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1. A BASIC EXAMPLE: THE MATCHING POLYTOPE 

We first describe a basic result in polyhedral combinatorics, due to Edmonds 

[1] Let G=(V,E) be an undirected graph (i.e., Vis a finite set (of vertices) 

and E is a collection of pairs (edges) of vertices). A subset M of E is called a 

matching if e'ne"==9) whenever e',e"fM, e'fe". The matching polytope of G is the 

set conv.hull{i(M IM matching·~ in :IRE, where X,M is the incidence vector of M (i.e., 

X.,ME'JRE with "XM(e)=l if e E-M, and =0 otherwise). Edmonds now showed: 

THEOREM 1 (Edmonds' matching polytope theorem). The matching polytope of G=(V,E) is 
E 

equal to the set of vectors x €lR satisfying: 

(1) 

For proofs we refer to ~It, 30 ,33 J . 

( e E:E) , 

(V~.V) I 

(Uc.;V, \UI odd). 

Edmonds' theorem has the following application. If we are given some 'weight' 

function cElRE, we can describe the problem of finding a matching M of maximum 

'weight' 2 M c equivalently as the problem of maximizing cTx over the matching eE e 
polytope, that is, by Edmonds' theorem, over x€lRE satisfying (1). This last is a 

linear programming problem, and we can apply LP-techniques to solve this problem, 

and hence to solve the combinatorial optimization problem. Among other, with the 

help of the ellipsoid method, it can be shown that the maximum matching problem 

is solvable in polynomial time - see Section 2. 

Another, theoretical, application of Edmonds' theorem is obtained with the 

Duality theorem of linear programming. Let Axsb denote the system (1). Then for 
E 

any c E.lR 

( 2) 

So we have a min-max relation for the maximum matching problem. It was shown by 

Cunningham and Marsh [6] that if c is integer-valued, then the minimum in (2) has 

an integer optimum solution y. The special case c=l (the all-one function) is 

equivalent to the following Tutte-Berge formula [35,1J : the maximum cardinality 

of a matching in a graph G=(V,E) is equal to 

( 3) min 
Ur,V 

\vj +\U!-&(V,U) 
2 

where ~(V\U) denotes the number of components of (v,u) with an odd number of 

vertices (<V,u) denotes the graph (V\U,{eEEI ef.V\Ut)). 

Note that the constraint matrix A in (1) generally is not totally unimodular 
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(a matrix is totally unimodular if all subdeterminants belong to {o,±11). If G is 

bipartite (i.e., V can be split into classes V' and V" (the colour classes) so that 

E ~{{v' ,v"} J v'E,V' ,v"ev"}), then the inequalities (1) (iii) can be deleted as they 

are implied by the constraints (i) and (ii), as one easily checks. In that case, 

the theorem is due to Egervary[B] and follows more simply from the fact that if 

M is totally unimodular and d is integer, then each vertex of the polyhedron deter­

mined by Mx~d is integer. 

Similarly, for bipartite G, the Tutte-Berge formula above reduces to the well­

known K6nig-Egervary theoremr [i.1J9]. 

2. POLYHEDRAL COMBINATORICS AND POLYNOMIAL SOLVABILITY 

Above we mentioned obtaining polynomial-time algorithms from polyhedral results 

with the ellipsoid method. In this section we describe this more precisely. 

Suppose that for each graph G=(V,E) we have a collection ¥G of subsets of E. 

For example: 

(4) (i) ~G {Mr;E/M is a matching1; 

(ii) t'G {M fE IM is a spanning tree~; 
( ili) tG = {M~E IM is a Hamiltonian circuit}. 

With any family <tGjG graph) we can associate the following problem: 

(5) Optimization problem: Given a graph G=(V,E) and ce@E, find M~¥G 
maximizing ~ c . 

ee.M e 

So if (~G[G graph) is as in (i), (ii) and (iii), respectively, problem (5) amounts 

to finding a maximum weighted matching, a maximum weighted spanning tree, and a 

maximum weighted Hamiltonian circuit, respectively. The last problem is the well­

known traveling salesman problem (note that by replacing c by -c (5) becomes a 

minimization problem). 

Given a family C¥GlG graph), we are interested in finding, for any graph G= 
E 

(V, E) , a system Ax~b of linear inequalities in x e:JR so that 

E If (6) holds, then for any c €JR 

thus formulating the combinatorial optimization problem as a linear programming 

problem. 

The optimization problem (5) is said to be solvable in polynomial time or 
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polynomially solvable if it is solvable by an algorithm whose running time is 

bounded above by a polynomial in the input size rv1+IEt+size(c). Here size(c) := 

~e€E size(ce)' where the size of a rational number p/q is equal to log2 (fpj+1) + 

log2 1qj. So size(c) is about the space needed to specify c in binary notation. 

It has been shown by Karp and Papadimitriou[io]and Grotschel, Lovasz and 

Schrijver [16J that (5) is polynomially solvable, if and only if the following 

problem is solvable in polynomial time: 

(8) Separation problem: Given a graph G=(V,E) and xe~E, determine if x 

belongs to conv. hull{ ~M l M € t G 1, and if not, find a separating hyperplane. 

Again, 'polynomial time' means: time bounded by a polynomial in IV\+IE(+ 

h E size (x ) . 
eE: e 

THEOREM 2. For any fixed family <¥GIG graph), the optimization problem (6) is 

polynomially solvable, if and only if the separation problem (8) is polynomially 

solvable. 

The theorem implies that with respect to the question of polynomial-time 

solvability, the approach described above (studying the convex hull) is more or 

less essential: a combinatorial optimization problem is polynomially solvable if 

and only if the corresponding convex hulls can be decently described - decently, in 

the sense of the separation problem. 

As an application of Theorem 2, it can be shown that the system 

(1) of linear inequalities can be tested in polynomial time, although there exist 

exponentially many constraints (Padberg and Rao [28]). Hence, the maximum matching 

problem is polynomially solvable (in fact, this was shown directly by Edmonds [1] ) . 
Theorem 2 can also be used in the negative: if a combinatorial optimization 

problem is not polynomially solvable (maybe the traveling salesman problem),·then 

the corresponding polytopes have no decent description. 

Theorem 2 is shown with the ellipsoid method, for which we refer to the books 

of Grotschel, Lovasz and Schrijver ~~ and Schrijver ~l]. The ellipsoid method does 

not give practical algorithms, but it may give insight in the complexity of a 

problem. 

There are several variations of Theorem 2. For instance, a similar result holds 

if we consider collections¥ of subsets of the vertex set V, instead of subsets of 
G 

the edge set E. Moreover, we may consider families <¥~ j G e 9> , where 9- is a subclass 

of the class of all graphs. Similarly, we can consider directed graphs. 

3. LATTICES AND STRONGLY POLYNOMIAL ALGORITHMS 

A first recent development in polyhedral combinatorics is the influence of 
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lattice techniques, to a large extent due to the recently developed basis reduction 

method given by Lenstra, Lenstra and Lovasz [:l.3] . In this section we give one 

illustration of this influence, due to Frank and Tardos [10]. 
The basis reduction method solves the following problem: 

(9) Given a nonsingular rational nxn-matrix A, find a basis b 1 , ... ,bn for the 

lattice generated by the columns of A satisfying 

in time bounded by a polynomial in size(A) :=21 .. size(a. ,) . Here the lattice 
i, J lJ 

generated by a 1 , ... ,an is the set of vectors ,\a1+ ... +)nan with J\ 1 , ... ,Anf?Z. 

Any linearly independent set of vectors generating the lattice is called a basis 

for the lattice. 

One of the many consequences is a polynomial-time algorithm for the following 

simultaneous diophantine approximation problem: 

( 10) . n d Given nW , a€1Jl an 

integer q satisfying 

£with 0 <f<1, 
. 1 E, 
\\a - -=PI!<- and 

q q 

find an integer vector p and an 

1 $'.q ~ 2~n(n+1)£-n. 

This can be seen by applying the basis reduction method to the (n+l)X(n+l)-matrix 

(11) A := r: 2-i.:1n+l)£n+I 1 
where I is the nxn identity matrix. 

Frank and Tardos showed that this approximation algorithm yields so-called 

strongly polynomial algorithms. The algorithm for the optimization problem (6) 

derived from the ellipsoid method, performs a number of arithmetic operations, 

which number is bounded by a polynomial in lv\+\Ej+size(c). (Arithmetic operations 

here are: addition, subtraction, multiplication, division, comparison.) It would 

be preferable if the size of the weight function c"only influences the sizes of 

the numbers occurring when executing the algorithm, but not the number of arith­

metic operations. Therefore, one has defined an algorithm for (6) to be strongly 

polynomial if it consists of a number of arithmetic operations, bounded by a 

polynomial in lv\+IEI, on numbers of size bounded by a polynomial in lv\+\Ej+size(c). 

Frank and Tardos however showed the equivalence of the two concepts when 

applied to (6) : 

THEOREM 3. For any .family (fGIG graph), there exists a polynomial-time algorithm 

for the optimization problem (6), if and only if there exists a strongly polynomial 

algorithm for (6) . 

Their result was obtained by constructing a strongly polynomial algorithm for the 
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following problem: 

(12) Given nf.JN and cf(l_t, find ~€~n such that l\~ll ~2 9n3 and such that: 
T T ..,,T ..,T ex. 

c x>c y ~- c x> c y. 

With this method the size of c in the optimization problem can be reduced to fr<IE1 3>, 
without changing the optimum solution. Hence any polynomial-time algorithm for the 

optimization problem yields a strongly polynomial algorithm. 

As another interesting recent lattice result we mention Lovasz's [.i5] character­

ization of the perfect matching lattice (i.e., the lattice generated by the incidence 

vectors of perfect matchings in a graph), in the same vein as Edmonds' matching 

polytope theorem. 

4. THE COCLIQUE POLYTOPE AND DECOMPOSITION TECHNIQUES 

As another recent development in polyhedral combinatorics we mention the 

propagation of decomposition techniques. Fundamental decomposition methods are 

described in Seymour's paper "Decomposition of regular matroids1' [34]. Also Burlet, 

Fonlupt and Uhry [2,3] obtained deep decomposition results. 

We illustrate the decomposition methods of Seymour by applying them to character­

izing the 'coclique polytope' of certain graphs. For any undirected graph G=(V,E), 

a set C~V is called a coclique if it does not contain any edge of G as a subset. 

The coclique polytope of G is the convex hull of the incidence vectors of cocliques 

in G, i.e. conv.hul1(~ \c coclique~slEt 
The problem 

( 13) Given G=(V,E) and c€JR", find a coclique C in G maximizing~ C c 
VE V 

is NP-complete, and hence probably not polynomially solvable. Therefore, by Theorem 

2 (now in the variant with subsets of V instead of of E), there is probably no 

polynomial-time algorithm for the separation problem for coclique polytopes. So we 

should not expect a decent description for coclique polytopes similar to Edmonds' 

matching polytope theorem. 

For some classes of graphs, however, the coclique polytope has a decent descript~ 

ion, e.g. for perfect graphs (including bipartite graphs, line graphs of bipartite 

graphs, comparability graphs, triangulated graphs, and their complements). Another 

class of graphs is described in the following theorem of Gerards and Schrijver [itJ. 
An undirected graph G=(V,E) is called odd-K4-free if G has no subgraph homeomorphic 

to 
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where wriggled lines stand for paths, so that each face in this graph is enclosed 

by a circuit of odd length. 

THEOREM 4. For any odd-K4-free graph G=(V,E), the coclique polytope is equal to 
. v . f . the set of vectors x in JR sa tis ying: 

(14) (i) O~x ~ 1 
v 

(v~V), 

<{v,W~lE), 

(C circuit with jcl odd). 

[Here c is a circuit if c={v 1 , .•• ,vk\ with {v i-l ,v i\6E (i=2, •.. ,k) and {vk ,v 11 EE l 
Note that if G is bipartite, then G has no odd circuit, and hence there are 

no constraints (iii) . In that case the theorem reduces to a theorem of Egervary [g] 
The theorem implies, with the help of Theorem 2, that problem (13) is poly­

nomially solvable for odd-K4-free graphs. Indeed, the constraints (14)can 

be tested for any given x elR v in time bounded by a polynomial in Iv I+ I EI+ size {x) , 

although there are exponentially many constraints. (The condition (iii) can be 

tested using a shortest path algorithm.) 

We sketch how Theorem 4 can be shown using decomposition techniques (which 

also yield a direct combinatorial polynomial-time algorithm for the maximum 

coclique problem for odd-K4-free graphs). It was shown by Seymour ~4-1 that "each 

regular matroid is obtained by taking 1-, 2- and 3-sums of graphic matroids, co­

graphic matroids and R1011 • Regular matroids are matroids representable over each 

field. By a theorem of Tutte [3b] , regular matroids are exactly those binary 

matroids not containing the Fano-matroid or its dual as a minor. 

Seymour's theorem can be equivalently stated as: "each totally unimodular 

matrix can be decomposed into network matrices and their transposes and into 

certain 5~5-matrices". It implies a polynomial-time test for the total unimodular­

ity of matrices, and a polynomial-time algorithm for linear programs over totally 

unimodular matrices. It also has implications in geometry and graph theory. One 

of them described by Gerards, Lovasz, Schrijver, Seymour and Truemper U3] is as 

follows. 

Consider the following four compositions of graphs G'=(V',E') and G"=(V",E") 

into a new graph H. Composition 1: If lv'rW''\ ~1 then H := (V'uV" ,E'uE"). Composition 

2: If V'nV" ={v1,v2\e.E'nE" and G" is bipartite, then H:=(V'vV",(E'uE")\{\v1 ,v2}~. 
Composition 3: If V'f\V" ={v0 ,v1 ,v21, E'nE"={fv0 ,v11,{v0 ,v2) ,{v1 ,v2~} and v0 has 

degree 2 both in G' and in G", then H:=((V'uV")'\{v01,(E'uE")\(E't\E")). Composition 4: 

If V'nV" ={v0 ,v1 ,v2 ,v3}, E'nE"={fv0 ,v1},{v0 ,v2J 1 {v0 ,v:JJ. v0 has degree 3 both in 

G' and in G", and G" is bipartite, then H:=((V'uV"),{v0},(E 11>E")'\(E'nE")). 

Moreover, consider the following operations on a grapn G=(V,E). Operation 1: 

If {v0 ,v11,{v1,v211 {v2,v31eE, where both v 1 and v 2 have degree 2, then H:=(V\{v1,v2}, 
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(E '{{v0 ,v1},{v 1 ,v21,{ v2 ,v 3 ~}>u{v0 ,v 31>. Operation 2: If v0 f;V, where {v0 ,v11, ... , 
fv0 ,vkl are the edges of G containing v0 , then let w1 , ••. ,wk be 'new' vertices and 

H: = (Vv{w 1 , ••• , wk1 , (E' 'f{v 0 , v 1 ~, ..• , {v 0 , vk}'!) u{{v 0 , w 11, ... , {v 0 ,wk1 , {w 1 , v 1 ~ , ... , 

fwk ,vk\1> • 

THEOREM 5. An undirected graph is odd-K4-free if and only if it can be constructed 

by a series of compositions and operations above starting with the following graphs: 

(15) (i) graphs G=(V,E) having a vertex v0 so that the graph (V\{v01, 
E '{ e \ e-3V oJ) is bipartite; 

(ii) planar graphs having exactly two odd facets (an odd facet is a 

facet enclosed by an odd number of edges); 

(iii) the following graph: 

Sufficiency in this theorem is easy to see: each of the graphs in (i), (ii) 

and (iii) is odd-K4-free. Moreover, each of the compositions and operations 

maintains the property of being odd-K4-free. The content of the theorem is that in 

this way all odd-K4-free graphs can be constructed. 

In order to derive now Theorem 4, it suffices to prove that each of the graphs 

(15) has the property described in Theorem 4, and moreover that this property is 

maintained under each of the compositions and operations above. Showing this is 

not as hard as the original direct proof of Theorem 4. 

If we let Ax~b denote the system (14), then by Theorem 4 for odd-K4-free 
v 

graphs G=(V,E) and cEJR : 

Using the above decomposition techniques, Gerards [ti] showed that if c is integer­

valued, the minimum has an integer optimum solution y. In particular, if c=l (the 

all-one function) then the maximum size of a coclique is equal to 

where the minimum ranges over all subsets F of E and circuits c 1 , ... ,ct such that 

v =UFv u:=l ci. This forms an extension of a theorem of Konig[.U.]tor bipartite 

graphs. 
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5. CUTTING PLANES 

Quite often the problem of characterizing the convex hull of certain {0,11-
vectors amounts to characterizing, for some polyhedron P, the polyhedron 

(18) PI := conv.hull{x~P Ix integral}. 

PI is called the integer hull of P. E.g., if G=(V,E) is a graph, and 

(19) (ecE); L1 x ~1 
e~v e 

the integral vectors in P are exactly the incidence vectors of matchings, and hence 

P· is equal to the matching polytope of G. Similarly, for 
I 

(20) (v EV); }] x ~ 1 
V€e V 

(e €E)}, 

Pr is the coclique polytope of G. 

For any rational polyhedron P, there is a procedure of deriving the inequalities 

determining PI from those determining P - the cutting plane method, due to Gomory 

[is]. The following description is due to Chvatal [4] and Schrijver [29]. 
Clearly, if His a rational halfspace, i.e., His of form 

( 21) H 

where a E'J>.n, a;!Q_, ~€~, we may assume without loss of generality that a is integral, 

and that the components of a are relatively prime integers. In that case: 

HI arises from H by shifting its bounding hyperplane until it contains integral 

vectors. 

Now define for any set P in JRn: 

(23) P' := 

where H ranges over all rational halfspaces containing P. Since H 2P implies HI;;? PI , 

it follows that P' 2PI. It can be shown that if Pisa rational polyhedron (i.e., a 

polyhedron determined by linear inequalities with rational coefficients), then P' 

is a rational polyhedron again. 

To P' we can apply this operation again, yielding P". It is not difficult to 

find rational polyhedra with P" ;! P'. Each rational polyhedron P thus gives a 

sequence of polyhedra containing PI: 

(24) P:,?P';>P",.;>P'";? .•••. :2PI. 
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Denoting the (t+1)-th set in this sequence by P(t), the following can be shown. 

THEOREM 6. For each rational polyhedron P there exists a number t such that p(t)=P 
I. 

The theorem is the theoretical essence of the termination of the cutting plane method 

of Gomory. The equation a T x= L ~ J defining HI, or more strictly the hyperplane { x J 

T l . 
a x=L~Jj' is called a cutting plane. 

The smallest t for which P(t)=PI can be considered as a measure for the complex­

ity of PI relative to that of P. In a sense, P' is near to P, P" to P', and so on. 

Let us study some specific polyhedra related to graphs. Let G=(V,E) be an un­

directed graph, and let P be the polytope (19), implying ~hat P1 is the matching 

polytope of G. It is not hard to see that for each graph G, the polytope P' is the 

set of all vectors x in P satisfying 

( 25) (u <;;:v, \uj odd) . 

(Of course, there are infinitely many halfspaces H containing P, but the correspond­

ing inequalities aTx $. l~J all are implied by the inequalities defining P and by . 

(25) .) So Edmonds' matching polytope theorem in fact tells us that P'=P for each 
I 

graph G. (P=PI for bipartite G, since in that case (25) is implied by the inequal-

ities determining P.) 

Next let, for any undirected graph G=(V,E), P be the polytope (20), implying tha 

PI is the coclique polytope of G. It is not difficult to check that the polytope P' 

is the set of vectors x in P satisfying 

(26) Z x < L~ 1· c/11 
V£C v- .J 

(C odd circuit). 

So Theorem 4 states 

if and only if G is 

so that p(t)=P 
I 

for 

that P'=P 
I 

bipartite. 

each graph 

if G is odd-K4-free. By Egervary's theorem, P=PI 

Chvatal [5] has shown that there exists no fixed t 

G. 

An important computational application of cutting planes is to the traveling 

salesman problem, which we mention in the following section. 

6. THE TRAVELING SALESMAN PROBLEM AND CUTS 

The well-known traveling salesman problem (in its directed, asymmetric form) 

can be formulated as an integer linear programming problem as follows, for given 

"'JN and ( ) · nl\n nc c = c .. <E:JR : 

(27) 

1.] 

minimize 
\""""In 

li i, j=l X.' I 
1.J 

such that {x .. ~ O 
1. J 

(-*) ,liqu, jEU xij ~ 1 

.Z~=l xij = 1 

x .. integer 
1.J 

(i,j=1, ... ,n); 

( p " u 7 f 1 ' ... , n} ) ; 
( i= 1 I • • • f n) ; 

(i,j=1, ... ,n). 
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Let p be the polytope in JRnxn determined by (*). It is clear that PI is the 

convex hull of the incidence vectors of traveling salesman routes. Since the 

traveling salesman problem is NP-complete, we may not expect a 'decent' description 

of PI in the sense of Theorem 2. In fact, if NP f co-NP there is no fixed t such 
( t) 

that P =PI for each n. 

On the other hand, cutting planes can be helpful in solving instances of the 

traveling salesman problem. The traveling salesman problem is equivalent to solving 

min{cT:x I :x€PI1, while solving min{c?x \ x~P} is not so difficult (it is polynomially 

solvable), and it yields a good lower bound for the traveling salesman optimum 

value (since P;;?PI). Good bounds are essential in branch-and-bound procedures for 

the traveling salesman problem. 

Adding all cutting planes to (~) to obtain PI seems infeasible, but instead 

we could add some cutting planes in order to obtain a better lower bound. This is 

a basic ingredient in the recent successes of Crowder, Grotschel and Padberg in 

solving large-scale traveling salesman problems (see [t:8 1 2..1] ) . Recently, Padberg 

was able to solve a symmetric 532-'city' problem using cutting planes. 

We shall not go into the details of solving the traveling salesman problem. 

we describe some theoretical results related to the above, which exhibit some of 

the connections of polyhedral results with combinatorial min-max relations. 

Let 't: be a collection of subsets of V ·= {1, ... ,n} satisfying: 

c2s) Cil ~ fC., v ~C; 

(ii) if TI u €. t I TnU;if0 I TuU;ifV, then Tt\U t t and TuU e e. 

Such a collection is called a crossing family. Consider the polytope P consisting 
n1tn of all x=(x .. ) €JR satisfying: 

l.] 

(29) 

x ~1 
ij 

(i,j=l, ... ,n), 

(U ESt.). 

Note that (~) in (27) defines a facet of P, for t=Cf>(V) '{0,v1. 

The following theorem was shown in [)1]. 

THEOREM 7. P has integral vertices if and only if 

(30) there are no sets v1 ,v2 ,v3'v4 ,v5 in C such that v 1 <;V2£\V3' v2vv3=v, 

v 3"v 4 ~v 5 , v 3(\v 4=~. 

Note that if x is an integral vertex of P, then x is a [o,~-vector. 

Theorem 7 can be put in a more combinatorial setting. Let t~9Cv) be a cross­

ing family and let D=(V,A) be a directed graph (i.e., Vis a finite set and A~ 

V x V). Call a subset A' of A a covering (for 't:) if each u Ee is entered by at least 
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one arc in A 1 (a= (v,w) enters u if v 4 U ,w iE U). Call a subset A' of A a cut (induced 

by 'el if A' =b~(U) := fac-A/a enters u1for some u~C. So each covering intersects 

each cut. 

(31) 

Consider the polyhedron in JRA determined by: 

(aE:A), 

(U EC). 

Then Theorem 7 is equivalent to: 

THEOREM 8. Each vertex of the polyhedron determined by (31) is the incidence vector 

of a covering, for each directed graph D=(V,A), if and only if (30) holds. 

Now we have the following: (30) holds ~the polyhedron determined by (31) has 

vertices coming from coverings and facets coming from cuts ~ (by polarity) 

the polyhedron determined by 

(32) (a e: A) , 

(C covering) 

has vertices coming from cuts and facets coming from coverings. So Theorem 8 is 

equivalent to: 

THEOREM 9. Each vertex of the polyhedron determined by (32) is the incidence vector 

of a cut, for each directed graph D=(V,A), if and only if (30) holds. 

A 
It follows that if (30) holds, and c€:ZZ , then the linear programs of minim-

+ 
izing cTx over (31) and over (32), respectively, have integral optimum solutions, 

corresponding to a minimum-weighted covering and a minimum-weighted cut, respect­

ively. In fact, it is shown in DQ that if (30) holds, then also the linear programs 

dual to these programs have integer optimum solutions. By LP-duality this means: 

THEOREM 10. Let~ be a crossing family satisfying (30) , let cG.JRA and let D=(V,A) 

be a directed graph. Then: (i) the minimum weight; of a covering is equal to th.e 

maximum number t of cuts c1 , .•• ,ct (repetition allowed) so that each arc a of Dis 

in at; most c of the cuts C.;(ii) the minimum weight of a cut is equal to the 
a i 

maximum number t of coverings c1 , ..• ,Ct (repetition allowed) so that each arc a of 

Dis in at most c of the coverings c .. 
a i 

We mention the following applications. 

1. Let V be partitioned into classes V' and V" I let e:= {{vl I VcV'1 u { v \{v! I 
V£V"}, A fV"-,.V', c=l. Then (i) in Theorem 10 is equivalent to a theorem of Konig 

[22] : the minimum number of edges covering all vertices in a bipartite graph is 
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equal to the maximum size of a coclique. Similarly, (ii) is equivalent to a theorem 

of Gupta LJ~: the minimum degree in a bipartite graph is equal to the maximum number 

of pairwise disjoint edge sets E1 , ..• ,Et each covering all vertices. 

2. Let r,s£V be fixed, letL:={uf'v\ r4U,s~uJ, D=(V,A) arbitrary, and c=l. 

Then (i) in Theorem 10 is equivalent to the (easy) result that the minimum number 

of edges in a path from r to s in D is equal to the maximum number of pairwise 

disjoint cuts separating r from s. Assertion (ii) is Menger's theorem [26]: the minimum 

number of edges in a cut separating r from s is equal to the maximum number of 

pairwise edge-disjoint paths from r to s. 

3. Let r6V be fixed, let L := {u~vl r,m~lil}, and let D=(V,A) and c be arbitrary. 

Then (i) in Theorem 10 is equivalent to a theorem of Fulkerson ~i]: the minimum 

weight of an r-branching (= a subset of A forming a rooted directed tree with root 

r) is equal to the maximum number t of r-cuts (= sets of form ~~(U) with uft'.,) 

(repetition allowed) such that any arc a of D is in at most c of these r-cuts. 
a 

If c~_!_, assertion (ii) is equivalent to a theorem of Edmonds [8] : the minimum 

size of any r-cut is equal to the maximum number of pairwise disjoint r-branchings. 
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