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Abstract - We construct discrete approximations for linear boundary value problems for ellip
tic differential equations for which the coefficient of the highest derivatives can take arbitrary 
small values from the interval (0, l]. Discretisation errors for classical discrete methods depend 
on the value of this parameter and can be of a size comparable with the solution of the original 
problem. We describe how to construct special discrete methods for which the accuracy of the 
discrete solution does not depend on the value of the parameter, and only depends on the num
ber of mesh points used. We describe a class of boundary value problems, for which an adaptive 
mesh technique is necessary to obtain a parameter-uniform error-estimate as mentioned above. 
For this class of problems a special finite difference method is constructed. The solutions, ob
tained by the special method, converge in the discrete 100-norm. For a model problem we show 
and compare results obtained by the classical method and those for the special scheme. 

1 Introduction 

For the solution of boundary value problems that have a smooth solution, well established 
methods can be used, such as finite difference, finite element or finite volume schemes 
(see e.g. [5]). The accuracy of the approximate solutions deteriorates when the solution 
becomes less smooth. 

In the case of singularly perturbed differential equations, when the coefficient of 
the highest derivatives can take an arbitrary small value in (0, 1], the solution of the 
boundary value problems may have limited smoothness. The derivatives of such solutions 
may increase without bound when the small parameter tends to zero. When classical 
numerical methods are used, the error of the approximate solution depends on the value 
of the small parameter and may be of a size comparable with the solution of the original 
problem [4]. Therefore, for singularly perturbed boundary value problems it makes sense 
to construct special numerical methods, for which accuracy of approximate solution does 
not depend on the parameter, and for which the size of the error depends only on the 
number of nodal point used, i.e. methods which converge uniformly with respect to the 
small parameter (parameter-uniformly). 

In [2, 4] special difference schemes were constructed for the solution of singularly 
perturbed boundary value problems, and it was proved that these schemes are parameter-

1This research was supported in part by the Dutch Research Organisation NWO through grant 
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uniformly convergent. Those first strong results belong to two different approaches for 
the construction of special numerical methods for these problems with boundary layers: 

(a) In the "fitted" method described in [4], the coefficients of difference equations 
are adapted such that a parameter-uniform accuracy of the approximate solution can be 
guaranteed on meshes with an arbitrary distribution of nodes (for example, on a uniform 
mesh); 

(b) In the '"adaptive mesh" method, described in [2], the usual classical discretisation 
scheme is used, but the nodes in the mesh are redistributed (condensed in the boundary 
layer) such that the parameter-uniform convergence is achieved. 

The methods from the first approach are attractive because they allow the use of 
meshes with an arbitrary distribution of nodes, in particularly uniform grids (see, for 
example, [l, 4]). Methods based on the second approach were constructed for a series 
of boundary value problems, e.g. see [8] (and references therein). For some boundary 
value problems, parameter-uniformly convergent schemes were constructed using both 
approaches for the same problem ([8]), or with the different approaches used to approx
imate the derivatives in different coordinate directions [7]. 

In this paper we consider a class of singularly perturbed boundary value problems for 
elliptic equations. Using the approaches (a) and (b), in Section 3 we introduce a natural 
class B of finite difference schemes for boundary value problems, in which we look for 
the special schemes which yield a parameter-uniformly convergent approximation to the 
solution. 

The considered class of singularly perturbed convection-diffusion problems describe 
the diffusion of some material in a moving medium. For these boundary value problems we 
construct a spcc:ial parameter-uniformly convergent sc:hemes. We show that for schemes 
from class B the use of special adapted meshes is neces1,;ary. With a special adapted mesh 
we are able to construe:!. finite difference schemes which converge parameter-uniformly. 
In Section 5 we give numerical results and compare the classical and the special finite 
difference schemes. 

2 The class of boundary value problems studied 

In many problems from physics we recognise the convective transport with diffusion 
described by 

- c~u(x)+ <'v(:r) · V> u(:c) = F(x), ;1: E 0. (2.la) 

For the boundary of n, which we assume to be piecewise smooth, we distinguish a wall, 
an°, an inflow and an outflow boundary, ao+ and ao- respectively. Clearly we have 
an = i.K2° uan+ uun- and < n(:z:) · iJ(x) > = 0, :r: E 80°; < ii(:r) · iJ(:r) > < 0, x E an+; 
<n(x) · Ti(x) > > 0, :r E an-. Here ii(x) is the outward normal unit vector. At a wall, 
an°' the boundary condition is written as 

[) 
v(·u(x) - U(:r:)) + Dnu(x) = 0, :r: E an°. (2.1 b) 

For 11--> oo condition (2.lb) reduces to the Dirichlet condition. At an+ we assume the 
concentration to be known and at an- we assume its diffusive component to be known: 

u(x) = u+(x), x E an+ 

a -a u(x) = IJ!(x), x E an-. 
n 

(2.lc) 

(2.ld) 
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When the parameter c: tends to zero, we may expect a boundary layer to appear in the 
neighbourhood of the boundary ao.O. 

In this paper we describe a class of two-dimensional diffusive transport problems, for 
which we construct our special finite difference schemes. The problem is slightly more 
general than problem (2.1). On the rectangular domain n = {x: 0 < X; < d;, i = 1, 2} 
we consider the elliptic boundary value problem for equation 

L(2.2iu(.T) = {c2 Ls=1,2as(x)::~ - b(x) 8~, - c(x)}u(x) = f(x), x En, 

u(x) = cp(x), x E an+= {x Ix E an, X1 = O}' 

l(2.2)u(x) = -ac:l,.u(x) - (1- a)u(x) = 'lj;(x), 
x E an.o = {x I x E an, 0 < X1 <di} ' 

a 
an·u(x) = 'T/(X), x E an-= {x I x E an, X1 =di} ' 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

Here a.(x), b(:r), c(x), f(x), x E TI; cp(.1:), x E an+; 'lj;(x), x E an°; 77(x), x E an- are 
sufficiently smooth and bounded functions, which satisfy 

0 < a0 :S a1(x), a2(x) :S a0 , 0 < b0 :S b(x), c(x) ~ 0, x E TI. (2.2e) 

The parameters o: and E: may take any value from the intervals cE(O, l], o:E[O, l]. When 
the parameter E: tends to zero in (2.2), in the neighbourhood of the boundary 8Q0 

parabolic boundary layers may appear. We suppose that for the functions <f>(x) and 'lj;(x) 
compatibility conditions are satisfies to guarantee a continuous solution and derivative 
with respect to X2 On the set an° n an+. 

The above class of problems includes, for example, the boundary value problem for 
the regular differential equation: 

fl2 a 
i(2.3p(y) = {I: A.(y) 82 - B(y)a }u(y) = F(y), 

=l~ ~ ~ 
(2.3a) 

for y E 0, with the regular boundary conditions 

U(y) = <P(y), y E an+, 

lc2.3)U(x) = -al,.U(y) - (1- a)U(y) = IJ.l(y), y E 8n°, (2.3b) 

l,.U(y)=O, yEan-, 

on the rectangular domain n = {y I 0 <Yi <d.;, i = 1, 2}, d.; = C-1 d;. 
As we shall see in the next section, for boundary value problem (2.2) classical finite 

difference approximations on a uniform grid [5] converge to the solution of (2.2) only for a 
fixed value of the parameter E: (see Theorem 2.1). The accuracy of the numerical solution 
depends on this value of the parameter and it decreases with E: until all accuracy is lost 
when the value of c/b0 is comparable with the mesh-size of the uniform grid. We shall 
show that classical finite difference schemes do not converge €-uniformly (see Theorem 
2.2) for small values of the parameter c. Therefore it is our concern to construct special 
schemes which do converge €-uniformly. In [7] a particular €-uniformly convergent finite 
difference scheme was constructed for the special case of a Dirichlet problem for equation 
(2.2a). 
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To solve of boundary value problem (2.2) we first study the classical finite difference 
method on a (possibly) non-uniform grid. On the set r2 we introduce the rectangular 
grid 

(2.4) 

where w, is the (possibly) non-uniform grid on the interval [O, d,]; N, is the number 
of nodes in grid w., s = 1, 2. Define h~ = x~+l - x~, h, = max; h~, h = max9 h., 
N = min.N., s = 1,2, Qh = nnri"h, 8nh = annri"h. For problem (2.2) we use difference 
scheme 

Here 

A(2.s1z(x) = f(x), x E nh, 
z(x) = <p(x), x E ant, 

A(2.s1z(x) = 'l/;(x), x E an~, 

8-x.-z(x) = ry(x), x E 80.h., 

A(2.siz(x) = e2 L a,(x)8x;x,z(x) - b(x)Sx.-z(x) - c(x)z(x), 
s=l,2 

{ 
+w8,,2 z(x) -(1- a)z(x), 

A(2 s)z(x) = 
· -w~z(x) -(1- a)z(x), 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

Dx, z(x) and 8x;z(x) are the forward and backward difference and 8x,x, z(x) is the second 
difference on the non-uniform grid. 

The difference scheme (2.4)-(2.5) is monotone (i.e. the maximum principle holds) [5]. 
By means of the maximum principle, and taking into account estimates of the deriva

tives, we find that the solution of the scheme (2.4)-(2.5) converges (for a fixed value of 
the parameter e) as 

(2.6) 

Here and in the following we denote by M (or rn) a sufficiently large (or small) positive 
constants which do not depend on the value of parameter e or on the difference operators. 
The proof of (2.6) is similar to the classical proof of convergence for monotone difference 
schemes [5, 8]. Taking into account an a-priori estimate for the solution this results in 
the following theorem. 

Theorem 2.1 Let all k-th derivatives of the solution of boundary value problem (2.2) 
be bounded by O(e-2k). Then, for a fixed value of parameter e, the solution of the scheme 
(2.5)-(2.4) converges to solution of boundary value problem (2.2) with an error bound 
given by (2.6). 

Clearly, from (2.6) no €-uniform convergence of difference solution follows. In a report 
[3] we prove that it is impossible to get such an estimate for (2.4)-(2.5) on a fixed, c;

independent mesh. The proof follows the same lines as given in [6]: Thus we arrive at 
the following theorem. 

Theorem 2.2 On a uniform grid the solution of the classical finite difference scheme 
(2.5) does not converge €-uniformly to the solution of the boundary value problem (2.2). 
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3 Fitted difference scheme 

In this section we show that there does not exist a difference scheme, even based on a 
fitted method, for which the solution on a uniform grid converges €-uniformly to the 
solution of boundary value problem (2.2). Let us consider the boundary value problem 

where 

L(37)u(x) ::=: c2b..u(x) - J!-u(xi) = 0, x E Q, 
uX1 

u(x)=O, xEon+, 

l(2.2iu(x) = 'lf;(x), 1: E 80.0, 
f) on u(x) = 0, x E f)Q-, 

-efi(x) = { 'ef1o(x1), :z: E 80.0, X2 = 0, 
0, xE8D0 , x2 #0. 

We assume that ·ifio(O) = 0 and that l/'o(x1), x1 E [D,d1] is sufficiently smooth. 

{3.7a) 

(3.7b) 

(3.7c) 

(3. 7d) 

(3. 7e) 

For the solution of problem (3.7) a boundary layer appears near the wall for 1:2 = 0. 
We know that the main term of asymptotic expansion of this solution is the solution of 
a parabolic boundary value problem, with solution ·upari and we have the estimate 

lu(3.7)(x) - Upar(x)I :::; ME, 1: En. 
Now we introduce the class A of finite difference schemes for the model problem (3. 7). 

It is defined by the use of a uniform mesh D~nif, and the usual, fitted five-point finite 
difference scheme for the approximation of equation (3.7a): 

A(3.8)z(x) = { L (A,Ox"x; + BsD.r, - C}z(1:) =E. (3.8) 
s=l,2 

Here the coefficients Asi B" C, E are functionals derived from the coefficients of equa
tion (3.7a), depending on x, h1, h2 and E. We suppose that for h2C 1 -> 0 and h1 -> 0 the 
coefficients A,, B., C, E approximate (in f 00-norm) the coefficients in equation (3.7a), 
at least in the neighbourhood of a point near the boundary layer. We can prove (see [8]) 
the following statement. 

Theorem 3.1 For the finite difference schemes in class A (i.e. on a uniform grid D~nif, 
there does not exist a discrete solution which converges E -uniformly to the solution of 
boundary value problem (3.7). 

A statement similar to Theorem 3.1 holds if we construct a difference scheme based on 
a stencil with an arbitrary, finite number of nodes. Theorem 3.1 and its generalisation can 
be understood as follows. All solutions of problem (3.7), for arbitrary functions 1/;(x) in 
(3. 7e), are singular solutions. Even in the neighbourhood of the parabolic boundary layer, 
these solutions can not be represented as a linear combination of a finite set of functions 
of boundary layer type. Therefore we cannot choose a finite number of coefficients which 
define a finite difference operator such that it approximates the differential operator for 
the set of singular solutions. Thus, for a given (c-independent) grid we cannot expect to 
find a method that is €-uniformly convergent for problem (2.2). 

Let us now introduce the class B of finite difference schemes for problem (2.2). It is 
defined by the use of (non-uniform) rectangular grids nh{2.4) and, for the approximation 
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of equation (2.2a), a (fitted) five-point finite difference stencil. The coefficients of the 
difference operator are functionals of the coefficients of equation (2.2a) and they depend 
on x, c: and also on the mesh. We again suppose that for h -+ 0 the coefficients of the 
difference operator approximate (in the £00-norm) coefficients in equation (2.2a) on the 
set nh (2.4)' 

We remark that the class B is a natural class of finite difference schemes. This class 
includes methods both with fitted schemes and with fitted grids, i.e. it allows all freedom 
of choice mentioned in the introduction. The following statements can be derived from 
Theorem 3.1 

Theorem 3.2 For the boundary value problem (2.2), there does not exist a finite dif
ference scheme in class B, based on a fitted scheme, for which the solution converges c: 
-uniformly to solution of the boundary value problem (2.2) for a mesh with an arbitrary 
c:-independent distribution of nodes. 

Theorem 3.3 For the boundary value problem (2.2), for schemes in class B special 
c:-dependent grids (adaptive meshes) are necessary for the construction of c: -uniformly 
convergent schemes. 

Hence, we should conclude that, if we consider problems with parabolic boundary layers, 
within class B adaptive mesh techniques are necessary for the construction of c:-uniformly 
convergent difference schemes. Such an adaptive method should provide an (a-priori) c
dependent mesh, or it should adapt its mesh during the computation, using either data 
from the problem (the given value of c) or from the solution. 

4 The c:-uniformly convergent difference scheme 

By means of an adapted condensed mesh, in this section we construct an c:-uniformly 
convergent method for boundary value problem (2.2). From the previous section it is 
clear that we need a special mesh, condensed in the neighbourhood of boundary layers. 
How the nodes have to be placed is derived from a-priori estimates of the solution and 
its derivatives. Let us consider the special grid (see [8]), 

( 4.9) 

where w1 is a uniform mesh, and w2 = w2(a) is a special piecewise uniform mesh; a is a 
parameter depending on c: and N2 . The mesh w2(a) is constructed as follows. The interval 
[ 0, d2 ] is divided in three parts [ 0, a], [a, d2 -a] and [ d2 -a, d2 ], 0 < a S d2 / 4. We divide 
each interval [ 0, u] and [ d2 - rr, d2 ] in N2 / 4 equal parts and interval [a, d2 - a] in N2/2 
equal parts. We assume that rr = a(c.-, N2 ) = min[ d2 /4, me: In N2 ], where m = m(4.9J is 
an arbitrary positive number. 

Theorem 4.1 If the solution of (2.2) satisfies some estimates described in [3], then 
the solution of the discrete problem (2.5)-( 4.9) converges £-uniformly to the solution of 
boundary value problem (2.2). In particular, for the solution of the discrete problem the 
estimate holds: 

iu(x) - z(x)I s M N- 1!3 , x ED~ . (4.10) 

The proof of this theorem follows the lines of the proof in [8]. 

The difference scheme (2.5)-(4.9) belongs to class B. This scheme has typically an 
a-priori adapted mesh. 
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5 Numerical results 

By the theory (see Theorem 2.2) it is shown that the classical difference scheme (2.5) 
on the uniform grid does not converge in the [00-norm €-uniformly to the solution of the 
boundary value problem (2.2). But it would be possible that the error maxn, lz(x)-it(x)I 
is not too large for the classical scheme. That would reduce the need for a special scheme. 

On the other hand, Theorem 4.1 shows that the special scheme (2.5),(4.9) converges 
€-uniformly, but no indication is given about the value of the order constant Min (4.10) 
and the order of convergence is rather small. It might be possible that the error is rather 
large for any reasonable value of Ni, N2• This might reduce the practical value of the 
special scheme. To decide on the practical value of the new scheme numerical experiments 
should give the final answer. 

To see the effect of the special scheme in practice, we study the singularly perturbed 
elliptic equation with a mixed boundary condition. 

where 

(5.11) 

[) 
-u(:i:) = O, :cEofl- , 
Dx2 

l . ( ·) _ GE 0,,.,v.(:.1:) - (1- C\')u(;·1·'), :r2 = 0, { 
a 

(5.ll)U X = D- ( 
-aE0x 2 u(.r) - (1 - cx)u .r), :r2 = 1. 

We compare the numerical result8 for the scheme (2.5) on the uniform and on the special 
grid (4.9). Here fl = {:i:: Cl< :ci, 1:2 < 1}, 

.1 ( ) { :ri, 
~J :c = 0. 

:rEDn°, 1:2 = o , 
.rED~2°. :r2 = 1 . 

For tlw wlution of problem (5.11) we have the representation 

u.(:r) = U(.r) + lV(x), :i:En. 

wher0 U (;r) = :c 1 , :rED:. is the outer solution, and H'(:r) represents the parabolic boundary 
layer in the neighbourhood of the edges at .r2 = 0 and :i:2 = 1. For the solution we have 
the estimate 

-1~u(;i:)~1, :i:EQ. 

Due to Theorem 4.1 the solution of the discrete problem with the adapted mesh 
converges €-uniformly to the solution of our model problem (5.11 ). The function uh(x), 
whieh is the solution of the special scheme (2.5)-(4.9) is shown in Figure 1. 

To see the difforence between the use of the uniform and the adapted grid, for the 
approximation of ( 5.11) we first use the uniform grid. We solve the problem for different 
values of the meshwidth hi = h2 = N- 1 and for different values of the parameters £ 

and a. The r0sults for a set of numerical experiments is given in Table 1. From Table 
1 we can see that this solution does not converge i:-uniforrnly. For a fixed value of N, 
the errors depend on the parameters E and o:. For E;:::: 0.1 and a= 0.0, 0.1, 0.5, 1.0 the 
error behaviour is regular: when N increases, the error decreases. For E = 10-3 and 
o: = 0.0, 0.1, 0.5 and for E = 10-2 and a = 0.0, for some values of N the error increases 
with increasing N. For cx = 0.5, 1.0 and a fixed N the error increases with decreasing 
E. In particular, for E = 10-3 and a = 0.5, 1.0 the errors for N :::; 128 are of the same 
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Figure 1. Solution computed with the adapted mesh: 
£ = 0.01, °' = 0.5, N = 32 and m = 1.0. 

order or larger (in €00 -norm) than the solution of the BVP. Thus, the numerical results 
illustrate that the lack of c:-uniform convergence leads to large errors indeed. 

We show the behaviour of (2.5), (4.9), with m = m(4.9J = 1, applied to the model 
problem (5.11) The results for a set of numerical experiments is given in Table 2. We 
solve the problem for different values of N, N = N 1 = N2, and for different values of the 
parameters c: and a. From Table 2 we can see that the solution of the scheme (2.5)-(4.9) 
does converge c:-uniformly indeed. The errors for a fixed value of E = 1.0, 10- 1, 10-2 , 10-3 

and a = 0.0, 0.1, 0.5, LO have ail a regular behaviour and decrease for increasing N. For 
a fixed value of a and N the error stabilises for decreasing c:: the errors for c: = 10-2 and 
c: = 10-3 are practically the same. For c: :::; 10-2 and a fixed value of N we find the largest 
error for a = 1.0. In particular, for c: :::; 10-2, a = 1.0 and N = 128 the error is less 
than 6%. Also here, the numerical results illustrate the practical value of €-convergent 
methods. 

Conclusion 

For the elliptic boundary value problem (2.2), where a small parameter multiplies the 
highest derivative, we analysed different approaches for the construction of discrete meth
ods. We studied methods for which the accuracy of the discrete solution does not depend 
on the value of the small parameter, but only on the number of points in the discretisation 
(c:-uniform methods extended to non-uniform grids). 

We show that in a natural class of finite difference schemes no c:-uniform methods 
exist on a uniform grid for the problem considered (Theorem 3.1). As a consequence, 
for the construction of c:-uniform methods the use of an adapted non-uniform mesh is 
necessary. With a special, adapted, non-uniform mesh and a simple classical difference 
scheme, we are able to construct an c:-uniform approximation 

To illustrate the practical importance of our study, we show by a numerical example 
that, on a uniform grid, the classical difference scheme is inaccurate (and not c:-uniformly 
convergent). In our example, the error (with a Neumann boundary condition) is not less 
than 700% of the solution, for N=128 and c = 10-3 _ The same example shows that we 
obtain an accurate, c:-uniformly convergent solution if we use the adapted mesh. Now 



Table 1. Table of errors E(N, E, a) for the classical scheme. 
In this table the error E(N, E, a) is defined by 

E(N,c:,a) = m~ ie(x;N,c:,a)I, 
xEnh 

e(x;N,c:,a) = z(x) -u*(x), 
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(5.12a) 

(5.12b) 

where u*(x) is the accurate interpolation of z~56 (x), m = m(4.9) 1 (see Table 2), and 
z(x) = zN (x) is the solution of (2.5), on the uniform grid with h1 = h2 = N- 1. Notice that 
u*(x) is an accurate approximation of u(x). 

N 4 8 16 32 64 128 
c; a 
1 0.00 0.105 0.633(-1) 0.329(-1) 0.158(-1) 0.696(-2) 0.241(-2) 

10-1 0.305 0.144 0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2) 
10-2 0.247 0.127 0.822(-1) 0.107 0.882(-1) 0.246(-1) 
10-3 0.246 0.121 0.588(-1) 0.283(-1) 0.157(-1) 0.200(-1) 

1 0.10 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(-2) 
10-1 0.312 0.149 0.701(-1) 0.310(-1) 0.129(-1} 0.423(-2) 
10-2 0.247 0.194 0.185 0.156 0.109 0.583(-1) 
10-3 0.246 0.209 0.216 0.216 0.211 0.197 

1 0.5 0.852(-1) 0.401(-1) 0.183(-1} 0.842(-2) 0.359(-2) 0.119(-2) 
10-1 0.706 0.473 0.254 0.121 0.526(-1) 0.176(-1) 
10-2 1.20 1.26 1.15 0.893 0.557 0.279 
10-3 1.28 1.43 1.49 1.48 1.41 1.27 

1 1.0 0.123 0.610(-1} 0.288(-1) 0.132(-1) 0.562(-2) 0.187(-2) 
10-1 1.52 0.752 0.344 0.154 0.643(-1) 0.211(-1) 
10-2 18.2 10.3 5.19 2.40 1.02 0.408 
10-3 187. 109. 57.9 29.5 14.6 7.01 

the error is not larger than 6% of the solution, for any value of the parameter c. Thus, 
the numerical example illustrates that the theoretical considerations have significant 
practical implications. 
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Table 2. Table of errors E(N, £,a) for the special scheme. 
In this table the function E(N,&,a) is defined by (5.12), but now z(x) = z:,["(x) in (5.12} is 
the solution of {2.5),(4.9) with m = m(4.9) = 1. 

N 4 8 16 32 64 128 
E O! 

1 0.0 0.105 0.633(-1} 0.329(-1) 0.158(-1) 0.696(-2) 0.241(-2) 
10-1 0.262 0.144 0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2) 
10-2 0.246 0.147 0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2) 
10-3 0.246 0.147 0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2) 

1 0.1 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(-2) 
10-1 0.276 0.149 0.701(-1) 0.310(-1) 0.129(-1) 0.423(-2) 
10-2 0.246 0.170 0.887(-1} 0.461(-1) 0.240(-1) 0.924(-2) 
10-3 0.246 0.169 0.887(-1} 0.461(-1} 0.241(-1) 0.925(-2) 
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