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On a rectangle we consider the Diric!+let problem for a singularly perturbed parabolic 
PDE of reaction-diffusion type with the perturbation parameter e; E (0, 1]. The so
lution of the problem has parabolic boundary layers which are one-dimensional in the 
neighbow-hood of the smooth boundaries and two-dimensional (corner) in the neighbour
hood of the vertices of the rectangle. For such problems we know a special difference 
scheme, which converges e-uniformly. This base scheme is classical finite difference ap
proximations of the differential equation on piecewise uniform meshes refined in the 
neighbourhood of the boundary layers. Its solution converges with the order of accuracy 
0 (N- 2 Jn2 N + N0- 1), where N = min (N1 , N 2 ], and No + 1, N; + 1 is the number of 
nodes, respectively, in the time mesh and in the space mesh along the axis x;, i = 1, 2. It 
is of great interest to develop difference schemes with a higher order of convergence. In 
this work we construct e-uniformly convergent schemes for which the order of accw·acy 
is more than one with respect to the time variable. For this we adapt the system of 
discrete problems (i.e., difference schemes) constructed with using the base scheme. The 
problems in the system are solved sequentially. These problems are constructed by such 
a way that the grid solutions (and their derivatives) already obtained a.re used then in 
the correction p'tocedure for increasir1g the consistency order of the next discrete prob
lem. This correction method allows us to find the approximate solution with high-order 
time-accuracy, uniform in e. 

1. Introduction 

In this paper we continue to study e-uniforrn schemes for time-dependent singular perturbation problems. 
Earlier, in [l], [2] we investigated c:-uniformly convergent difference 11chemes for parabolic singularly perturbed 
Dirichlet's problems on an interval for the cases when the problem data are sufficiently smooth and the 
parabolic equation does not contain convection terms. There we have constructed a new discrete method 
based on defect correction, which can achieve an arbitrary high order of accuracy with respect to the time 
variable 0 (1v- 2 ln2 N + K-"), n > 3, where N and K denote, respectively, the number of intervals in 
the space and time discretizations. 

Here we consider the Dirichlet problem on a rectangle for a singularly perturbed parabolic PDE of 
reaction-diffusion type. The perturbation parameter c: multiplying the highest derivative takes any value 
from the half-interval (0,1]. The solution of the problem has singularities such as parabolic boundary layers 
which are one-dimensional in the neighbourhood of the smooth boundaries and two-dimensional (corner) 
in the neighbourhood of the vertices of the rectangle. For such a boundary value problem we know a 
special difference scheme, the solution of which converges c:-uniformly. This base scheme is constructed by 
classical finite difference approximations of the differential equation on piecewise uniform meshes (see, e.g., 
[3]) refined in the neighbourhood of the boundary layers. Its solution converges with the order of accuracy 
0 (N- 2 ln2 N + N0- 1), where N = min [N1 1 N2], and No+ 1, N; + l is the number of nodes, respectively, in 
the time mesh and in the space mesh along the axis Xi, i :::: I, 2. For the problem stated above it is of great 
interest to develop difference t>cbemes with a higher order of convergence. 
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In this work we develop special c:-uniformly convergent schemes for which the order <Ji" acC!lracy is more 

than one with respect to the time variable. For solving the problem we adapt the system of discrete problems 

(i.e., difference schemes) constructed with using the base scheme. The discrete problems in the system 

are solved sequentially. These problems are constructed in such a way that the grid solutions (and their 

derivatives) already obtained are used then in the correction procedure, similarly to [2], for increasing of the 

consistency order of the next discrete problem. This correction method allows us to find the approximate 

solution with high-order time-accuracy, uniform in c:. To achieve c:-uniforrn convergence, we use a grid with 
nodes that are condensed in the neighbourhood of the boundary layer. 

2. The class of boundary value problems studied 

On the domain G = D x (0, T] with the boundary S = G \ G, where D = {x : O < x, < d,, s = l, 2}, we 

consider the following singularly perturbed parabolic equation with Dirichlet boundary conditions1 : 

82 8u 
L(2.l)u(x, t)=:c:2 L a, (x, t)~2 u(x, t) - c(x, t)u(x, t) - p(x, t)-8 (x, t) = f(x, t), (x, t) E G, (2.la) 

-12 ux, t 
4- ' 

u(x,t)=ip(x,t), (x,t)ES. (2.lb) 

Here S = SoUSL, 5L is the lateral boundary, SL= {(:r.,t): x Er, 0 < t ~ T}, So:::: {(x,t): x E JJ, t == 0}, 

I'= D \D. Ln (2.1) a.(x, t), c(x, t), p(x, t), f(x, t), (x, t) E G, and <p(x, t), (x, t) E 8 are sufficiently smooth 
and bounded functions which satisfy 

0 < ao $ a.(x, t), 0 <Po$ p(x, t), c(x, t) 2'.: 0, (x, t) E G. 

The real parameter E may take any small positive value, say € E (0, 1). 
When the parameter c: tends to zero in (2.la), the solution of the problem has parabolic boundary layers 

in the neighbourhood of the lateral boundary. In the neighbourhood of the smooth parts of the boundary SL 
these layers are described by a one-dimensional parabolic equation, and in the neighbourhood of the vertices 

from the SL the corner layer is described by a two-dimensional equation. 

3. An arbitrary nonuniforrn niesh 

To solve problem (2.1), we give a classical finite difference scheme. On the set G we introduce the mesh 

(3.1) 

where :::;;, is, generally speaking, a nonuniform mesh on the interval [O, d.) on the axis x,, s = 1, 2; let 

hi - xi+l - xi 'ti xi+I E w · h :::: max,· hi h = max, h, · -;;0 is a uniform mesh on the interval ·L'O, T1J with 
8 - 6 "'. 6) 8 s, $ .$) ) 

the step r. By N, + 1 and J( + l we denote the number of nodes in the meshes w, and W'o, respectively; 

r = T K- 1 ; let h ~ J\f N- 1 , where N = min[N1, N2]. 
Here and below we denote by Ji;f (or m) sufficiently large (or small) positive constants which do not 

depend on the value of the parameter i:: or on the difference operators. 

For problem (2.1) we use the difference scheme (cf [4]) 

A(3.2)z(x, t) = f(x, t), 

z(x, t) = rp(x, t), 

(x, t) E Gh, 

(x, I.) E 8,.. 

A(3 2 ,z(x t) =: c: 2 ~ a,(x, t)8---: z(x, t) -- c(x, t)z(x, t) - p(x, t)81z(x, t), 
• ) i L.-t :CSl,t, 

.s=l,2 

f;_- z(x t) = 2(hi-l +hi )-i (8x 8 z(x, t) - OTfi"z(x, t)), 81z(x, t) = ,-t (z(x,t) - z(x, t - r)), 
X,1 X5 ) 8 3 I 

(3.2a) 

(3.2b) 

the difference operator 5-~ z(x t)) is an approximation of the operator ( a2 / ax; )u( x, t)) on the non uniform 
"· xs x~ i • 

mesh, 8,,,z(x, t) and &xsz(x, t), 81z(x, t) are the forward and backward differences, for example, 

8Xfz(x, t) = (ht- 1)- 1 (z(x, t)- z(x~- 1 , x2 , t)), Dxiz(x, t) = (h\)- 1 (z(x~+l, x2, t) - z(x, t)), x = (:c~, x2). 

1The notation is such that the- operator D(a.b) is first introduced in Eq. (a.b). 
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From [4] we know that the difference scheme (3.2), (3.1) is monotone. By means of the maximum principle 
and taking into account estimates of the derivatives we find that the solution of the difference scheme (3.2), 
(3.1) converges for a fixed value of the parameter c:: 

I u( x, t) - z ( x, t) I :::; .M ( e- 1N- 1 + r), ( x, t) E G h . (3.3) 

This error bound for the classical difference scheme is clearly not £-uniform. The proof of (3.3) follows the 
lines of the classical convergence proof for monotone difference schemes ( cf [4]; see [5] for more details). 

We denote by H (a)( G) = H a,a/ 2(G) the Holder space, VlherP. ~ is an arbitrary positive number [5]. We 
suppose that the functions f(x, t) and \O(x, t) satisfy compatibility conditions at the corner points, so that 
the solution of the boundary value problem is smooth for every fixed value of the parameter e. 

For simplicity, we assume that at the corner points s· = {Son tl} U sc, where S"' = re x (0, T], and re 
is the set of the corner points of J5, the following conditions hold 

a•+ko 

8 . k,;, k2 JJtk ip(x,t) = 0, k = k1 +k2, k + 2ko:::; [a]+ 2n, 
:c 1 c,z2 u o 

0k+kn 
ox~' 8x~2 at"'" f(x, t) = 0, k = k1 + 1.~2, k + 2ko :::; [al+ 2n -- 2, 

(3.4) 

where [a] is the integer part of the number o: , a > 0, n 2:: 0 is an integer. We also suppose that [a]+ 2n ?: 2. 
We rely on the a-priori estimates for the solution of problem (2.1) on the domain G = D x [U, T], and 

its derivatives as derived for elliptic and parabolic equations in [6]-[8]. Taking into account these a-priori 
estimates, we are thus led to such a, genera 1 r<;sult. 

Theorem 1. Assume in E'q. (2.1) ifw.i a E H(0 + 2n-l)(G), c, p, f E H(a+2n- 2l(G), r.p E H(D1+ 2nl(G), 
o > 4, n :'.'.:: 0 and let the condil'.ion (3.4) b,:. j;i,fiiltd. Then, for a fixed value of the parameter c:, the solution 
of (3.2), (3.l) converges to the sofotion of (:t.ij with an error bound given by (3.3). 

4. The e-uniformly convergent m.c:thod 

In this section we discuss an c:-uniforrnly c-mverp;ent method for (2.1) by taking a special mesh, condensed 
in the neighbourhoud of thr· houmfr.ry layc~s. Tiw Joc;,t\on of th(: nodes is derived from a-priori estimates of 
the solution and its deri·1<•tives. The way to construct the mesh for problem (2.1) is the same as in [l] and 
[8]. '.\1ore specificly, we take 

( 4.1) 

where wo = wo(3.J)> w; = w.*({]'8 ) is a special piecewise uniform mesh on [O, d,], G', is a parameter determining 
the redistribut.iou of nodes in the mesh w;; the value of er a depends on c. and N,. The steps of the mesh 
0/ on the intervals [0,<T,], [o-,, d, - er,], [d, - er,, d,J are constant and equal to h.~ 1 ) =: 4cr, N,--1 and 
h,2

) = 2 (d. - 2 a-,) N,-1 on the intervals [ 0, rr,], [ d, - er,, d,] and [ o-,, d, - er,], respectively. We take !l, = 
o-,(e,N,)=min[4- 1 d,, Mc: lnN,], where Mis an arbitrary positive number. The niesh (J,; is constrncted. 

Theorem 2. Let the conditions of Tlieorern ( 1) liold for n = 1. Then the solution of (3.2), ( 4 .1) wnvr:.rges 
e-uniformly to the solution of (2.1) and the following estimate holds: 

!u(x, t) - z(x, t)j:::; M(N- 2 ln2 N + T), (x, t) Ea:. (4.2) 

The proof of this theorem can be found in [6], [9]. 

5. Improved time-~ccu:racy 

5.1. A scheme based on defect correct·ion 

In this section we construct a new discrete method based on defect correction, which also converges e
uniformly to the solution of the boundary vaiue problem, but with an order of accuracy (with rer,pect to r) 
higher than in (4.2). 

Th~ ide~ is similar to that published in [l]. For the difference scheme (3.2), (4.1) the error in the 
appr~x1mat1on o: the parti.al derivative ( f) /fJt) u( x, t) is caused by the divided difference ot z( x, t) and is 
associated with tne truncat10n error given by the relation 

au . a2u 83u 
a;(x, t)- 6Tu(x, t)=r 1 r·at2 (x, t) -- 5- 1 r 20j3(x, t - 19), iJ E [O, r]. 
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Therefore, we now use for the approximation of (8/8t) u(x, t) the expression 6Tu(x, t) + rli'i1u(x, t)/2, where 
6-:uu(x,t) = 6ttu(x,t- r). Notice that 81"tu(x,t) is the second central divided difference. We can evaluate 
a better approximation than (3.2a) by defect correction 

( 5.1) 

with x E w and t E w11 , where w and W-0 are as in (3.1); r is the step-size of the mestl w0 ; zc(x, t) is the 
"corrected" soluLion. Instead of (82 /8t 2 ) u(x, t) we shall use on z(x, t), where z(x, t), (x, t) E Gh(4 .1) is the 
solution of the difference scheme (3.2), (-1.l). We may expect. that the new solution zc(x,t) has an accuracy 
of 0 (r2) with respect to the time variable. This is true, as will be shown in Section 5.2. 

Moreover, in a similar way we can construct a difference approximation with a convergence order higher 
than two (with respect to the time variabh~) and 0 (N- 2 ln2 N) ;vith respect to the space variable, uniformly 
in E: (see Section 5.3). 

5.2. Afodified difference schemes of the second order accuracy in r 

We denote by Dl:tz(x, t) the backward difference of order k: 

60y z(x, t) = z(x, t), 6kt z(x, t) == (ok-I I z(x, t) - (\_ 11 z(x, t --- r)) /r, (x, t) E Ch, t 2: kr, k:?.: 1. 

Vi/hen constructing difference schemes of secund order accuracy in r in (5.1), instead of (82 /{)t 2 )u(x, t) 
we use 82 1z(x,t), which is the second divided difference of the snlution to the discrete problem (3.2), (4.l). 
On the mesh G1t we consider the finite difference scheme (3.2). writing 

(5.2) 

Then for the boundary value problem (2.1) we now get for the difference equations fort= rand t ::'.: 2r 
respectively: 

A •. (2)( )-J( · p(x,t) 82 u( ) -a(:UJZ \X, t - X, l) + 2- T at 2 X, 0 , t -· T, (5.3) 

A(3. 2 )~( 2 )(x,t) = f(x,t)+ p(~,t) r82 rz( 1l(x.t), t:?.: 2r, (x.t) E Ch, 

zl 2l(x, t) = cp(x, t), (x, t) E S1t. 

Here .z(l)( x, t) is the solution of the discrete problem (5.2), ( 4.1 ), and the derivative -~:~\x, 0) is obtained from 

Eq. (2.la). We shall call z( 2)(x, t) the tiolution of difference scheme (5.3), (5.2), (4.1) (or shortly, (5.3), (4.1)). 
In what. follows, for simplicity, we suppose that the coefficients a,(x, t) do not depend on t 

a,(x,t) = a,(x), (x,t) E G (5.4) 

and we take a homogeneous initial condition: 

tp(x, 0) = 0, x E [0, l]. (5 . .5) 

Under the conditions (5.-1), (5.5), the following estimate holds for the solution of problem (5.3), (4.1) 

I u(x, t) - z(2l(x, t) Is !vf [ N- 2 ln 2 N + r 2 ], (x, t) E G,.. (5.6) 

Theorem 3, Let conditions (5.4), (5.5) hold and assume in Eq. (2.1) that a E H(o+2n- 1l(G), c, p, f E 
H (u+ 2n- 2 l(G), <p E H (a+ 2n)(G) 1 a> 4, n = 2 and let condition (3.4) be satisfied for n == 2. Then for the 
solution of difference scheme (5.~{), (4.1) the estimate (5.6) holds. 

The proof of this Theorem and Theorem 4 is similar to the proof in (2]. 

5.3. The dijfe·rence scheme of the third order acc1tracy in timP-

Analogously we construct a difference scheme with the third order accuracy in T. On the mesh eh we cunsider 
the difference scheme 
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A(a. 2)z<3l(x, t) = f(x, t) + p(x, t) ( C11 r ::2 u(x, 0) + C12r2 ~:~ (x, 0)) , t = r, (5.7a.) 

A(3 .2)z(3 l(:z:, t) = f(x, t) + p(x, t) ( C21 r ~:~ (x, 0) + Cnr2 ~:: (:z:, 0)) , t = 2r, 

A(3.2)z(3l(x, t) =f(x, t) + p(x, t) ( C:qrS27zC 2l(.:r., t) + C32 r 2 63 7z(1l(x, t)), t?: 3r, (x, t) E Gh, 

z<3l(x,t) = cp(x,t), (x,t) E Sh. 
Here z(ll(:c, t) and z(2)(:z:,t) are the solutions of problems (5.2), (4.1) and (5.3),_ (4.1), respectively,_ the derivatives (82 /ot 2 )u(x, O), (83 /at3 )u(x, 0) are obtained from Eq. (2.la), the coefficients Cij are deterrnmed below. They are chosen such that the following conditions are satisfied 

f)u 82u 283 u( ) o( 3) at (x, t) = liru(x,t) + C11r 8t2 (x, t - r) + C12r 8t3 x, t - T + T t 

a 82u 83u ( 3) _::(:z:, t) = liru(x, t) + C21 r J:i 2 (x, t - 2r) + C22r2 ot3 (x, t - 2r) + 0 r , at vt , 

~~ (x, t) = 8ru(x, t) + C31 r821u(x, t) + C32r2 8;i 1u(x, t) + 0 ( r 3 ) . 

It follows that 
Cu= C21 =Cat= 1/2, C12 = C32 = 1/3, C22 = 5/6. (5.7b) 

We shall call Pl(x, t) the solution of the difference scheme (5.7), (5.3), (5.2), (4.1) (or shortly, (5.7), (4.1)). Again we assume the homogeneous initial condition 

lf!(X, 0) = 0, f(x, 0) = 0, x E [0, l]. (5.8) 
Under conditions (5.4), (5.8) the following estimate holds for the solution of difference scheme (5. 7), ( 4.1) 

I tt(x, t)- z<3l(x, t) I~ M ( N- 2 ln2 N + r 3 ], (x, t) E Gh. (5.9) 

Theorem 4. Let conditions (5.4), (5.8) hold and assume in Eq. (2.1) that a E Jf(<>+ 2n-J)(G), c, p, f E fi(o+2n-2)(G), i.p E JI(<>+2n)(G), <l > 4, n = 3 and let condition (3.4} be satisfied with n = 3. Then for the 
solution of scheme (5.7), (4.1} the. estimate (5.9) is valid. 
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