen uniformly at random
from {O, 1 }N. Then, with probability at least 1-2-n, J(X) = 0 and the measured
ii, ... , im generate {O, l}n.

Proof. It can be shown by a small modification of (1, Theorem 5.1, p.91] that
with probability at least 1 - 2-c2" (c > 0), there are at least 2n /8 values j such
that Xi = j for exactly one i E {O, 1 }n. We assume that this is the case.

If ii, ... , im generate a proper subspace of {O, l}n, then there is a non-zero
k E {O, l}n that is orthogonal to this subspace. We estimate the probability that
this happens. Consider some fixed non-zero vector k E {O, l}n. The probability
that ii and k are orthogonal is at most i~, as follows. With probability at least
1/8, the measurement of the second register gives j such that f (i) = j for a
unique i. In this case, the measurement of the final superposition (1) gives a
uniformly random i'. The probability that a uniformly random i' has (k, i') '# 0
is 1 /2. Therefore, the probability that (k, i 1) = 0 is at most 1 - k · ~ = i~.

Average-Case Quantum Query Complexity 139

The vectors ii, ... , im are chosen independently. Therefore, the probability
that k is orthogonal to each of them is at most (i~)22n < 2-2n. There are 2n - 1
possible non-zero k, so the probability that there is a k which is orthogonal to

h f . . . (2n l)2-2n 2-n eac o i1, ... ,im, lS at most - < . 0

Note that this algorithm is actually a zero-error algorithm: it always outputs
the correct answer. Its expected number of queries on a uniformly random input
is at most m = 22n for generating i 1, ... , im and at most 2~ 2n = 1 for querying
all the Xi if the first step does not give i 1, ... ,im that generate {O,l}n. This
completes the proof of the first part of Theorem 2.

4.3 Classical Lower Bound

Let D 1 be the uniform distribution over all inputs X E {O, 1 }N and D 2 be the
uniform distribution over all X for which there is a unique k =f. 0 such that
Xi = XiEBk (and hence f(X) = 1). We say an algorithm A distinguishes between
D 1 and D2 if the average probability that A outputs 0 is ~ 3/4 under D 1 and
the average probability that A outputs 1 is ::'.'.'. 3/4 under D2.

Lemma 2. If there is a bounded-error algorithm A that computes f with m =

T~nif queries on average, then there is an algorithm that distinguishes between
Di and D2 and uses O(m) queries on all inputs.

Proof. We run A until it stops or makes 4m queries. The average probability
(under D 1) that it stops is at least 3/4, for otherwise the average number of
queries would be more than i(4m) = m. Under Di. the probability that A
outputs f(X) = 1 is at most 1/4 + o(l) (1/4 is the maximum probability of
error on an input with f(X) = 0 and o(l) is the probability of getting an input
with f(X) = 1). Therefore, the probability under Di that A outputs 0 after at
most 4m queries, is at least 3/4 - (1/4 + o(l)) = 1/2 - o(l).

In contrast, the D 2-probability that A outputs 0 is ~ 1/4 because f(X) = 1
for any input X from D2. We can use this to distinguish D 1 from D2. D

Lemma 3. No classical randomized algorithm A that makes m E 0(2n/2) queries
can distinguish between Di and D2.

Proof. For a random input from D 1 , the probability that all answers to m queries
are different is

For a random input from D 2 , the probability that there is an i s.t. A queries
both Xi and Xiffik (k is the hidden vector) is~ (1;1)/(2n - 1) E o(l), since:

1. for every pair of distinct i,j, the probability that i = j EB k is l/(2n - 1)
2. since A queries only m of the x;, it queries only (1;1) distinct pairs i, j

140 Andris Ambainis and Ronald de Wolf

If no pair Xi, Xia>k is queried, the probability that all answers are different is

1 · (1 - l/2n-l) · · · (1 - (m - l)/2n-l) = 1 - o(l).

It is easy to see that all sequences of m different answers are equally likely.
Therefore, for both distributions D 1 and D2, we get a uniformly random sequence
of m different values with probability 1-o(l) and something else with probability
o(l). Thus A cannot "see" the difference between D1 and D2 with sufficient
probability to distinguish between them. 0

The second part of Theorem 2 now follows: a classical algorithm that com
putes f with an average number of m queries can be used to distinguish between
D 1 and D 2 with O(m) queries (Lemma 2), but then O(m) E .n(2n/2) (Lemma 3).

5 Super-Exponential Gap for Non-uniformµ

The last section gave an exponential gap between Qµ and Rµ under uniformµ.
Here we show that the gap can be even larger for non-uniform µ. Consider the
average-case complexity of the OR-function. It is easy to see that Dunif (OR),
Runif (OR), and Qunif (OR) are all 0(1), since the average input will have many
ls under the uniform distribution. Now we give some examples of non-uniform
distributionsµ where Qµ(OR) is super-exponentially smaller than Rµ(OR):

Theorem 3. If a E (0, 1/2) and µ(X) = c/ (1~ 1)(1XI + l)°'(N + 1)1-a (c ~ 1-a
is a normalizing constant), then Rµ(OR) E 8(N°') and Qµ(OR) E 8(1).

Proof. Any classical algorithm for OR requires 8(N/(IXI + 1)) queries on input
X. The upper bound follows from random sampling, the lower bound from a
block-sensitivity argument [16]. Hence (omitting the intermediate 8s):

Rµ(OR) = ~µ(X) 1xr+ 1 = t, (t ~~~+l E 8(N°').

Similarly, for a quantum algorithm 8(JN/(IXI + 1) queries are necessary and
sufficient on input X [11,5], so

~ N cNa-1/2
Qµ(OR) = ~µ(X)y TXf+l = 8 (t + l)°'+i/2 E 8(1). O

In particular, for a = 1/2 - c we have the huge gap 0(1) quantum versus
fl(N 112- 0) classical. Note that we obtain this super-exponential gap by weighing
the complexity of two algorithms (classical and quantum OR-algorithms) which
are only quadratically apart on each input X.

In fact, a small modification ofµ gives the same big gap even if the quantum
algorithm is forced to output the correct answer always. We omit the details.

Average-Case Quantum Query Complexity 141

6 General Bounds for Average-Case Complexity

In this section we prove some general bounds. First we make precise the intu
itively obvious fact that if an algorithm A is faster on every input than another
algorithm B, then it is also much faster on average under any distribution:

Theorem 4. If</>: R-+ R is a concave function and TA(X) ::;: c/>(Ts(X)) for
all X, then T~ ::;: </> (T~) for every µ.

Proof. By Jensen's inequality, if</> is concave then Eµ[</>(T)] S </>(Eµ[T]), hence

T~ S L µ(X)<f;(Ts(X)) S <P (L µ(X)Ts(X)) = <P (T~). o
XE{O,l}N XE{O,l}N

In words: taking the average cannot make the complexity-gap between two
algorithms smaller. For instance, if TA(X) S JTs(X) (say, A is Grover's algo

rithm and B is a classical algorithm for OR), then T~ ::;: JT":. On the other
hand, taking the average can make the gap much larger, as we saw in Theo
rem 3: the quantum algorithm for OR runs only quadratically faster than any
classical algorithm on each input, but the average-case gap between quantum
and classical can be much bigger than quadratic.

We now prove a general lower bound on Rµ and Qµ. Using an argument
from [16] for the classical case and an argument from [3] for the quantum case,
we can show:

Lemma 4. Let A be a bounded-error algorithm for some function f. If A is clas
sical then TA(X) E f2(bsx(f)), and if A is quantum then TA(X) E f2(Jbsx(f)).

A lower bound in terms of the µ-expected block sensitivity follows:

Theorem 5. For all f, µ: Rµ(f) Ef2(Eµ[bsx(f)]) and Qµ(f) ED(Eµ[Jbsx(J)]).

7 Average-Case Complexity of MAJORITY

Here we examine the average-case complexity of the MAJORITY-function. The
hard inputs for majority occur when t = IXI ~ N /2. Any quantum algorithm
needs f2(N) queries for such inputs [3]. Since the uniform distribution puts most
probability on the set of X with IXI close to N/2, we might expect an f2(N)
average-case complexity. However we will prove that the complexity is nearly
VN. For this we need the following result about approximate quantum counting,
which follows from [8, Theorem 5] (see also [14] or [15, Theorem 1.10]):

Theorem 6 (Brassard, H0yer, Tapp; Mosca). Let a: E [O, l]. There is a
quantum algorithm with worst-case O(Na) queries that outputs an estimate i of
the weight t = IXI of its input, such that It - tl S N 1-a with probability 2:: 2/3.

Theorem 7. For every E > 0, Qunif(MAJ) E O(N1/ 2H).

142 Andris Ambainis and Ronald de Wolf

Proof Consider the following algorithm, with input X, and a: E [O, 1 J to be
determined later.

1. Estimate t = IXI by i using O(N°) queries.
2. If i < N/2 - N 1-o. then output O; if i > N/2 + N 1-°' then output 1.
3. Otherwise use N queries to classically count t and output its majority.

It is easy to see that this is a bounded-error algorithm for MAJ. We determine
its average complexity. The third step of the algorithm will be invoked iff Ii -
N /21 :$ N 1-o.. Denote this event by "i ~ N /2". For 0 :$ k :$ N° /2, let Dk
denote the event that kN1-o. :$ It - N/21 <Jk + l)N1-°'. Under the uniform
distribution the probability that IXI = t is C)2-N. By Stirling's formula this
is 0(1/../N), so the probability of the event Dk is O(N1/ 2- 0). In the quantum
counting algorithm, Pr[kN1-a :$ Ii - tl < (k + l)N1-a] E 0(1/(k + 1)) (this
follows from [6], the upcoming journal version of [8] and [14]). Hence also Pr[i ~
N/2 I Dk] E 0(1/(k + 1)). The probability that the second counting stage is
needed is Pr[i ~ N/2], which we bound by

N° /2 N°/2

L Pr[i ~ N/21 Dk]·Pr[Dk] = L O(k ! 1)·O(N112-°') = O(N112 - 0 1ogN).
k=O k=O

Thus we can bound the average-case query complexity of our algorithm by

O(N°) + Pr[i ~ N /2] · N = O(N°') + O(N312-a log N).

Choosing a:= 3/4, we obtain an O(N314 logN) algorithm.
However, we can reiterate this scheme: instead of using N queries in step 3

we could count using O(N°2) instead of N queries, output an answer if there is
a clear majority (i.e. Ii- N/21 > N 1-°'2), otherwise count again using O(N°3)

queries etc. If after k stages we still have no clear majority, we count using N
queries. For any fixed k, we can make the error probability of each stage suffi
ciently small using only a constant number of repetitions. This gives a bounded
error algorithm for MAJORITY. (The above algorithm is the case k = 1.)

It remains to bound the complexity of the algorithm by choosing appropriate
values for k and for the O::i (put 0::1 = a). Let Pi denote the probability under
unif that the ith counting-stage will be needed, i.e. that all previous counts gave
results close to N/2. Then PHI E O(N112- 0 • logN) (as above). The average
query complexity is now bounded by:

O(N°1) + P2 · O(N°2) +···+Pk· O(N°k) + Pk+l · N =

O(N°' 1)+O(N1/ 2- 01+02 log N)+ · ·+o(N112-a1c- 1 +o.k log N)+o(N312-o.k log N).

Clearly the asymptotically minimal complexity is achieved when all exponents
in this expression are equal. This induces k - l equations 0::1 = 1/2- O:i + o:H1,

1 :$ i < k, and a kth equation 0:1 = 3/2 - O:k. Adding up these k equations we
obtain ka:1 = -0:1 +(k-1)/2+3/2, which implies a:1 = 1/2+1/(2k+2). Thus we
have average query complexity O(N112+l/(2k+2l logN). Choosing k sufficiently
large, this becomes O(N112+e). D

Average-Case Quantum Query Complexity 143

The nearly matching lower bound is:

Theorem 8. Qunif(MAJ) E f?(Nl/2).

Proof Let A be a bounded-error quantum algorithm for MAJORJTY. It follows
from the worst-case results of [3] that A uses fl(N) queries on the hardest
inputs, which are the X with IXI = N/2 ± 1. Since the uniform distribution
puts fl(l/VN) probability on the set of such X, the average-case complexity of
A is at least D(l/VN)f?(N) = fl(-./N). D

What about the classical average-case complexity? Alonso, Reingold, and
Schott [2] prove that Dunif(MAJ) = 2N/3 - J8N/9rr+ O(logN). We can also
prove that Runif(MAJ) E fl(N) (for reasons of space we omit the details), so
quantum is almost quadratically better than classical for this problem.

8 Average-Case Complexity of PARITY

Finally we prove some results for the average-case complexity of PARJTY. This
is in many ways the hardest Boolean function. Firstly, bs x (f) = N for all X,
hence by Theorem 5:

Corollary 1. For everyµ, Rµ(PARlTY) E D(N) and Qµ(PARlTY) E D(VN).

We can bounded-error quantum count IXI exactly, using 0(J(IXI + l)N)
queries [8]. Combining this with aµ that puts 0(1/VN) probability on the set
of all X with IXI > 1, we obtain Qµ(PAR1TY) E 0(VN).

We can prove Qµ (PARITY) ::; N /6 for anyµ by the following algorithm: with
probability 1/3 output 1, with probability 1/3 output 0, and with probability 1/3
run the exact quantum algorithm for PARlTY, which has worst-case complexity
N/2 [3,10]. This algorithm has success probability 2/3 on every input and has
expected number of queries equal to N / 6.

More than a linear speed-up on average is not possible ifµ is uniform:

Theorem 9. Qunif(PARITY) E fl(N).

Proof Let A be a bounded-error quantum algorithm for PARlTY. Let B be
an algorithm that flips each bit of its input X with probability 1/2, records
the number b of actual bitflips, runs A on the changed input Y, and outputs
A(Y) EB b. It is easy to see that Bis a bounded-error algorithm for PARlTY and
that it uses an expected number of T_;t queries on every input. Using standard
techniques, we can turn this into an algorithm for PARITY with worst-case
O(T~) queries. Since the worst-case lower bound for PARlTY is N/2 [3,10], the
theorem follows. D

Acknowledgments

We thank Harry Buhrman for suggesting this topic, and him, Lance Fortnow,
Lane Hemaspaandra, Hein Rohrig, Alain Tapp, and Umesh Vazirani for helpful
discussions. Also thanks to Alain for sending a draft of [6].

144 Andris Ambainis and Ronald de Wolf

References

1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, 1992.
2. L. Alonso, E. M. Reingold, and R. Schott. The average-case complexity of deter

mining the majority. SIAM Journal on Computing, 26(1):1-14, 1997.
3. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower

bounds by polynomials. In Proceedings of 39th FOGS, pages 352-361, 1998.
http://xxx.lanl.gov/ abs/ quant-ph/9802049.

4. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weak
nesses of quantum computing. SIAM Journal on Computing, 26(5):1510-1523,
1997. quant-ph/9701001.

5. M. Boyer, G. Brassard, P. H!Oyer, and A. Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493-505, 1998. Earlier version in
Physcomp'96. quant-ph/9605034.

6. G. Brassard, P. H!Oyer, M. Mosca, and A. Tapp. Quantum amplitude amplification
and estimation. Forthcoming.

7. G. Brassard, P. H<;iyer, and A. Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News (Cryptology Column), 28:14-19, 1997. quant-ph/9705002.

8. G. Brassard, P. H!Oyer, and A. Tapp. Quantum counting. In Proceedings of
25th !GALP, volume 1443 of Lecture Notes in Computer Science, pages 820-·831.
Springer, 1998. quant-ph/9805082.

9. D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.
In Proceedings of the Royal Society of London, volume A439, pages 553-558, 1992.

10. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of
quantum computation in determining parity. quant-ph/9802045, 16 Feb 1998.

11. L. K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of 28th STOC, pages 212-219, 1996. quant-ph/9605043.

12. E. Hemaspaandra, L. A. HemaBpaandra, and M. Zimand. Almost-everywhere su
periority for quantum polynomial time. quant-ph/9910033, 8 Oct 1999.

13. L. A. Levin. Average caBe complete problems. SIAM Journal on Computing,
15(1):285-286, 1986. Earlier version in STOC'84.

14. M. Mosca. Quantum searching, counting and amplitude amplification by eigenvec
tor analysis. In MFCS'98 workshop on Randomized Algorithms, 1998.

15. A. Nayak and F. Wu. The quantum query complexity of approximating the median
and related statistics. In Proceedings of 31th STOC, pages 384-393, 1999. quant
ph/9804066.

16. N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing,
20(6):999-1007, 1991. Earlier version in STOC'89.

17. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509,
1997. Earlier version in FOCS'94. quant-ph/9508027.

18. D. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474-1483, 1997. Earlier version in FOCS'94.

19. J. S. Vitter and Ph. Flajolet. Average-caBe analysis of algorithms and data struc
tures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Vol
ume A: Algorithms and Complexity, pages 431-524. MIT Press, Cambridge, MA,
1990.

20. Ch. Zalka. Grover's quantum searching algorithm is optimal. Physical Review A,
60:2746-2751, 1999. quant-ph/9711070.

