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Abstract. We compare classical and quantum query complexities of to
tal Boolean functions. It is known that for worst-case complexity, the gap 
between quantum and classical can be at most polynomial [3]. We show 
that for average-rose complexity under the uniform distribution, quan
tum algorithms can be exponentially faster than classical algorithms. 
Under non-uniform distributions the gap can even be super-exponential. 
We also prove some general bounds for average-case complexity and show 
that the average-case quantum complexity of MAJORITY under the uni
form distribution is nearly quadratically better than the classical com
plexity. 

1 Introduction 

The field of quantum computation studies the power of computers based on quan
tum mechanical principles. So far, most quantum algorithms-and all physically 
implemented ones-have operated in the so-called black-box setting. Examples 
are [9,18,11,7,8]; even period-finding, which is the core of Shor's factoring algo
rithm [17], can be viewed as a black-box problem. Here the input of the function 
f that we want to compute can only be accessed by means of queries to a "black
box". This returns the ith bit of the input when queried on i. The complexity 
of computing f is measured by the required number of queries. In this setting 
we want quantum algorithm that use significantly fewer queries than the best 
classical algorithms. 

We restrict attention to computing total Boolean functions f on N vari
ables. The query complexity of f depends on the kind of errors one allows. 
For example, we can distinguish between exact computation, zero-error com
putation (a.k.a. Las Vegas), and bounded-error computation (Monte Carlo). In 
each of these models, worst-case complexity is usually considered: the complex
ity is the number of queries required for the "hardest" input. Let D(f), R(f) 
and Q(f) denote the worst-case query complexity of computing f for classical 
deterministic algorithms, classical randomized bounded-error algorithms, and 
quantum bounded-error algorithms, respectively. Clearly Q(f) s R(f) s D(f). 
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The main quantum success here is Grover's algorithm [11]. It can compute the 
OR-function with bounded-error using 8( VN) queries (this is optimal [4,5,20]). 
Thus Q(OR) E 8(VN), whereas D(OR) = N and R(OR) E 8(N). This is 
the biggest gap known between quantum and classical worst-case complexities 
for total functions. (In contrast, for partial Boolean functions the gap can be 
much bigger [9,18].) A recent result is that the gap between D(f) and Q(f) is at 
most polynomial for every total f: D(f) E O(Q(f) 6 ) [3]. This is similar to the 
best-known relation between classical deterministic and randomized algorithms: 
D(f) E O(R(f) 3 ) [16]. 

Given some probability distributionµ on the set of inputs {O, l}N one may 
also consider average-case complexity instead of worst-case complexity. Average
case complexity concerns the expected number of queries needed when the input 
is distributed according to µ. If the hard inputs receive little µ-probability, then 
average-case complexity can be significantly smaller than worst-case complexity. 
Let Dµ(f), Rµ(f), and Qµ(f) denote the average-case analogues of D(f), R(j), 
and Q(J), respectively. Again Qµ(f) ::; Rµ(f) ::; Dµ(f). The objective of this 
paper is to compare these measures and to investigate the possible gaps between 
them. Our main results are: 

- Under uniformµ, Qµ(J) and Rµ(J) can be super-exponentially smaller than 
Dµ(f). 

- Under uniform µ, Qµ(J) can be exponentially smaller than Rµ(f). Thus 
the [3]-result for worst-case quantum complexity does not carry over to the 
average-case setting. 

- Under non-uniform µ the gap can be even larger: we give distributions µ 
where Qµ(OR) is constant, whereas Rµ(OR) is almost ffi. (Both this gap 
and the previous one still remains if we require the quantum algorithm to 
work with zero-error instead of bounded-error.) 

- For every f andµ, Rµ(f) is lower bounded by the expected block sensitivity 
Eµ[bs(f)] and Qµ(J) is lower bounded by Eµ[JbS(J)]. 

- For the MAJORITY-function under uniformµ, we have Qµ(f) E O(N112+0 ) 

for every c > 0, and Qµ(f) E D(N112). In contrast, Rµ(f) E D(N). 
- For the PARITY-function, the gap between Qµ and Rµ can be quadratic, 

but not more. Under uniform µ, PARITY has Qµ(J) E D(N). 

2 Definitions 

Let f: {O,l}N---> {0,1} be a Boolean function. It is symmetric if f(X) only 
depends on IX!, the Hamming weight (number of ls) of X. 0 denotes the input 
with weight 0. We will in particular consider the following functions: OR(X) = 1 
iff !XI 2:: 1; MAJ(X) = 1 iff IX! > N/2; PARITY(X) = 1 iff IX! is odd. If 
X E {O, l}N is an input and S a set of (indices of) variables, we use xs to 
denote the input obtained by flipping the values of the S-variables in X. The 
block sensitivity bsx (f) of f on input X is the maximal number b for which 
there are b disjoint sets of variables 8 1 , ... , Sb such that f(X) =f. f(X 5 ·) for all 
1 ::; i::; b. The block sensitivity bs(f) off is maxx bsx(f). 
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We focus on three kinds of algorithms for computing f: classical determinis
tic, classical randomized bounded-error, and quantum bounded-error algorithms. 
If A is an algorithm (quantum or classical) and b E {O, 1}, we use Pr[A(X) = b] 
to denote the probability that A answers b on input X. We use TA(X) for 
the expected number of queries that A uses on input X .1 Note that this only 
depends on A and X, not on the input distribution µ. For deterministic A, 
Pr[A(X) = b] E {O, l} and the expected number of queries TA(X) is the same 
as the actual number of queries. 

Let D(f) denote the set of classical deterministic algorithms that compute 
f. Let R(f) = {classical A I '<IX E {O, l}N : Pr[A(X) = f(X)] 2'. 2/3} be 
the set of classical randomized algorithms that compute f with bounded error 
probability. Similarly let Q(f) be the set of quantum algorithms that compute 
f with bounded-error. We define the following worst-case complexities: 

D(f) = min max TA(X) 
AED(f) XE{O,l}N 

R(f) = min max TA(X) 
AER(f) XE{O,l}N 

Q(f) = min max TA (X) 
AEQ(f) XE{O,l}N 

D (!) is also known as the decision tree complexity of f and R(f) as the bounded
error decision tree complexity off. Since quantum generalizes randomized and 
randomized generalizes deterministic computation, we have Q(f) :S: R(f) :S: 
D(f) for all f. The three worst-case complexities are polynomially related: 
D(j) E O(R(f)3) [16] and D(f) E O(Q(f)6) [3] for all total f. 

Letµ: {O, l}N _, [O, I] be a probability distribution. We define the average
case complexity of an algorithm A with respect to a distribution µ as: 

T~ = L µ(X)TA(X). 
XE{O,l}N 

The average-case deterministic, randomized, and quantum complexities off with 
respect to µ are 

Dµ (!) = min Tµ 
AED(f) A 

Rl>(f) = min Tµ 
AER(f) A 

Qµ(f) = min Tµ 
AEQ(f) A 

Note that the algorithms still have to output the correct answer on all inputs, 
even on X that have µ(X) = 0. Clearly Qµ(j) S Rµ(f) S Dµ(f) for allµ and 

1 See [3] for definitions and references for the quantum circuit model. A satisfactory 
formal definition of expected number of queries TA(X) for a quantum algorithm A is 
a hairy issue, involving the notion of a stopping criterion. We will not give such a 
definition here, since in the bounded-error case, expected and worst-case number of 
queries can be made the same up to a small constant factor. 
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f. Our goal is to examine how large the gaps between these measures can be, in 
particular for the uniform distribution unif(X) = 2-N. 

The above treatment of average-case complexity is the standard one used 
in average-case analysis of algorithms [19]. One counter-intuitive consequence 
of these definitions, however, is that the average-case performance of polynomi
ally related algorithms can be superpolynomially apart (we will see this happen 
in Section 5). This seemingly paradoxical effect makes these definitions unsuit
able for dealing with polynomial-time reducibilities and average-case complexity 
classes, which is what led Levin to his alternative definition of "polynomial time 
on average" [13).2 Nevertheless, we feel the above definitions are the appropri
ate ones for our query complexity setting: they just are the average number of 
queries that one needs when the input is drawn according to distributionµ. 

3 Super-Exponential Gap between nunif(J) and Qunif(J) 

Here we show that Dunif(J) can be much larger then Runif(J) and Qunif(J): 

Theorem 1. Define f on N variables such that f(X) = 1 iff IXI 2:: N /10. Then 
Qunif(!) and Runif(!) are 0(1) and Dunif(J) E .fl(N). 

Proof Suppose we randomly sample k bits of the input. Let a= IXl/N denote 
the fraction of ls in the input and a the fraction of ls in the sample. Standard 
Chernoff bounds imply that there is a constant c > 0 such that 

Pr[a < 2/10 I a 2:: 3/10) :s: rck. 

Now consider the following randomized algorithm for f: 

1. Leti=l. 
2. Sample ki = i/c bits. If the fraction iii of ls is 2:: 2/10, output 1 and stop. 
3. If i < log N, increase i by 1 and repeat step 2. 
4. If i 2:: log N, count N exactly using N queries and output the correct answer. 

It is easily seen that this is a bounded-error algorithm for f. Let us bound its 
average-case complexity under the uniform distribution. 

If a 2: 3/10, the expected number of queries for step 2 is 

~N . 

L Pr[a1 :S: 2/10, ... ,ai-1 :S: 2/10 I a> 3/10] ·.: :S: 
i=l c 

logN . logN . 

L Pr[ai-1 :s: 2/10 I a> 3/10) · _: :s: L rCi-I) . .: E 0(1). 
i=l c i=l c 

The probability that step 4 is needed (given a 2:: 3/10) is at most 2-clogN/c = 
1/N. This adds /:tN = 1 to the expected number of queries. 

2 We thank Umesh Vazirani for drawing our attention to this. 
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The probability of a < 3/10 is 2-c'N for some constant d. This case con
tributes at most 2-c' N (N + (log N)2) E o(l) to the expected number of queries. 
Thus in total the algorithm uses 0(1) queries on average, hence Runif(J) E 0(1). 

It is easy to see that any deterministic classical algorithm for f must make 
at least N/10 queries on every input, hence nunif(J) ;:::: N/10. 0 

Accordingly, we can have huge gaps between nunif(J) and Qunif(J). However, 
this example tells us nothing about the gaps between quantum and classical 
bounded-error algorithms. In the next section we exhibit an f where Qunif(J) is 
exponentially smaller than Runif(J). 

4 Exponential Gap between Runif(J) and Qu.nif (!) 

4.1 The Function 

We use the following modification of Simon's problem [18]:3 

Input: X = (x1 , ... , X2n ), where each Xi E {O, l}n. 
Output: f(X) = 1 iff there is a non-zero k E {O, l}n such that Xiffik = Xi 'Vi. 

Here we treat i E {O, l}n both as an n-bit string and as a number, and EB 
denotes bitwise XOR. Note that this function is total (unlike Simon's). Formally, 
f is not a Boolean function because the variables are {O, l}n-valued. However, 
we can replace every variable Xi by n Boolean variables and then f becomes a 
Boolean function of N = n2n variables. The number of queries needed to com
pute the Boolean function is at least the number of queries needed to compute 
the function with {O, l}n-valued variables (because we can simulate a query to 
the Boolean oracle with a query to the {O, 1 }n-valued oracle by just throwing 
away the rest of the information) and at most n times the number of queries 
to the {O, l}n-valued oracle (because one {O, l}n-valued query can be simulated 
using n Boolean queries). As the numbers of queries are so closely related, it 
does not make a big difference whether we use the {O, 1 }n-valued oracle or the 
Boolean oracle. For simplicity we count queries to the {O, 1 }n-valued oracle. 

The main result is the following exponential gap: 

Theorem 2. For f as above, Qunif (f) :S 22n + 1 and Runif (f) E il(2nf2). 

4.2 Quantum Upper Bound 

The quantum algorithm is similar to Simon's. Start with the 2-register super
position I:iE{O,l}" \i) \0) (for convenience we ignore normalizing factors). Apply 
the oracle once to obtain 

:L \i)\xi)· 
iE{O,l}" 

3 The recent preprint [12] proves a related but incomparable result about another 
modification of Simon's problem. 
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Measuring the second register gives some j and collapses the first register to 

L Ii). 
i:x;=j 

Applying a Hadamard transform H to each qubit of the first register gives 

I: I: (-1/i,i')li'). (1) 
i:x;=j i'E{O,i}" 

(a, b) denotes inner product mod 2; if (a, b) = 0 we say a and b are orthogonal. 
If f(X) = 1, then there is a non-zero k such that Xi = XiEflk for all i. In 

particular, Xi =jiff XiEflk = j. Then the final state (1) can be rewritten as 

"e t,;_l. ,,~}-1 i '·''l Ii') ~ ,. ,t,;_ i· c~, ~ ( ( -1) (•,•'1 + ( -1) ( •@>.n)) Ji') 

~ ,.,t,;_1. c~, <-1{·''1 (1 + (-1)("n>) Ii'). 

Notice that Ii') has non-zero amplitude only if (k, i') = 0. Hence if f(X) = 1, 
then measuring the final state gives some i' orthogonal to the unknown k. 

To decide if f(X) = 1, we repeat the above process m = 22n times. Let 
ii, .. ., im E { 0, 1 }n be the results of the m measurements. If J (X) = 1, there 
must be a non-zero k that is orthogonal to all ir. Compute the subspace S ~ 
{O, 1 }n that is generated by ii, ... , im (i.e. Sis the set of binary vectors obtained 
by taking linear combinations of ii, ... , im over GF(2)). If S = {O, l}n, then the 
only k that is orthogonal to all ir is k =on, so then we know that f (X) = 0. If 
S '# {O, l}n, we just query all 2n values xo ... o, .. .,xi...i and then compute f(X). 
This latter step is of course very expensive, but it is needed only rarely: 

Lemma 1. Assume that X = (xo ... o, ... , xi. .. i) is chosen uniformly at random 
from {O, 1 }N. Then, with probability at least 1-2-n, J(X) = 0 and the measured 
ii, ... , im generate {O, l}n. 

Proof. It can be shown by a small modification of (1, Theorem 5.1, p.91] that 
with probability at least 1 - 2-c2" (c > 0), there are at least 2n /8 values j such 
that Xi = j for exactly one i E {O, 1 }n. We assume that this is the case. 

If ii, ... , im generate a proper subspace of {O, l}n, then there is a non-zero 
k E {O, l}n that is orthogonal to this subspace. We estimate the probability that 
this happens. Consider some fixed non-zero vector k E {O, l}n. The probability 
that ii and k are orthogonal is at most i~, as follows. With probability at least 
1/8, the measurement of the second register gives j such that f (i) = j for a 
unique i. In this case, the measurement of the final superposition (1) gives a 
uniformly random i'. The probability that a uniformly random i' has (k, i') '# 0 
is 1 /2. Therefore, the probability that ( k, i 1) = 0 is at most 1 - k · ~ = i~. 
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The vectors ii, ... , im are chosen independently. Therefore, the probability 
that k is orthogonal to each of them is at most ( i~ )22n < 2-2n. There are 2n - 1 
possible non-zero k, so the probability that there is a k which is orthogonal to 

h f . . . (2n l)2-2n 2-n eac o i1, ... ,im, lS at most - < . 0 

Note that this algorithm is actually a zero-error algorithm: it always outputs 
the correct answer. Its expected number of queries on a uniformly random input 
is at most m = 22n for generating i 1, ... , im and at most 2~ 2n = 1 for querying 
all the Xi if the first step does not give i 1, ... ,im that generate {O,l}n. This 
completes the proof of the first part of Theorem 2. 

4.3 Classical Lower Bound 

Let D 1 be the uniform distribution over all inputs X E {O, 1 }N and D 2 be the 
uniform distribution over all X for which there is a unique k =f. 0 such that 
Xi = XiEBk (and hence f(X) = 1). We say an algorithm A distinguishes between 
D 1 and D2 if the average probability that A outputs 0 is ~ 3/4 under D 1 and 
the average probability that A outputs 1 is ::'.'.'. 3/4 under D2. 

Lemma 2. If there is a bounded-error algorithm A that computes f with m = 

T~nif queries on average, then there is an algorithm that distinguishes between 
Di and D2 and uses O(m) queries on all inputs. 

Proof. We run A until it stops or makes 4m queries. The average probability 
(under D 1) that it stops is at least 3/4, for otherwise the average number of 
queries would be more than i(4m) = m. Under Di. the probability that A 
outputs f(X) = 1 is at most 1/4 + o(l) (1/4 is the maximum probability of 
error on an input with f(X) = 0 and o(l) is the probability of getting an input 
with f(X) = 1). Therefore, the probability under Di that A outputs 0 after at 
most 4m queries, is at least 3/4 - (1/4 + o(l)) = 1/2 - o(l). 

In contrast, the D 2-probability that A outputs 0 is ~ 1/4 because f(X) = 1 
for any input X from D2. We can use this to distinguish D 1 from D2. D 

Lemma 3. No classical randomized algorithm A that makes m E 0(2n/2 ) queries 
can distinguish between Di and D2. 

Proof. For a random input from D 1 , the probability that all answers to m queries 
are different is 

For a random input from D 2 , the probability that there is an i s.t. A queries 
both Xi and Xiffik (k is the hidden vector) is~ (1;1)/(2n - 1) E o(l), since: 

1. for every pair of distinct i,j, the probability that i = j EB k is l/(2n - 1) 
2. since A queries only m of the x;, it queries only (1;1) distinct pairs i, j 



140 Andris Ambainis and Ronald de Wolf 

If no pair Xi, Xia>k is queried, the probability that all answers are different is 

1 · (1 - l/2n-l) · · · (1 - (m - l)/2n-l) = 1 - o(l). 

It is easy to see that all sequences of m different answers are equally likely. 
Therefore, for both distributions D 1 and D2, we get a uniformly random sequence 
of m different values with probability 1-o(l) and something else with probability 
o(l). Thus A cannot "see" the difference between D1 and D2 with sufficient 
probability to distinguish between them. 0 

The second part of Theorem 2 now follows: a classical algorithm that com
putes f with an average number of m queries can be used to distinguish between 
D 1 and D 2 with O(m) queries (Lemma 2), but then O(m) E .n(2n/2 ) (Lemma 3). 

5 Super-Exponential Gap for Non-uniformµ 

The last section gave an exponential gap between Qµ and Rµ under uniformµ. 
Here we show that the gap can be even larger for non-uniform µ. Consider the 
average-case complexity of the OR-function. It is easy to see that Dunif (OR), 
Runif (OR), and Qunif (OR) are all 0(1), since the average input will have many 
ls under the uniform distribution. Now we give some examples of non-uniform 
distributionsµ where Qµ(OR) is super-exponentially smaller than Rµ(OR): 

Theorem 3. If a E (0, 1/2) and µ(X) = c/ ( 1~ 1 )(1XI + l)°'(N + 1)1-a (c ~ 1-a 
is a normalizing constant), then Rµ(OR) E 8(N°') and Qµ(OR) E 8(1). 

Proof. Any classical algorithm for OR requires 8(N/(IXI + 1)) queries on input 
X. The upper bound follows from random sampling, the lower bound from a 
block-sensitivity argument [16]. Hence (omitting the intermediate 8s): 

Rµ(OR) = ~µ(X) 1xr+ 1 = t, (t ~~~+l E 8(N°'). 

Similarly, for a quantum algorithm 8( JN/(IXI + 1) queries are necessary and 
sufficient on input X [11,5], so 

~ N cNa-1/2 
Qµ(OR) = ~µ(X)y TXf+l = 8 (t + l)°'+i/2 E 8(1). O 

In particular, for a = 1/2 - c we have the huge gap 0(1) quantum versus 
fl(N 112- 0 ) classical. Note that we obtain this super-exponential gap by weighing 
the complexity of two algorithms (classical and quantum OR-algorithms) which 
are only quadratically apart on each input X. 

In fact, a small modification ofµ gives the same big gap even if the quantum 
algorithm is forced to output the correct answer always. We omit the details. 
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6 General Bounds for Average-Case Complexity 

In this section we prove some general bounds. First we make precise the intu
itively obvious fact that if an algorithm A is faster on every input than another 
algorithm B, then it is also much faster on average under any distribution: 

Theorem 4. If</>: R-+ R is a concave function and TA(X) ::;: c/>(Ts(X)) for 
all X, then T~ ::;: </> (T~) for every µ. 

Proof. By Jensen's inequality, if</> is concave then Eµ[</>(T)] S </>(Eµ[T]), hence 

T~ S L µ(X)<f;(Ts(X)) S <P ( L µ(X)Ts(X)) = <P (T~). o 
XE{O,l}N XE{O,l}N 

In words: taking the average cannot make the complexity-gap between two 
algorithms smaller. For instance, if TA(X) S JTs(X) (say, A is Grover's algo

rithm and B is a classical algorithm for OR), then T~ ::;: JT":. On the other 
hand, taking the average can make the gap much larger, as we saw in Theo
rem 3: the quantum algorithm for OR runs only quadratically faster than any 
classical algorithm on each input, but the average-case gap between quantum 
and classical can be much bigger than quadratic. 

We now prove a general lower bound on Rµ and Qµ. Using an argument 
from [16] for the classical case and an argument from [3] for the quantum case, 
we can show: 

Lemma 4. Let A be a bounded-error algorithm for some function f. If A is clas
sical then TA(X) E f2(bsx(f)), and if A is quantum then TA(X) E f2( Jbsx(f)). 

A lower bound in terms of the µ-expected block sensitivity follows: 

Theorem 5. For all f, µ: Rµ(f) Ef2(Eµ[bsx(f)]) and Qµ(f) ED(Eµ[ Jbsx(J)]). 

7 Average-Case Complexity of MAJORITY 

Here we examine the average-case complexity of the MAJORITY-function. The 
hard inputs for majority occur when t = IXI ~ N /2. Any quantum algorithm 
needs f2(N) queries for such inputs [3]. Since the uniform distribution puts most 
probability on the set of X with IXI close to N/2, we might expect an f2(N) 
average-case complexity. However we will prove that the complexity is nearly 
VN. For this we need the following result about approximate quantum counting, 
which follows from [8, Theorem 5] (see also [14] or [15, Theorem 1.10]): 

Theorem 6 (Brassard, H0yer, Tapp; Mosca). Let a: E [O, l]. There is a 
quantum algorithm with worst-case O(Na) queries that outputs an estimate i of 
the weight t = IXI of its input, such that It - tl S N 1-a with probability 2:: 2/3. 

Theorem 7. For every E > 0, Qunif(MAJ) E O(N1/ 2H). 
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Proof Consider the following algorithm, with input X, and a: E [O, 1 J to be 
determined later. 

1. Estimate t = IXI by i using O(N°) queries. 
2. If i < N/2 - N 1-o. then output O; if i > N/2 + N 1-°' then output 1. 
3. Otherwise use N queries to classically count t and output its majority. 

It is easy to see that this is a bounded-error algorithm for MAJ. We determine 
its average complexity. The third step of the algorithm will be invoked iff Ii -
N /21 :$ N 1-o.. Denote this event by "i ~ N /2". For 0 :$ k :$ N° /2, let Dk 
denote the event that kN1-o. :$ It - N/21 <Jk + l)N1-°'. Under the uniform 
distribution the probability that IXI = t is C )2-N. By Stirling's formula this 
is 0(1/../N), so the probability of the event Dk is O(N1/ 2- 0 ). In the quantum 
counting algorithm, Pr[kN1-a :$ Ii - tl < (k + l)N1-a] E 0(1/(k + 1)) (this 
follows from [6], the upcoming journal version of [8] and [14]). Hence also Pr[i ~ 
N/2 I Dk] E 0(1/(k + 1)). The probability that the second counting stage is 
needed is Pr[i ~ N/2], which we bound by 

N° /2 N°/2 

L Pr[i ~ N/21 Dk]·Pr[Dk] = L O(k ! 1 )·O(N112-°') = O(N112 - 0 1ogN). 
k=O k=O 

Thus we can bound the average-case query complexity of our algorithm by 

O(N°) + Pr[i ~ N /2] · N = O(N°') + O(N312-a log N). 

Choosing a:= 3/4, we obtain an O(N314 logN) algorithm. 
However, we can reiterate this scheme: instead of using N queries in step 3 

we could count using O(N°2 ) instead of N queries, output an answer if there is 
a clear majority (i.e. Ii- N/21 > N 1-°'2 ), otherwise count again using O(N°3 ) 

queries etc. If after k stages we still have no clear majority, we count using N 
queries. For any fixed k, we can make the error probability of each stage suffi
ciently small using only a constant number of repetitions. This gives a bounded
error algorithm for MAJORITY. (The above algorithm is the case k = 1.) 

It remains to bound the complexity of the algorithm by choosing appropriate 
values for k and for the O::i (put 0::1 = a). Let Pi denote the probability under 
unif that the ith counting-stage will be needed, i.e. that all previous counts gave 
results close to N/2. Then PHI E O(N112- 0 • logN) (as above). The average 
query complexity is now bounded by: 

O(N°1 ) + P2 · O(N°2 ) +···+Pk· O(N°k) + Pk+l · N = 

O(N°' 1 )+O(N1/ 2- 01+02 log N)+ · ·+o(N112-a1c- 1 +o.k log N)+o(N312-o.k log N). 

Clearly the asymptotically minimal complexity is achieved when all exponents 
in this expression are equal. This induces k - l equations 0::1 = 1/2- O:i + o:H1, 

1 :$ i < k, and a kth equation 0:1 = 3/2 - O:k. Adding up these k equations we 
obtain ka:1 = -0:1 +(k-1)/2+3/2, which implies a:1 = 1/2+1/(2k+2). Thus we 
have average query complexity O(N112+l/(2k+2l logN). Choosing k sufficiently 
large, this becomes O(N112+e). D 
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The nearly matching lower bound is: 

Theorem 8. Qunif(MAJ) E f?(Nl/2). 

Proof Let A be a bounded-error quantum algorithm for MAJORJTY. It follows 
from the worst-case results of [3] that A uses fl(N) queries on the hardest 
inputs, which are the X with IXI = N/2 ± 1. Since the uniform distribution 
puts fl(l/VN) probability on the set of such X, the average-case complexity of 
A is at least D(l/VN)f?(N) = fl(-./N). D 

What about the classical average-case complexity? Alonso, Reingold, and 
Schott [2] prove that Dunif(MAJ) = 2N/3 - J8N/9rr+ O(logN). We can also 
prove that Runif(MAJ) E fl(N) (for reasons of space we omit the details), so 
quantum is almost quadratically better than classical for this problem. 

8 Average-Case Complexity of PARITY 

Finally we prove some results for the average-case complexity of PARJTY. This 
is in many ways the hardest Boolean function. Firstly, bs x (f) = N for all X, 
hence by Theorem 5: 

Corollary 1. For everyµ, Rµ(PARlTY) E D(N) and Qµ(PARlTY) E D( VN). 

We can bounded-error quantum count IXI exactly, using 0( J(IXI + l)N) 
queries [8]. Combining this with aµ that puts 0(1/VN) probability on the set 
of all X with IXI > 1, we obtain Qµ(PAR1TY) E 0( VN). 

We can prove Qµ (PARITY) ::; N /6 for anyµ by the following algorithm: with 
probability 1/3 output 1, with probability 1/3 output 0, and with probability 1/3 
run the exact quantum algorithm for PARlTY, which has worst-case complexity 
N/2 [3,10]. This algorithm has success probability 2/3 on every input and has 
expected number of queries equal to N / 6. 

More than a linear speed-up on average is not possible ifµ is uniform: 

Theorem 9. Qunif(PARITY) E fl(N). 

Proof Let A be a bounded-error quantum algorithm for PARlTY. Let B be 
an algorithm that flips each bit of its input X with probability 1/2, records 
the number b of actual bitflips, runs A on the changed input Y, and outputs 
A(Y) EB b. It is easy to see that Bis a bounded-error algorithm for PARlTY and 
that it uses an expected number of T_;t queries on every input. Using standard 
techniques, we can turn this into an algorithm for PARITY with worst-case 
O(T~) queries. Since the worst-case lower bound for PARlTY is N/2 [3,10], the 
theorem follows. D 

Acknowledgments 

We thank Harry Buhrman for suggesting this topic, and him, Lance Fortnow, 
Lane Hemaspaandra, Hein Rohrig, Alain Tapp, and Umesh Vazirani for helpful 
discussions. Also thanks to Alain for sending a draft of [6]. 



144 Andris Ambainis and Ronald de Wolf 

References 

1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, 1992. 
2. L. Alonso, E. M. Reingold, and R. Schott. The average-case complexity of deter

mining the majority. SIAM Journal on Computing, 26(1):1-14, 1997. 
3. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower 

bounds by polynomials. In Proceedings of 39th FOGS, pages 352-361, 1998. 
http://xxx.lanl.gov/ abs/ quant-ph/9802049. 

4. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weak
nesses of quantum computing. SIAM Journal on Computing, 26(5):1510-1523, 
1997. quant-ph/9701001. 

5. M. Boyer, G. Brassard, P. H!Oyer, and A. Tapp. Tight bounds on quantum 
searching. Fortschritte der Physik, 46( 4-5):493-505, 1998. Earlier version in 
Physcomp'96. quant-ph/9605034. 

6. G. Brassard, P. H!Oyer, M. Mosca, and A. Tapp. Quantum amplitude amplification 
and estimation. Forthcoming. 

7. G. Brassard, P. H<;iyer, and A. Tapp. Quantum algorithm for the collision problem. 
ACM SIGACT News (Cryptology Column), 28:14-19, 1997. quant-ph/9705002. 

8. G. Brassard, P. H!Oyer, and A. Tapp. Quantum counting. In Proceedings of 
25th !GALP, volume 1443 of Lecture Notes in Computer Science, pages 820-·831. 
Springer, 1998. quant-ph/9805082. 

9. D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. 
In Proceedings of the Royal Society of London, volume A439, pages 553-558, 1992. 

10. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of 
quantum computation in determining parity. quant-ph/9802045, 16 Feb 1998. 

11. L. K Grover. A fast quantum mechanical algorithm for database search. In 
Proceedings of 28th STOC, pages 212-219, 1996. quant-ph/9605043. 

12. E. Hemaspaandra, L. A. HemaBpaandra, and M. Zimand. Almost-everywhere su
periority for quantum polynomial time. quant-ph/9910033, 8 Oct 1999. 

13. L. A. Levin. Average caBe complete problems. SIAM Journal on Computing, 
15(1):285-286, 1986. Earlier version in STOC'84. 

14. M. Mosca. Quantum searching, counting and amplitude amplification by eigenvec
tor analysis. In MFCS'98 workshop on Randomized Algorithms, 1998. 

15. A. Nayak and F. Wu. The quantum query complexity of approximating the median 
and related statistics. In Proceedings of 31th STOC, pages 384-393, 1999. quant
ph/9804066. 

16. N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 
20(6):999-1007, 1991. Earlier version in STOC'89. 

17. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509, 
1997. Earlier version in FOCS'94. quant-ph/9508027. 

18. D. Simon. On the power of quantum computation. SIAM Journal on Computing, 
26(5):1474-1483, 1997. Earlier version in FOCS'94. 

19. J. S. Vitter and Ph. Flajolet. Average-caBe analysis of algorithms and data struc
tures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Vol
ume A: Algorithms and Complexity, pages 431-524. MIT Press, Cambridge, MA, 
1990. 

20. Ch. Zalka. Grover's quantum searching algorithm is optimal. Physical Review A, 
60:2746-2751, 1999. quant-ph/9711070. 


