
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

A rolling stock circulation model for combining and 
splitting of passenger trains

P.J. Fioole, L.G. Kroon, G. Maróti, A. Schrijver

REPORT PNA-E0420 DECEMBER 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711



A rolling stock circulation model for combining and
splitting of passenger trains

ABSTRACT
This paper addresses the railway rolling stock circulation problem. Given the departure and
arrival times as well as the expected numbers of passengers, we have to assign the rolling
stock to the timetable services. We consider several objective criteria that are related to
operational costs, service quality and reliability of the railway system. Our model is an extension
of an existing rolling stock model for routing train units along a number of connected train lines.
The extended model can also handle underway combining and splitting of trains. We illustrate
our model by computational experiments based on instances of NS Reizigers, the main Dutch
operator of passenger trains.

2000 Mathematics Subject Classification:  90B06 90B10
Keywords and Phrases: Rolling stock circulation





A Rolling Stock Circulation Model for

Combining and Splitting of Passenger Trains

Pieter-Jan Fioole

NS Reizigers, Utrecht, The Netherlands,

E-mail: PJ.Fioole@reizigers.ns.nl

Leo Kroon∗

NS Reizigers, Utrecht and
Erasmus University, Rotterdam

P.O.Box 1738, 3000 DR Rotterdam, The Netherlands

E-mail: L.Kroon@fbk.eur.nl
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1 Introduction

This paper addresses the railway rolling stock circulation problem, thereby also

taking into account the underway combining and splitting of trains. Given the

departure and arrival times as well as the expected numbers of passengers, we

have to assign the available rolling stock to the timetable services. We optimize

different objective criteria that are related to operational costs, service quality

and reliability of the railway system.

The problem we focus on is to determine the rolling stock circulation for a

generic week. That is, it arises in an early phase of the railway planning process.

In later stages, this generic plan must be adjusted to the specific calendar days,

and shunting plans must be created. Finally, the traffic control must carry out

these plans, and adapt them in case of disturbances.

A main complicating issue is the fact that the available train units are of

different types. This forces one to keep track of the positions of the different

train units within each train. This is particularly important in the case of

combining and splitting trains.

In this paper we give an integer programming model. It deals with an

extension of the problem described by Peeters and Kroon [9]. Their branch-and-

price approach strongly uses the fact that trains run up-and-down a number

of connected train lines. However, in the case of underway combining and

splitting of trains, this property is lost if several branches of the lines have

different lengths, as it happens in real-life instances of the Dutch passenger

railway operator NS Reizigers. The model we are describing here can be applied

for such instances. We used the commercial mixed integer programming software

CPLEX to solve our model.

So far, the rolling stock plans of NS Reizigers were created manually. It

turned out that our model is capable to provide solutions that can be imple-

mented in practice. One of our main achievements is that the rolling stock
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circulation for the timetable year 2005 is based on solutions of our model.

This paper is organized as follows. We describe the problem in detail in

Section 2. A literature overview is given in Section 3. In Section 4 we formulate

our model. Section 5 contains our computational results. Finally, in Section 6

some conclusions are drawn.

2 Problem description

2.1 The Noord-Oost case

The train line system that is studied in this paper is the so-called Noord-

Oost case, involving the train lines 500, 700, 1600 and 1700 of NS Reizigers.

These train lines form the backbone of the Dutch railway system, by connecting

the cities Amsterdam (Asd), Schiphol (Shl), Rotterdam (Rtd), and The Hague

(Gvc) in the Western part of the Netherlands to the cities Leeuwarden (Lw),

Groningen (Gn), and Enschede (Es) in the Northern and Eastern part of the

country. Utrecht (Ut), Amersfoort (Amf), Deventer (Dv), and Zwolle (Zl) are

important underway stations. (See Figures 1 and 2.)

The train lines are operated by a given number of self-propelled train units

with 3 or 4 carriages each. Train units can be composed to a longer train in

any possible order. The departure and arrival times of the train services have

already been specified in an earlier stage of the planning process. The timetable

of the involved lines is more or less periodic with a period of one hour.

Almost all trains in the Noord-Oost are combined or split at certain locations.

For example, a train in the 1600 line arriving in Amersfoort from Enschede is

split into two parts. The front part continues to Amsterdam, while the rear

part continues to Schiphol. On the way back, the train arriving from Schiphol

becomes the front part, it is combined with the train arriving from Amsterdam.

Trains in the 1700 line are combined or split in Utrecht. Trains in the 500 line
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Figure 1: The Noord-Oost train lines on the Dutch railway map

are combined or split both in Utrecht and in Zwolle, and trains in the 700 line

are combined or split both in Amersfoort and in Zwolle. Note that the timetable

always specifies from which stations the front and the rear part of a combined

train arrive, and towards which stations the front and rear part of a split train

depart.
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Figure 2: The Noord-Oost train lines

Our task is to assign the train units to the timetable services such that var-

ious technical and market constraints are fulfilled. In this study we focus on

rolling stock schedules for each day of the week separately, and we use con-
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straints such that solutions for consecutive days can be attached to each other.

Computational power is the only limit when considering planning periods longer

than one day.

One of the complicating issues in rolling stock management is maintenance

of rolling stock units. Maintenance is, however, no requirement in the medium-

term rolling stock planning at NS Reizigers. In the Netherlands, timetables

and rolling stock circulations are dense, thus sensitive to disturbances. So,

preset maintenance schedules have little chance to be carried out. Therefore,

maintenance is planned in the operational phase.

2.2 Objectives

Creating an appropriate rolling stock schedule means finding a balance between

several objectives, such as minimizing: (i) the number of carriage kilometers

(efficiency), (ii) the amount of seat shortages (service), and (iii) the number of

shunting movements (robustness). The model described in this paper allows to

make a trade-off between these objectives. The objectives are explained below

in detail.

The operational cost of using the rolling stock depends on traction power, but

also on maintenance of the rolling stock: after a certain number of kilometers,

each train unit is directed to a maintenance station for a preventive check-up

and repair. In both cases, the number of carriage kilometers is an appropriate

measure for variable rolling stock costs.

The input of our problem contains the estimated number of first and second

class passengers for every timetable service. Good service quality means among

others that all passengers, in particular first class passengers, have a seat during

their journey. However, during rush hours, there may be more passengers than

seats. Outside rush hours, rolling stock capacity is usually sufficient to provide

all passengers with a seat. Our measure for the seat shortages is the expected
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number of passengers without a seat multiplied by the length of the involved

trip, and added up for all trips. We call it seat-shortage kilometers.

Train compositions can be modified at certain stations by coupling train

units to a train or by uncoupling train units from it. Changing the composition

of a train is a complex process. It requires a number of shunting movements

between the platform area and the shunting area of a station. This may lead to

disturbances of the regular train operations. Thus a smaller number of shunting

operations may increase the robustness of the railway system. Moreover, the

shunting costs are also related to the crew: each shunting movement requires a

train driver. On the other hand, changing the train compositions between two

rides may allow to use the rolling stock more efficiently and also to decrease

seat shortages.

3 Literature review

In the literature, several related problems have been studied, apart from the

paper by Peeters and Kroon [9] that was mentioned earlier. These models are

often set up for locomotive-hauled railways carriages, and do not consider the

order of the carriages (train units). Moreover, no optimization methods were

developed so far to handle combining and splitting train units.

Schrijver [10] considers the problem of minimizing the number of train units

needed to satisfy passengers’ seat demand. The model computes for every trip

the number of train units of each type to be used, not taking the order of the

units in a train composition into account. Seat shortages and the number of

shunting movements are not considered.

Alfieri et al. [2] describe an integer programming model to determine the

circulation of rolling stock (including the order of the train units in the com-

positions) on a single train line and a single day. The objective is to minimize

the number of train units needed to satisfy the demand; seat shortages and the
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number of shunting operations are not taken into account. Their approach was

tested on real-life case-studies of NS Reizigers.

Brucker et al. [5] study the problem of routing single railway carriages

through a network: The carriages should be used in timetable services or empty

trains such that each timetable service can be operated with a given number of

carriages. The order of the carriages is not considered. Their solution approach

is based on local search techniques like simulated annealing.

Ben-Khedher et al. [4] study the problem of allocating identical train units

to the French High Speed Trains. Their rolling stock allocation system is based

on a capacity adjustment model that is linked to the seat reservation system

and seeks to maximize the expected profit for the company.

Cordeau et al. [6] present a Benders decomposition approach for the locomo-

tive and carriage assignment problem. Computational experiments show that

optimal solutions can be found quickly. In a subsequent paper, Cordeau at al.

[7] extend their model with various real-life constraints, such as maintenance.

Neither of these models considers the order of the carriages in the train compo-

sitions in detail.

Lingaya et al. [8] describe a model for operational management of locomotive-

hauled railway carriages. They explicitly take the order of the carriages in

the trains into account. Several real-life constraints, such as maintenance, are

considered. The solution approach is based on a Dantzig-Wolfe reformulation

solved by column generation.

Abbink et al. [1] present an integer programming model for distributing the

available rolling stock between the train lines. This model does not determine

an actual schedule. Instead, seat shortages during the morning rush hours are

minimized by allocating rolling stock to the trains running at 8 o’clock in the

morning, the busiest moment of the day. This model can provide the number

of available train units when the rolling stock scheduling problem is solved for

each train line separately.
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4 Model Formulation

In this section we first describe the model without combining and splitting

trains. However, it is possible to modify train compositions by coupling or

uncoupling train units before the train departs, underway, and after the train

arrives. Thereafter we extend the basic model in Section 4.4 with combining

and splitting of trains.

In our model, we assume that train units stored at a station can be coupled

later to any of the departing trains from that station, irrespective of the arrival

order of the stored train units. This explains the difference between splitting

and uncoupling: In case of splitting, the split parts serve in passenger trains. In

particular, the order of the train units in the split parts does matter. However,

uncoupled train units are transferred to the shunting area at the station, and

there the order of the train units does not matter anymore. The re-allocation

time described below reserves time for shunting. The difference between com-

bining and coupling is similar.

4.1 The model without combining and splitting

Let M be the set of train unit types. For each m ∈ M , let nm denote the

number of available train units of type m.

A composition of train units is an ordered sequence of elements of M . We

assume that the left-hand side of the string corresponds to the front of the

train. In the Noord-Oost case, we have two types: units with 3 or 4 carriages.

The order of the units in a train composition plays an important role. For

example, train compositions 334 and 343 have the same capacity, but they differ

in shunting possibilities. The train unit with 4 carriages can be much more easily

uncoupled from composition 334 than from composition 343. Let nm,p denote

the number of train units of type m in composition p. For a composition p, let

β(p) ∈ Z
M be such that β(p)m = np,m for each train unit type m ∈ M .
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A trip is a sequence of consecutive train movements during which the train

composition cannot change. Let T be the set of trips. A trip t is characterized

by its departure station sd(t), arrival station sa(t), departure time τd(t) and

arrival time τa(t).

The set of compositions that are allowed for trip t is denoted by Pt. When

determining the sets Pt, the following aspects are taken into account: (i) the

capacity of the train should be sufficient to provide a certain service level, and

(ii) the length of the train may not exceed a certain upper bound, mainly

determined by the lengths of the platforms along the trip.

Let ν(t) denote the successor trip of t: the train that carries out trip t carries

out trip ν(t) immediately after t, although some units may be (un)coupled.

The set T0 denotes the set of trips that have no defined previous trip, while T1

denotes the set of trips without defined subsequent trip. We assume that for a

trip t ∈ T0, all train units serving t must be coupled just before t, while for a

trip t ∈ T1, all train units must be uncoupled just after t.

Let Γt denote the set of pairs (p, p′) such that p ∈ Pt, p′ ∈ Pν(t), and such

that the composition change p → p′ after trip t is allowed. Thus the shunting

possibilities are encoded in the sets Γt. In instances of NS Reizigers, a general

constraint is that either some units may be uncoupled or some units may be

coupled but not both. Coupling and uncoupling train units is only allowed at

the front or rear side of a train composition, depending on the infrastructure of

the station. For example, the train unit of length 4 cannot be uncoupled from a

composition 343. On the other hand, if the station allows shunting at the rear

side of the train, then a composition change from 334 to 33 is possible.

In practice, a train unit, that has been uncoupled from a train, cannot

be coupled immediately onto another train: a certain re-allocation time %(s),

depending on the station, has to be respected. We model this as follows. Train

units that are stored temporarily at a station can be coupled to a departing

train immediately. However, an uncoupled train unit appears at the station as
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a train unit available only %(s) minutes later. We illustrate this schematically

in Figure 3. The station s is represented by a time-line, and we consider a pair

of arrival and departure events. (Un)coupled units go through the arcs that

connect the time-line to the arrival or departure event nodes.
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Figure 3: Coupling and uncoupling train units

The main variables are the following:

Xt,p ∈ {0, 1} whether composition p is used for trip t.

Zt,p,p′ ∈ {0, 1} whether trip t has composition p and trip ν(t) has

composition p′.

The variable Nt,m denotes the number of train units of type m that are used

on trip t. We also introduce the variables Ct,m and Ut,m: Ct,m expresses the

number of train units of type m that have been coupled to the train composition

right before trip t, and Ut,m expresses the number of train units of type m that

have been uncoupled from the train composition right after trip t.

The variable It,m denotes the number of train units of type m that are stored

(i.e., available for being coupled to a train) at station sd(t), immediately after

the departure of trip t. Note that this inventory value might not be equal to the

number of train units that are physically present at the station: Train units that

are used both for trip t and ν(t) are not considered to be stored between the

arrival of t and the departure of ν(t). Moreover, uncoupled train units increase

the local inventory after the re-allocation time, while coupled units decrease it

immediately.
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The variable I0
s,m denotes the number of train units of type m that start the

day at station s. The set of stations is denoted by S. Now the basic part of the

model reads as follows:

min F (X,Z,N) (1)

subject to

∑

p∈Pt

Xt,p = 1 ∀t ∈ T (2)

Xt,p =
∑

p′∈Pν(t) : (p,p′)∈Γt

Zt,p,p′ ∀t ∈ T \ T1; p ∈ Pt (3)

Xν(t),p′ =
∑

p∈Pt : (p,p′)∈Γt

Zt,p,p′ ∀t ∈ T \ T1; p′ ∈ Pν(t) (4)

Nt,m =
∑

p∈Pt

np,mXt,p ∀t ∈ T ; m ∈ M (5)

Cν(t),m =
∑

(p,p′)∈Γt :
np′,m>np,m

(np′,m − np,m) · Zt,p,p′ ∀t ∈ T \ T1; m ∈ M (6)

Ut,m =
∑

(p,p′)∈Γt :
np,m>np′,m

(np,m − np′,m) · Zt,p,p′ ∀t ∈ T \ T1; m ∈ M (7)

Ct,m = Nt,m and Ut,m = 0 ∀t ∈ T0; m ∈ M (8)

Ut,m = Nt,m and Ct,m = 0 ∀t ∈ T1; m ∈ M (9)

It,m = I0
s(t),m −

∑

t′∈T : sd(t′)=sd(t),
τd(t′)6τd(t)

Ct′,m

+
∑

t′∈T : sa(t′)=sd(t),
τa(t′)6τd(t)−%(sd(t))

Ut′,m ∀t ∈ T, m ∈ M (10)

nm =
∑

s∈S

I0
s,m ∀m ∈ M (11)
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Xt,p ∈ {0, 1} ∀t ∈ T ; p ∈ Pt (12)

Nt,m, Ct,m, Ut,m, It,m ∈ R+ ∀t ∈ T ; m ∈ M (13)

I0
s,m ∈ Z+ ∀s ∈ S; m ∈ M (14)

Zt,p,p′ ∈ R+ ∀t ∈ T ; (p, p′) ∈ Γt (15)

We describe the objective function in detail in Section 4.2. Constraints (2)

state that, for each trip, exactly one allowed composition of train units is to be

used. Constraints (3) and (4) guarantee a correct link between the compositions

that are used for consecutive trips. Constraints (5) describe the connection

between the composition that is used for a certain trip and the numbers of

train units of the different types that are used on this trip. Constraints (6) –

(9) specify the number of coupled and uncoupled train units. Constraints (10)

describe the inventory of train units in the different stations. To compute the

value It,m, we consider the number of train units that are stored at the station

at the begin of the day, then we increase or decrease it whenever a train unit

was uncoupled or coupled until the departure time of trip t.

Constraints (11) handle the correct allocation of the available train units to

the initial inventories at the different stations. Finally, constraints (12) – (15)

describe the binary or non-negative character of the variables.

One easily verifies the following lemma.

Lemma 1. In any feasible solution to the model (1) – (15), the variables Ut,m,

Ct,m, Is,t and Zt,p,p′ are integral.

Proof. The variables Ut,m, Ct,m, Is,t and Zt,p,p′ are uniquely determined by the

integer variables Xp,m and I0
s,m.

The composition changes could be modelled without the variables Zt,p,p′

but using additional linear constraints on the variables Xt,p. Such a model is

described e.g. in Alfieri et al. [2]. One easily proves that the linear relaxation

12



of their model defines a polytope that strictly contains the linear relaxation

of our model. Therefore the branch and bound procedure in our model works

with better lower bounds. Moreover, according to Lemma 1, we never have to

branch on a variable Zt,p,p′ . Thus we can expect that the number of nodes in the

branch and bound tree becomes smaller. On the other hand, we have to solve

larger linear programs. State-of-the-art commercial software such as CPLEX

can, however, easily cope with linear programs that appear in our applications.

The model described above can be solved (nearly) to optimality for instances of

NS Reizigers that were computationally intractable by earlier models.

4.2 Objective function

As was mentioned earlier, the objective function contains three major elements:

(i) carriage kilometers, (ii) seat-shortage kilometers, and (iii) the number of

shunting movements. Given the above defined decision variables, these elements

can be computed easily.

For the total number of carriage kilometers CKM , the following holds:

CKM =
∑

t∈T

∑

m∈M

`t · cm · Nt,m (16)

where `t is the length of trip t and cm is the number of carriages in train unit

type m.

The total number of seat-shortage kilometers SKM can be determined as

follows:

SKM =
∑

t∈T

∑

p∈Pt

`t · st,p · Xt,p. (17)

Here st,p denotes the expected number of seat shortages when composition p is

used for trip t. The shortage is computed by comparing the forecasted number

of passengers to the capacity of the train compositions.

Coupling and uncoupling at the same time is not allowed for a composition

change from p to p′. Therefore the total number of shunting movements SHM
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can be determined by adding all the variables Zt,p,p′ with β(p) 6= β(p′). That

is,

SHM =
∑

t∈T

∑

(p,p′)∈Γt :
β(p)6=β(p′)

Zt,p,p′ (18)

We minimize a non-negative linear combination of these criteria, the weight

factors reflecting their relative importance. In order to guide the different ele-

ments of the objective function, we also introduce upper bounds on CKM , SKM

and SHM .

Note that the quality of the solutions can be measured by several other

characteristics. For example, the largest seat shortage on a trip should not be

too high (e.g. 20% of the passengers of a trip). Seat shortages in the first

class can be penalized more heavily than in the second class. Another criterion

is to keep the number of shunting movements during rush hours small. The

objective function and the constraints can easily be modified in order to take

these additional criteria into account.

4.3 New integer decision variables

The variables Xt,p describe the exact train composition for each trip t. Now it

turns out that, if a certain (binary) decision has been made with respect to the

length of a train, then the decision with respect to the detailed composition of

the train will be binary automatically. That is, the number of binary decision

variables becomes smaller: in the Noord-Oost case, about 9,900 binary variables

Xt,p are replaced by about 5,700 new binary variables.

The new decision variables determine the number of train units per type

that is allocated for the trips, without specifying the exact order in the train.

For a trip t, we define the set of vectors in Z
M
+

Bt = {β(p) | p ∈ Pt}

The set Bt contains the possible train lengths for trip t. We introduce the binary

14



variables

Yt,b ∈ {0, 1} whether combination b ∈ Bt is used for trip t.

The connection to the already defined variables Xt,p is described by

Yt,b =
∑

p∈Pt : b=β(p)

Xt,p ∀t ∈ T ; b ∈ Bt. (19)

The variables Yt,b correspond to the higher-level decisions like capacity alloca-

tion, while the variables Xt,p fill in the fine details of the solution.

Theorem 2. Consider the model (1) – (15) extended by the binary variables

Yt,b and by the constraints (19). Replace the constraint (12) in this model by

0 6 Xt,p 6 1. Then this relaxed mixed integer program has an integral optimal

solution whenever it has a feasible solution.

Proof. Let (X,Y,N,C,U, I0, I, Z) be an optimal solution to the relaxed prob-

lem: the variables Yt,b are binary, while the variables Xt,p may have fractional

values. Consider the directed graph with node set {(t, p) : p ∈ Pt} and arc set

{((t, p), (ν(t), p′)) : (p, p′) ∈ Γt}. Set the capacity of an arc to 0 if the corre-

sponding Zt,p,p′ is zero, and set the capacity to 1 otherwise. The values Zt,p,p′

form a network flow in this graph. Thus there exists an integer valued network

flow Ẑt,p,p′ with the same amount of flow. Define the values X̂t,p according to

the constraints (3) – (4).

We shall prove that the variables Yt,b and I0
t,m uniquely determine the vari-

ables Ct,m, Ut,m and It,m as well as the objective criteria CKM , SKM and SHM .

Then it is easy to verify that (X̂, Y,N,C, U, I0, I, Ẑ) is an integral feasible (and

optimal) solution to the relaxed model.

One easily derives that for each trip t and train unit type m, we have Nt,m =
∑

b∈Bt
bmYt,b. Consider now any trip t. The integrality of the variables Yt,b

implies that a variable Xt,p can have a positive value only if the composition

p contains as many units of each type as the variables Nt,m indicate. Then

(3) and (4) imply that all members of the set {(p, p′) ∈ Γt | Zt,p,p′ > 0} have

15



the same differences nm,p′ − nm,p for every m ∈ M (namely Nν(t),m − Nt,m).

Therefore Ct,m = max{Nν(t),m − Nt,m, 0} and Ut,m = max{Nt,m − Nν(t),m, 0}.

It follows that the variables It,m are also uniquely determined.

Clearly, the number of carriage kilometers CKM only depends on the vari-

ables Yt,b. Moreover, the number of seat-shortage kilometers SKM is also de-

termined by the variables Yt,b. Indeed, all compositions that correspond to a

certain combination b ∈ Bt have the same capacity and thus the same amount

of seat shortages (denoted by st,b) in trip t. Therefore

SKM =
∑

t∈T

∑

b∈Bt

`t · st,b · Yt,b.

Finally, each trip has a contribution
∑

β(p)6=β(p′) Zt,p,p′ to the number of

shunting movements SHM . This contribution is 1 if Nt,m 6= Nν(t),m for some

train unit type m, and 0 otherwise. It follows that the number of shunting

movements SHM is determined by the variables Yt,m.

4.4 Combining and Splitting

In order to handle combining and splitting trains, we use an extension of the

basic model. Here we only describe splitting trains. Combining two trains can

be described in a similar way.

Let T s be the set of trips after which the corresponding train is split into

two trains. Then for each trip t ∈ T s, there are two trips ν1(t) and ν2(t) that

take place immediately after splitting trip t. Recall that the departure order of

the trips ν1(t) and ν2(t) is determined by the timetable.

Let Γs
t be the set of 3-tuples (p, p1, p2) such that p1 ∈ Pν1(t), p2 ∈ Pν2(t),

p ∈ Pt, and p is the concatenation of the strings p1 and p2. We introduce a

variable Zs
t,p,p1,p2

∈ [0, 1] for each t ∈ T s and (p, p1, p2) ∈ Γs
t . These variables
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are linked to the other variables similarly to constraints (3)–(4):

Xt,p =
∑

p1,p2 : (p,p1,p2)∈Γs
t

Zs
t,p,p1,p2

∀p ∈ Pt (20)

Xν1(t),p1
=

∑

p,p2 : (p,p1,p2)∈Γs
t

Zs
t,p,p1,p2

∀p1 ∈ Pν1(t) (21)

Xν2(t),p2
=

∑

p,p1 : (p,p1,p2)∈Γs
t

Zs
t,p,p1,p2

∀p2 ∈ Pν2(t) (22)

It is possible to modify the compositions further by allowing to couple or

uncouple units when the train is split. This can easily be modelled by modifying

the sets Γs
t . The variables Ct,m and Ut,m as well as the objective function should

then also be adjusted by requiring constraints similar to (6) – (7).

Then Lemma 1 extends to the following lemma.

Lemma 3. In any feasible solution to the model (1)–(15), (20)–(22), the vari-

ables Ut,m, Ct,m, Is,t, Zt,p,p′ and Zs
t,p,p1,p2

have integral values.

In the case of combining and splitting, we can introduce the decision variables

Yt,b described in Section 4.3. Unfortunately, Theorem 2 does not extend: Easy

(but artificial) examples show that introducing the variables Yt,b and relaxing

the variables Xt,p may lead to a feasible model which does not have any feasible

integral solution. However, when we tested the model with relaxed integrality of

the variables Xt,p on practical instances, we always found fully integral optimal

solutions. Nevertheless, in our computations we declared both variables Yt,b and

Xt,p to be integral with different branching priorities (see Section 5.1).

4.5 Further constraints

Our model can be adjusted in order to incorporate further practical require-

ments.

When creating schedules for every day of the week separately, we should

make sure that the solutions for separate days can be attached to each other.
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One possibility is to create cyclic solutions: at every station, the inventory

values at the beginning of the day are equal to the inventory values at the end

of the day. Then a cyclic solution can be applied repeatedly. A reason to handle

so is that the generic Tuesday, Wednesday and Thursday timetables are nearly

identical and that the expected numbers of passengers on these days are also

very similar.

Stations may have a bounded storage capacity. This can be expressed by

imposing upper bounds on the inventory variables It,m. (Note that in this case,

the integrality constraint of the initial inventory variables I0
s,m can be relaxed

without decreasing the objective function value.) More realistically, we can give

bounds on the number of carriages that are stored after the departure of trip t:

∑

m∈M

cm · It,m 6 B (23)

where cm denotes the number of carriages in train type m.

The continuity requirement states that for each timetable service (which is

represented as a sequence of trips with the same train number), at least one

train unit should follow the complete route of that train. As a consequence, a

passenger can travel along the complete route of the timetable service without

changing seats underway.

In the case of the Noord-Oost lines, timetable services have one (un)coupling

possibility on their way. This makes that the continuity requirement is easy to

formulate in terms of already declared variables. For example, consider the 1600

line in Figure 2. Train units departing from Amsterdam (Asd) and Schiphol

(Shl) are combined in Amersfoort and they go together to Enschede (Es). The

front part of the combined train arrived from Schiphol, while the rear part

arrived from Amsterdam. Coupling or uncoupling is only possibly in Deven-

ter (Dv): adding units to the front of the train, or removing units from the

rear. Then the continuity constraint for one train between Asd–Es and Shl–Es
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amounts to
∑

m∈M

UAmf−Dv,m 6
∑

m∈M

NAsd−Amf,m − 1 (24)

Indeed, we make sure that the number of train units uncoupled in Dv is less

than the number of train units in the train Asd–Amf. Moreover, none of the

train units that arrived from Shl can be uncoupled (as being at the front of the

train), thus the direct connection Shl–Es is always provided.

4.6 Special structure of the instances

We can exploit the special structure of the instances as follows. If a train after

trip t1 is split in Utrecht (Ut), one part goes to The Hague (Gvc) (trip t2), the

other part goes to Rotterdam (Rtd) (trip t3). These parts turn back to Utrecht

(trips t4 and t5) immediately where they are combined again and leave Utrecht

(trip t6) together. When a train is split or combined in Utrecht, no train units

can be coupled or uncoupled. Coupling and uncoupling is allowed in Rotterdam

and The Hague. (See Figure 4.)
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Figure 4: Splitting and combining in Utrecht

We define binary decision variables ZUt
t1,p1,p2,p3,p4,p5,p6

having value 1, if for

each i = 1, . . . , 6, trip ti has composition pi. We delete from our model all the

variables Xt,p, Yt,b and Zt,p,p′ that are attached to the trips t2, t3, t4 and t5.

We also delete the variables Zs (and Zc) we used to describe splitting (and

combining) at trips t1 (and t6). Instead, we introduce constraints that are

19



similar to (3) and (4):

Xt1,p =
∑

p2,...,p6

ZUt
t1,p,p2,p3,p4,p5,p6

∀p ∈ Pt1

Xt6,p =
∑

p1,...,p5

ZUt
t1,p1,p2,p3,p4,p5,p ∀p ∈ Pt6 .

In order to keep track of the number of (un)coupled units in Rotterdam and The

Hague, we use integer variables Ut2,m, Ut3,m, Ct4,m, and Ct5,m, and express them

as weighted sums of the variables ZUt similarly to (6) and (7). The variables

ZUt appear in the objective function with weights that indicate the carriage

kilometers, seat-shortage kilometers and the number of shunting movements for

the deleted trips t2, . . . , t5.

Finally, we introduce the binary variables DGvc (and DRtd) that express

whether or not a composition change happens between trips t2−t4 (and between

trips t3 − t5). These variables can also be written as sums of the variables ZUt.

This aggregation leads to a model with a higher number of decision variables,

since the number of possible 6-tuples (p1, . . . , p6) is large, over 700 in our case.

However, we eliminated a number of auxiliary variables Zt,p,p′ , Zs, and Zc

attached to the trips t2, . . . , t5, and also all decision variables describing the

compositions on these trips.

Moreover, one can derive from the shunting constraints in the Noord-Oost

case that if we relax the integrality constraint of the variables ZUt, then ap-

propriate rounding on these variables immediately leads to a feasible integral

solution. (Note that during our computations, we needed such rounding very

rarely: once among about 100 instances.) Although the solution obtained in

this way may not be optimal among all integral solutions, the difference in the

objective function is very small. Therefore we declare the new variables ZUt

binary with lowest branching priority: we can expect that with this priority set-

ting, a branch and bound algorithm finds integral suboptimal solutions faster.

We analyze the effect of this aggregation on the solution time in Section 5.1.
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5 Computational results

We implemented the model described in the previous sections for the Noord-

Oost lines for one day. This line system contains 167 timetable services, we

divided them into 665 trips, according to the possibilities to change the compo-

sitions underway. The Noord-Oost lines are operated by about 50 train units of

length 3 and 35 train units of length 4.

For our computations we used the modelling software ILOG Opl Studio 3.7

and the mixed integer programming solver ILOG CPLEX 9.0 on a PC with

an Intel Pentium IV 3.0 GHz processor and with 512 MB internal memory.

Our goal was to find feasible solutions of good quality in reasonable time. If

necessary, we stopped our computations after a couple of hours of CPU time.

We compared our solutions to a manually created rolling stock plan. In

Table 1 we give the values of the three objective criteria in this reference solution.

We made experiments with several objective functions. The weight factors for

carriage kilometers (CKM ), seat-shortage kilometers (SKM ) and the number

of shunting operations (SHM ) are also given in Table 1. According to the

preferences of NS Reizigers we gave a relatively low weight factor to CKM in

the objective function but required the constraint

CKM 6 318, 000.

Moreover, in some experiments we looked for solutions with CKM as small

as possible while still providing significantly better service than the reference

solution does.

The first two columns of Table 2 (under ’Without aggregation’) contain the

dimensions of the mixed integer program as well as the size of the reduced MIP,

created by CPLEX in the preprocessing phase.
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CKM SKM SHM
value in practice 317,853 555,215 135
weight in Obj1 1 1 5,000
weight in Obj2 1 1 1,000
weight in Obj3 1 1 100
weight in Obj4 1 10 1000
weight in Obj5 1 10 100

Table 1: Objective criteria in the practical solution and our weight factors

Without aggr. With aggr.
MIP Reduced MIP MIP Reduced MIP

# integer var. 17,776 – 32,197 –
# contin. var. 33,901 – 24,560 –
# variables 51,677 34,228 56,757 39,251
# constraints 32,308 17,896 28,149 15,348
# non-zeros 195,184 136,105 287,286 177,622

Table 2: Dimensions of the MIP’s: number of variables (integer and continuous),
constraints and non-zeros in the matrix

5.1 Speeding up the solution process

Finding feasible solutions of good quality turned out to be quite time-consuming.

In order to speed up the solution process, we applied various techniques.

Fine-tuning the parameters of CPLEX had a large impact on the solution

times. We used the barrier method to solve the root node of the branch and

bound tree. Then we applied the dual simplex method for any other node. Using

the built-in heuristics frequently, applying probing, perturbing the objective

function, and using branching priorities (explained below) turned out to be

particularly helpful.

Using priorities when branching

The variables in our model have a hierarchical structure. The variables Nt,m

describe the number of train units of a given type m used for trip t. The variables

Yt,b represent decisions one level lower, while the variables Xt,p specify the finer
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details. As we observed, the objective criteria are basically functions of the

variables Yt,b.

It turned out to be advantageous to branch first on the variables Nt,m, then

on the variables Yt,b, and at last on the variables Xt,p. (We declared the variables

Nt,m integral.) This can be explained as follows. The values Nt,m describe a

rough estimate of the solution. Nevertheless, early decisions on train lengths

determine a large part of the objective function. Therefore, the branch and

bound process can work out the exact train compositions subject to good lower

bounds. We mentioned in Section 4.4 that, once the Yt,b variables are integral,

the Xt,p variables are likely integral, too.

Giving a higher branching priority to the decision variables corresponding to

trains in the rush hours also led to an improvement of the solution time. Seat

shortages mostly occur in such trains, thus very good lower bounds on the seat

shortages can be computed in the early stage of the algorithm. Then the rolling

stock assignment for the rush hours extends to the rest of the day, providing

good suboptimal solutions relatively quickly.

Exploiting the structure of the instances

When applying the aggregation described in Section 4.6, the mixed integer pro-

gram contains more variables but less constraints. The dimensions of the mixed

integer program is given in the two last columns of Table 2 (under ‘With aggre-

gation’). We noted in Section 4.6 that the vast majority of the 16,565 variables

ZUt are almost always integral, they have the lowest branching priority. This

means that the mixed integer program has only 15,724 “essential” integer vari-

ables which is smaller than in the model without aggregation.

The linear programming relaxation with aggregation provides slightly better

bounds than in the case of no aggregation. Although the difference turned

out to be small, about 0.1 - 0.9% of the optimal objective value, even this

improvement resulted in speeding up the solution process. The effect of using
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CKM SHM Aggr Obj1 Obj2 Obj3 Obj4 Obj5

318,000 – Yes 1.69% 0.22% opt opt opt
3000 3200 2000 1900 2700

318,000 – No 2.56% 0.76% opt 0.12% opt
5400 5000 5000 4300 4400

318,000 120 Yes 2.30% 0.50% 1.24% 2.22% 2.32%
3500 7100 3400 6500 5100

318,000 120 No 2.06% 0.67% — 11.20% 13.16%
4800 6400 — 6300 5000

318,000 90 Yes 4.80% 2.67% — 11.43% —
6000 7100 — 6400 —

318,000 90 No 4.90% 16.11% — — —
5700 5300 — — —

Table 3: For each test instance: i) optimality gap after 7200 seconds, ii) time
elapsed till the best solution was found (in seconds)

the aggregation is presented in Table 3. In three test instances, we imposed

the constraint CKM 6 318, 000, and different bounds, if any, on SHM . We

tested all instances with and without aggregation, minimizing the 5 objective

functions in Table 1. In each row, we give the optimality gap proved in 2 hours

of computation, and after how many seconds the best solution was found. A

field without numbers means that no feasible solution was found within 2 hours.

For these instances, we applied the heuristic approach in Section 5.2. We can

see that the aggregation significantly improves the performance of the branch

and bound process.

5.2 Heuristic approaches

Comparing the objective value of the linear relaxation to the best lower bound

proved during the branch and bound process, the difference turned out to be

small, at most 2%. Solutions with small optimality gap indicate that our model

is a quite tight description of the convex hull of the integral solutions. This

justifies the following heuristic method.
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Search around the LP optimum

For some instances, depending on the objective function and on the bounds of

the objective criteria, no feasible solution could be found in 2 hours of compu-

tation or the quality of the solutions was not satisfactory. In these cases, we

applied the following method.

We first solved a relaxation of the problem, dropping the integrality require-

ments for some variables (e.g. taking the linear relaxation itself). Then we

extracted information from the optimal (fractional) solution to the relaxation,

and based on it, we added extra constraints to the original model. In the sim-

plest form, we required Xt,p = 0 whenever this variable had value zero in the

optimal solution to the relaxed model. As another example, we allowed a com-

position change (that is, extra shunting) after trip t only if the optimal solution

to the relaxation had a variable Zt,p,p′ > 0 with β(p) 6= β(p′).

Reducing the solution space in this way allowed us to find feasible solutions

within 2 hours for each instance. The optimality gap was, however, still over

10% in some instances. Nevertheless, even these solutions were in all objective

criteria better than the reference solution from practice.

Local search

Once a feasible solution σ was found, we ran our model in some “neighborhood”

of this solution. We defined the neighborhood by constraints like saying that

for each trip, the composition may be at most one carriage shorter or longer

than in σ. In case of smaller neighborhoods, the reduced solution space could be

enumerated relatively quickly, but often they did not lead to any improvement.

For larger neighborhoods we allowed running times up to 4 hours. After a few

local search steps, we were able to find feasible solutions with optimality gaps

of 2–5%.

We applied this local search to minimize only the carriage kilometers while
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imposing upper bounds on seat-shortages per trip, and on the number of shunt-

ing movements. We found solutions with as few as 297,000 – 303,000 carriage

kilometers. Compared to 318,000 carriage kilometers in the reference solution,

it amounts to a reduction in operational costs by nearly 6%.

5.3 Comparison to the reference solution

In this section we compare the values of the objective criteria in our solutions to

those in the manually created reference solution. Figure 5 shows all rolling stock

schedules we created where the number of carriage kilometers is not higher than

in the reference solution. The x-axis represents the seat-shortage kilometers, the

y-axis represents the numbers of shunting operations. We drew a small circle

with appropriate x and y coordinates for solutions we found. The curved line

indicates the linear programming lower bound. Solutions that lie far away from

this line or that are dominated by other solutions were obtained by emphasizing

additional optimization criteria: by penalizing first class seat-shortages and

shunting during rush hours more heavily.

As mentioned earlier, all the solutions in Figure 5 obey the constraint CKM 6

318, 000. The solutions inside the dashed circle in Figure 5 have only 297,000 –

303,000 carriage kilometers.

6 Conclusions

In this paper, we described a model for the weekly rolling stock planning. Our

model can express various technical and market requirements. We tested the

model on fairly large instances of the Dutch passenger railway operator NS

Reizigers. Our model turned out to be robust enough to cope with very different

weights on the objective criteria. When solved by a commercial MIP solver,

it provided rolling stock schedules with different objective characteristics in a

couple of hours of computation time. The decision makers can choose a solution
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Figure 5: Shortage-kilometers and number of shunting operations in the solu-
tions with at most 318,000 carriage-kilometers

that matches the practical requirements best. The planners at NS Reigers agreed

that the solutions to our model are in any respect better than the manually

created plans. Starting with the timetable year 2005, the weekly rolling stock

schedule of NS Reizigers is partly computed by this model.
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