A DEFECT CORRECTION METHOD FOR PARABOLIC SINGULAR
PERTURBATION PROBLEMS ON A RECTANGLE

PIETER W. HEMKER
CWI, Amsterdam, The Netherlands

GRIGORII I. SHISHKIN

Insiitute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences,
S. Kovalevskoi str., 16, Kkaterinburg 520219, Russia

LIDIA P. SHISHKINA
Scientific Research Instituie of Heavy Machine Building, Ekaterinburg, Russia

On a rectangle we consider the Dirichlet problem for a singularly perturbed parabolic
PDE of reaction-diffusion type with the perturbation parameter ¢ € (0,1]. The so-
lution of the problem has parabolic boundary layers which are one-dimensional in the
neighbourhood of the smooth boundaries and two-dimensional (corner) in the neighbour-
hood of the vertices of the rectangle. For such problems we know a special difference
schemne, which converges e-uniformly. This base scheme is classical finite difference ap-
proximations of the differential equation on piecewise uniform meshes refined in the
neighbourhood of the boundary layers. Its solution converges with the order of accuracy
O (N~=21x2 N 4 N;'), where N = min[Ny,No], and No + 1, N; + 1 is the number of
nodes, respectively, in the time mesh and in the space mesh along the axis z;, 7 = 1, 2. It
is of great interest to develop difference schemes with a higher order of convergence. In
this work we construct s-uniformly convergent schemes for which the order of accuracy
is more than one with respect to the time variable. For this we adapt the system of
discrete problerms (i.e., difference schemes) constructed with using the base scheme. The
problems in the system are solved sequentially. These problems are constructed by such
a way that the grid solutions (and their derivatives) already obtained are used then in
the correction procedure for increasing the comsistency order of the next discrete prob-
lem. This correction method allows us to find the approximate solution with high-order
time-accuracy, uniform in e.

1. Introduction

In this paper we continue to study e-uniform schernes for time-dependent singular perturbation problems.
Earlier, in 1}, [2] we investigated e-uniformly convergent difference schemes for parabolic singularly perturbed
Dirichlet’s problems on an interval for the cases when the problem data are sufficiently smooth and the
parabolic equation does not contain convection terms. There we have constructed a new discrete method
based on defect correction, which can achieve an arbitrary high order of accuracy with respect to the time
variable O (N’2 In® N + K‘”) , n>3, where N and K denote, respectively, the number of intervals in
the space and time discretizations.

Here we consider the Dirichlet problem on a rectangle for a singularly perturbed parabolic PDE of
reaction-diffusion type. The perturbation parameter £ multiplying the highest derivative takes any value
from the half-interval (0,1]. The solution of the problem has singularities such as parabolic boundary layers
which are one-dimensional in the neighbourhood of the smooth boundaries and two-dimensional (corner)
in the neighbourhood of the vertices of the rectangle. For such a boundary valuie problem we know a
special difference scheme, the solution of which converges g-uniformly. This base scheme is constructed by
classical finite difference approximations of the differential equation on piecewise uniform meshes (see, e.g.,
(3]) refined in the neighbourhood of the boundary layers. Its solution converges with the order of accuracy
] (/‘-"‘2ln2 N + No-l), where N = min[N;, Ny], and Ny + 1, N; + 1 is the number of nodes, respectively, in
the time mesh and in the space mesh along the axis x;, i = 1,2. For the problem stated above it is of great
interest to develop difference schemes with a higher order of convergence.
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In this work we develop special e-uniformly convergent schemes for which the order of accuracy is more
than one with respect to the time variable. For solving the problemn we adapt the system of discrete problems
(i.e., difference schemes) constructed with using the base scheme. The discrete problems in the system
are solved sequentially. These problems are constructed in such a way that the grid solutions (and their
derivatives) already obtained are used then in the correction procedure, similarly to [2], for increasing of the
consistency order of the next discrete problem. This correction method allows us to find the approximate

solution with high-order time-accuracy, uniform in €. To achieve e-uniform convergence, we use a grid with
nodes that are condensed in the neighbourhood of the boundary layer.

2. The class of boundary value problems studied

On the domain G = D x (0, T] with the boundary S = G\ G, where D = {z : 0 <z, < ds, s = 1,2}, we
consider the following singularly perturbed parabolic equation with Dirichlet boundary conditions’:

Lenu(z )= Y aue, t)a u(e,t) = oz, Hulz,0) - ple. ) u(e,0) = f(=,0), (2 €C, (21a)

3=1,2

u(z,t) = p(z,t), (z,t)€S. (2.1b)

Here S = SoUS*, ST is the lateral boundary, S* = {{z,t): ¢ € I', 0<t < T}, Sp = {(z,t) : z € D, t = 0},
I'=D\ D. In (2.1) a,(z,t), ¢(z,1), p(z,t), flz,t), (z,t) € G, and p(z,t), (z,1) € S are sufficiently smooth
and bounded functions which satisfy

0 < ag <alz,t), 0<po<p(z,t), ce,t)>20, (2,t)ed.
The real parameter £ may take any small positive value, say € € (0, 1].

When the parameter £ tends to zero in (2.1a), the solution of the problem has parabolic boundary layers
in the neighbourhood of the lateral boundary. In the neighbourhood of the smooth parts of the boundary st
these layers are described by a one-dimensional parabolic equation, and in the neighbourhood of the vertices
from the S% the corner layer is described by a two-dimensional equation.

3. An arbitrary nonuniform mesh

To solve problem {2.1), we give a classical finite difference scheme. On the set G we introduce the mesh
G :ﬁhxﬁg, Dy =T, x Ty, (3.1}

where T, is, generally speaking, a nonuniform mesh on the interval [0,d] on the axis z,, s = 1,2; let
Ri = it — 28 ol 2itl € @,; hy = max; AL, h = max, h,; Tp is a uniform mesh on the interval [0, T with
the step 7. By N, + 1 and K + 1 we denote the number of nodes in the meshes @, and Wy, respectively;
r=TK" 1 let h< M N~! where N = min[N;, Na].

Here and below we denote by M (or m) sufficiently large (or small) positive constants which do not
depend on the value of the parameter ¢ or on the difference operators.

For problem (2.1) we use the difference scheme (cf [4])
Azayz(z,1) = (=, 1), (z,1) € Gh, (3.2a)
z(z,1) = ¢z, 1), (z,1) € Sh. (3.2b)
Here GhL=GNGh, Sh=SNG,

A@.ayz(z, 1) =& Z as(z,1)6 2, 2(z,1) — e(z, 1) 2(z,t) ~ p(=,1)652(2. 1),

b~ z(z,t) = 2(hi + hi) 7 (6us2(m,t) — Sz 2(2,1)), Gr2(z,t) = 1 (2(2,t) ~ 2(z,t — 7)),

rsxrs

the difference operator §.-_ z(z,t)) is an approximation of the operator (8%/8z%)u(=,t)) on the nonuniform

mesh, §;52(z,t) and bzr2(z,t), 6 v2(z,t) are the forward and backward differences, for example,

b=2(z,t) = (B! (2(=, 1) — 22l z0,1)), Griz(z,t) = (b)) (22t 20, t) = 2(z, 1)), @ = (€}, 39).

1The notation is such that the operator Ly, ) 18 first introduced in Eq. (a.b).
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From [4] we know that the difference scheme (3.2}, (3.1) is monotone. By means of the maximum principle
and taking into account estimates of the derivatives we find that the solution of the difference scheme (3.2),

(3.1) converges for a fixed value of the parameter :
| u(z,t) - 2(z,2) | < M(eT'N~! +7), (z,t) € Gy. (3.3)

This error bound for the classical difference scheme is clearly not e-uniform. The proof of (3.3) follows the
lines of the classical convergence proof for monotone difference schemes (cf [4]; see [5] for more details).

We denote by H (*)(G) = H ©*/2(G) the Holder space, where « is an arbitrary positive number [5]. We
suppose that the functions f(z,t) and @(=,1) satisfly compatibility conditions at the corner points, so that
the solution of the boundary value problem is smooth for every fixed value of the parameter ¢.

For simplicity, we assume that at the corner points 5* = {5 ﬁ'S’_L} U5, where S® = I'° x (0,7}, and I'¢
is the set of the corner points of D, the following conditions hold

6k+k‘g
dztr drke Brko
3k+kn

dzk 82:;” Gtko

o(z,t)=0, k=k; +ky, k+2k;<[a]+2n, (3.4)

Fz,8) =0, k=4, +ky, k-+2%<[a]+2n-2,

where [ @ ] is the integer part of the number o, @ > 0, 7 > 0 is an integer. We also suppose that [« ]+2n > 2.
We rely on the a-priori estimates for the solution of problem (2.1) on the domain G = D x [0, 7], and
its derivatives as derived for elliptic and parabolic equations in [6]-[8]. Taking into account these a-priori
estimates, we are thus led to such a general rzsult.
Theorem 1. Assume in Eq. (2.1) dhat o € HeH2=1(T) ¢, p, f € Het2n =T o e H{x+2n)(G),
o >4, n >0 and let the condition (3.4) be Yuniled. Then, for o fized vaiue of the parameter €, the solution
of (3.2), (3.1) comverges to the solution of (2.1} with an error bound given by (3.3).

4. The ¢-uniformly convergent method

In this section we discuss an e-uniformly eonvergent method for (2.1) by taking a special mesh, condensed
in the neighbourhood of the boundary layers. The Jacstion of the nodes is derived from a-priori estimates of
the solution and its derivatives. The way to construct the mesh for problem (2.1) is the same as in [1] and
[8]. More specificly, we take
Gy, =D, xwy, D, =w;x@}, (4.1)
where &y = Wys.1y, @, =@ (0,) is a special ptecewise uniform mesh on [0, d,], o, is a parameter determining
the redistribution of nodes in the mesh @y the value of ¢, depends on € and N,. The steps of the mesh
3{: on the intervals [0,0,], [o,, d, — 0.], [ds — 04, d,] are constant and equal to hgl) = 40, N,—1 and
AP =9 (ds —20,) N,—1 on the intervals [0,0:], [ds — 04, d,] and [a,, d, — 7, ], respectively. We take o, =
os{e, N;) =min{d~'d,, Me In NV,], where M is an arbitrary positive number. The mesh —(;j,: is constructed.
Thecrem 2. Let the conditions of Theorem (1) hold forn = 1. Then the solution of (3.2), (4.1) converges
e-uniformly to the solution of (2.1) and ihe following estimate holds:

lu(z,t) ~ 2(z,t)| S M(N"?10® N + 1), (z,t)€ G,. (4.2)

The proof of this theorem can be found in [6], [9].
5. Improved time-accuracy

3.1. A scheme based on defect correction

In this section we construct a new discrete method based on defect correction, which also converges -
uniformly to the solution of the boundary value problem, but with an order of accuracy (with respect to 7)
higher than in (4.2).

The idea is similar to that published in [1]. For the difference scheme (3.2), (4.1) the error in the
approximation of the partial derivative (0/0t) u(z,t) is caused by the divided difference 67 z(z,t) and is
associated with the truncation error given by the relation

Au , - B%u -1 0%
E(w’t) ~ by u(z,t)=2 lr—é—ﬁ(z,t) ~ 671 T2—5Z§-(Ili,t -9v), Jdel0,7]
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Therefore, we now use for the approximation of (8/8t) u(z,t) the expression 6; u(xz,t) + 767 u(z,1)/2, where
byzu(z,t) = é,7u(x,t — 7). Notice that 6,;u(z,t) is the second central divided difference. We can evaluate
a better approximation than (3.2a) by defect correction

. o 0%u .
Aa.9y2®(z, 1) = f(z, 1) — 27 'p(z, t)r 5‘{5‘(%0, (5.1)

with © € @ and t € @, where & and @, are as in (3.1); 7 is the step-size of the mesh Wy; 2°(x,t) is the
“corrected” solution. Instead of (8%/8t%)u(=,t} we shall use b;72(z,t), where 2(z,t), (z,1) € Gara.) is the
solution of the difference scheme {3.2), (4.1). We may expect that the new solution z°(z,t) has an accuracy
of @ (7?) with respect to the time variable. This is true, as will be shown in Section 5.2.

Moreover, in a similar way we can construct a difference approximation with a convergence order higher
than two (with respect to the time variable) and @ (N =2 In? N) with respect to the space variable, uniformly
in £ (see Section 5.3).

5.2. Modified difference schemes of the second order accuracy in 7

We denote by §,;2z(z,%) the backward difference of order k:
bor 2(z,t) = 2(x, 1), b7 z(x,t) = (6,_,7 z(=,t) — 6p 17 2(z t = 1)) /1, (2,8) €Gh, t>kr, k> 1.

When constructing difference schemes of second order accuracy in 7 in (5.1), instead of (82/8t2)u(z,1)
we use 8,7 z(z,t), which is the second divided difference of the solution to the discrete problem (3.2), (4.1).
On the mesh G, we consider the finite difference scheme (3.2), writing

A(3_2)z(1>(z,t):f(z, t), (v,8)€Gn, 2V(z,t)=0p(z,t), (2.,t) € Sh. (5.2)

Then for the boundary value problem (2.1) we now get for the difference equations for t = r and # > 27
respectively:
p(z,t) O%u

. ,(2 — f : _ =
./\(3_2)2( )(x,t) = f(z.t) + —5— r—ét—,z(x,O), t=r1, (5.3)

i
A(3.2)Z(2)(‘Z,l) = f(z, 1)+ p(:;, ) ‘réﬂz(l)(m,t), t> 27, (z,t) € G,

2D (z,1) = o(z,1), (z,t) € Sh.

2
Here 2(1)(z, t) is the solution of the discrete problem (5.2), (4.1), and the derivative ?;{;—L(:c, 0) is obtained from

Eq. (2.1a). We shall call 2/?)(x, ) the solution of difference scheme (5.3),(5.2),(4.1) (or shortly, (5.3), (4.1)).

In what follows, for simplicity, we suppose that the coefficients a4(z,¢) do not depend on ¢
as(z,t) = a,(z), (z,6)€C (5.4)
and we take a homogeneous initial condition:
(e, 0) =0, ze€i0,1]. (5.5)
Under the conditions (5.4), (5.5), the following estimate holds for the solution of problem (5.3),(4.1)
; u(z, 1) — 2 (a, 1) | <M [N 2PN +12], () €Ch (5.6)

Theorem 3. Let conditions (5.4), (5.5) hold and assume in Eq. (2.1) that a € H(e¥2"=1(G) ¢ p, f e
He+2n=2)(G) o € HEr2)(G), a > 4, n= 2 and let condition (3.4) be satisfied forn = 2. Then for the
solution of difference scheme (5.3), (4.1) the estimate (5.6) holds.

The proof of this Theorem and Theorem 4 is similar to the proof in [2].

5.3. The difference scheme of the third order accuracy in time

Analogously we construct a difference scheme with the third order accuracy in 7. On the mesh G, we consider
the difference scheme



- & Fu - 5.7a
A(3.2)Z(3)(m?t) = f(z,t) + p(z:,t) <C’117'—6-£5u(3:, 0) + Cl2T2 3t3 (IL’, 0)) y t = T, ( d)
d*u . 0% — 9.
Aa.2yz PNz, t) = f(z.1) + plz, 1) (Czﬂggf(r’ 0) + (’?27-2'——'&3 (,0)), t=27

‘»\(3.2)2(3)(@ t)=flz.1) + p(x,1) (0317‘52?z(2)(11, t) 4+ Cazr?26,72) (2, t)) , 237, (z,t) € Gy,

£3(z,1) = p(z.1), (z.t) € Sh.

Here 2(")(z,t) and z(?)(z,1) are the solutions of problems (5.2),(4.1) and (5.3), (4.1), respectively,. the
derivatives (8%/6t%)u(z,0), (83/6t®)u(=, 0) are obtained from Eq. (2.1a), the coefficients C;; are deterrined
below. They are chosen such that the following conditions are satisfied

a ’ 5’221 63’”. ) 3
?9—;—‘@(3:, t) = bru(z,i) + Cura—ﬂ-(z,t - )+ Cmrzw(z,t— )+ 0 (%),
du

%y 3%u 3
-glv(:z:, t) = bruz,t) + Cglr?g-ﬁ-(:c,t ~27) + ngT2a?(1?,t -2r)+ 0 (r%),
%—?(z, ty = §rulz, 1) + Ca178y7u(x, t) + Caar?by7u(, ) + O (%) .
It follows that ]
Coi=Cn=0s=1/2, Cip=Cs=1/3, Cp=5/6. (5.7b)

We shall call 2(3)(z, ¢) the solution of the difference scheme (5.7},(5.3), {5.2),(4.1) (or shortly, (5.7),(4.1)).
Again we assume the homogeneous initial condition

P(2,0)=0, f(5,0)=0, z€[0,1]. (5.9)
Under conditions (5.4), (5.8) the following estimate holds for the solution of difference scheme (5.7), (4.1)
uw{z,t) ~ 2(3)(z,t)' <SM[N?In*N +7° I, (x,8) € Gh. (5.9)

Theorem 4. Let conditions (5.4), (5.8) hold and assume in Fq. (2.1) that a € Hletn=1\@) ¢ p, f €
HEetn=D@), o€ HER2)(G), o > 4, n =3 and let condition (8.4) be satisfied with n = 3. Then for the
solution of scheme (5.7), (4.1) the estimate (5.9) is valid.
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