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A comparison of bounds of Delsarte and Lovas~*) 

by 

A. Schrijver 

ABSTRACT 

We aompare two upper bound functions: Delsarte's linear programming 

bound (an upper bound for the cardinality of cliques in association schemes) 

and Lovasz's 8-function (an upper bound for the Shannon capacity of a graph). 

We show that the two bounds can be treated in a unified fashion. Delsarte's 

linear programming bound can be generalized to a bound 8'(G) for the inde­

pendence number a(G) of arbitrary graphs G, such that e'(G) ~ 8(G). On the 

other hand, if the edge set of G is the union of some classes of a symmetric 

association scheme, 8(G) may be calculated by means of linear prograrm:ning. 

We show that for such graphs G the product 8(G)•8(G) is equal to the number 

of vertices of G. 

KEY WORDS & PHRASES: linear prog1'amming bound, association scheme, Shannon 

capacity, positive semi-definite, codes, constant 

weight codes. 

*) 
To appear in IEEE Trans. on Information Theory. 
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1. INTRODUCTION 

The purpose of this note is to compare two upper bound functions, both 

being bounds for numbers motivated by more or less information-theoretical 

problems: Delsarte's linear programming bound, an upper bound for the 

cardinality of cliques in association schemes, and Lovasz's 8-function, 

yielding an upper bound for the Shannon capacity of a graph. The first 

bound may be conceived of as a bound for the independence number a(G) of 

certain graphs G, whereas Lovasz's bound limits a(Gk), the independence 

number of the normal product of k copies of G. 

We first give, in brief, these two bounds and their theoretical background. 

(A graph is an undirected graph, without loops or multiple edges.) 

Association schemes and Delsarte's linear programming bound (Delsarte [2], 

cf. Macwilliams & Sloane [5]). A pair (X,R), where R = (R0 , ••• ,Rn) is a 

partition of xxx, is called a (symmetric) association scheme, with 

intersection numbers p~. (i,j,k=O, ••• ,n), if 
l.J 

(1) 

(2) 

(3) 

R0 = { (x,x) lxeX}; 

Rj"/ = { ( y, x) I ( x, ~,) E ¾J = ~, for k = 0, ••• , n; 

for all i,j,k = O, ••• ,n, and (x,y)e¾: 

1 { z I ( x , z ) ER . and ( z , y) ER . } I = p ~ .• 
l. J l.J 

k k 
So pij = pji" We may consider the pairs (X,Ri) as graphs (i=l, ••• ,n). 

0 0 
(X,R.) is regular of valency v. = p,. (v0 = 1). Therefore p .. = o .. v .• 

l. l. l.l. l.J l.J l. 

Let Di be the adjacency matrix of (X,Ri); D0 is the identity matrix. Since, 

by (3), the symmetric matrices 00 , ••• ,Dn commute there exists a matrix 

u n O n ) P = (Pk)k,u=O such that Pk, ••• ,Pk are the eigenvalues of Dk (k=O, ••• ,n, 
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and the eigenvalues P~, ••. ,P~ of 0 0 , ••• ,Dn' respectively, have a common 

eigenvector (u=O, •.• ,n). we may assume that P~ = vk for all k. Set 

whereµ is the dimension of the common eigenspace of D0 , ••• ,Dn belonging 
u 

u u · 1 ( O ) It can be shown that to P0 , ••• ,Pn' respective y u= , .•. ,n. 

n 
(5) I 

u=O 

n 
1 U V 

and l PkQk = 
k=O 

m· o uv' 

I I -1 T . t . where m = X. So P and m •Q represent inverse ma rices. 

Coding theorists are interested in two families of association schemes: 

the families of Hamming schemes and Johnson schemes, respectively. 

Let n and q be natural numbers and let X be the set of vectors of length n, 

with entries in {O, ••• ,q-1}. Moreover let, fork= O, ••• ,n: 

(6) ¾ = {(x,y)EXXX 

where dH(x,y) denotes the Hamming distance between the vectors x and y, 

i.e. the number of coordinate places in which x and y differ. Let 

R = (R0 , ••. ,Rn). As can be checked easily (X,R) is a symmetric association 

scheme; schemes obtained in this way are called Hamming schemes. 

For Hamming schemes the values of vk, µu and P~ are given by: 

(7) (r') k (n). (q-l) u, vk = k . (q-1 l , µu = 
u 

k 
(-1)j(q-1)k-j(~) (n-~) 

k Pu = ¾: (u) = I = I (-q)j(q-l)k-j (~-~)(~)I k 
j=O J k-J 

j=O -J J 

for k,u = 0 (K() · h , • • • ,n K u 1.s t e Krawtchouk polynomial of degree k in the 
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variable u) • 

The second family is obtained as follows. Let v and n be natural numbers 

and let X be the set of 0,1-vectors of length v with exactly nones (n~½v). 

Moreover, let, fork= O, .•. ,n, 

( 8) { (x,y) EXXX I dJ (x,y) = k}, 

where dJ(x,y) = ½dH(x,y) is the Johnson distance between x and y. Let 

R = (R0 , ••• ,Rn). Then (X,R) is a symmetric association scheme; schemes 

constructed in this manner are called Johnson schemes. Their parameters 

are: 

(9) vk = (~) (~=~) ' µ = (V) - (u~ 1) = v-2u+1. (v) , 
u u v-u+l u 

k 
_ k-j(n-j) (n-u) (v-n+j-u) 

k 
(-l) j (~) (n-~) (v-n~u) , Pu = Ek(u) = I ( 1) k . . . = I k 

j=O -J J J j=O J k-J k-J 

for k,u = O, ••. ,n (Ek(u) is the Eberlein polynomial of degree 2k in the 

variable u). 

(A third family of symmetric association schemes is formed by strongly 

regular graphs. These are exactly those graphs (X,R1) such that (X,R) is 

a symmetric association scheme, where R = (R0 ,R1 ,R2 ), R2 = (XXX)\(R0 uR1). 

It follows that the complementary graph of a strongly regular graph is 

strongly regular.) 

The main problem in combinatorial coding theory is to estimate the maximum 

size of any subset C (a "code") of (the set X in) Hamming and Johnson schemes 

such that no two elements in C have (Hamming or Johnson) distance less than 

a given valued. A generalized translation of this problem into the 

language of association schemes needs the notion of an M-clique; given 

OEMc{O, •.. ,n} a subset Y of Xis an M-clique if (x,y)EUkEMRk for all x,yEY. 
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So the coding problem is to determine the maximum cardinality of 

{0,d,d+1, •.. ,n}-cliques·in Hamming and Johnson schemes. 

To obtain an upper bound for the size of cliques in a symmetric association 

scheme (X,R) define, for Ycx, the inner distribution (a0 , .... ,an) of Y by 

(10) 

fork= 0, ... ,n; so a 0 = 1 and I~=O ¾ = IYI. Moreover, if Y is an M-clique 

then ak = 0 if k4M. Delsarte showed that, for the inner distribution of any 

sybset Y of X, one has 

n 
o 1 ) I ¾ Q~ ~ o , 

k=O 

for u = 0, ... ,n. Therefore, for M-cliques Y one has 

(12) IYI :5 max{l~=O ¾ I a0 , ... ,an~0; a 0=1; ¾=0 for k4M; I~=O ¾Q~ ~ O} = 

= min{I:=o bu I bo, ... ,bn~0; bo=1; r:=o buP~:50 for ke:M\{0}}. 

The equality in (12) follows from the duality theorem of linear programming. 

This bound on the size of cliques is called Delsarte's linear programming 

bound. One may apply linear programming techniques to calculate its value -

see [1] for applications in coding theory. 

The following result of Delsarte shows that the linear programming bound 

is a sharpening of the Hamming bound in coding theory. Let (X,R) be a 

symmetric association scheme, with R = (R0 , ••• ,Rn)' and let 0EMc{0, ••• ,n} 

and M = {0}u({0, ••• ,n}\M). Then 



(13) the product of the linear programming bound for M-cliques and 

the linear programming bound for ~cliques is at most lxl. 
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Hence IYI • IZl$1XI for M-cliques Y and M-cliques Z. Taking. M = {O,d,d+l, ••• ,n} 

in a Hamming scheme the Hamming bound follows. 

The Shannon capacity and Lovasz's bound. Lovasz [4] introduced, for any 

graph G, the number 8(G), which is an upper bound for the "Shannon capacity" 

0(G). Let a.(G) be the maximum number of independent (i.e. pairwise non­

adjacent) points in a graph G, and let G·H denote the (normal) product of 

graphs G and H, i.e. the point set of G·H is the cartesian product of the 

point sets of G and H, whereas two distinct points of G•H are adjacent iff 

in both coordinate places the elements are adjacent or equal. Gk denotes 

the product of k copies of G. 

Shannon [9] introduced the following number for graphs G: 

(14) 0(G) = sup l¼(Gk) 
k 

=lim~ 
k-+00 

which is called the Shannon capacity of G. 

If one considers the points of Gas letters in an alphabet, two points 

being adjacent iff they are "confoundable", then a.(Gk) may be interpreted 

as the maximum number of k-letter messages such that any two of them are 

inconfoundable in at least one coordinate place. 

Since a.(G)ksa.(Gk), it follows that a.,(G)$0(G). Equality does not hold in 

2 2 general; e.g. a.(c5 ) = 2, whereas a.(c5 ) = 5 $ 0(c5) • Lovasz showed that, 

in fact, 0(G) = /s. Actually, he gave a general upper bound for 0(G) as 

follows. 

Let G = (V,E) be a graph, with vertex set V = {1, •.. ,n}, and define 
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(15) 0(G) •- min{le.vA I A= (a .. ) is a symmetric nxn-matrix such that 
l.J 

a .. = 1 if {i,j}ti;E}, 
l.J 

where le.VA denotes the largest eigenvalue of A. Now, if ~(G) = k, each 

matrix A satisfying the conditions mentioned in (15) has a kXk all-one 

principal submatrix (with largest eigenvalue k), hence levA~k. Therefore 

a(G) ~ 0(G). Since, as Lovasz proved, 0(G•H) = 0(G) ·0(H) for all graphs 

k k G and H, one has a(G )~0(G) , which yields the stronger inequality 

0(G)~0(G) (Haemers [3] showed the existence of graphs G with 0(G)<8(G)). 

Moreover Lovasz showed 

( 16) 9 (G) = maxn: .. b,. I B=(b .. ) 
J.,J J.J J.J 

is an nxn positive semi-definite 

matrix, with TrB=l, and b .. =O whenever {i,j}EE}. 
l.J 

So 9(G) may be considered as both a maximum and a minimum, which makes the 

function e easier to handle. Lovasz found, inter alia, for graphs G (with 

n points): 

(17) 0(G)·0(G) ~ n (where G is the complementary graph), with equality 

and 

(18) 

if G is vertex-transitive; 

-nA n 
9(G) ~ ~---:::;:- if G is regular (A 1 and An being the largest and 

1 n 
smallest eigenvalues of the adjacency matrix of G), with equality 

if G is edge-transitive. 

A consequence of (18) is: let v~2n and let K(v,n) be the graph whose vertices 



are then-subsets of some fixed v-set, two vertices being adjacent iff 

they are disjoint; such graphs are called Kneser-graphs. Then 

(19) 8 (K(v,n)) = (v-1) 
n-1 

7 

(by (18) it is sufficient to calculate the eigenvalues of K(v,n)), generalizing 

(v-1) . the Erdos-Ko-Rado theorem, which says that a(K(v,n)) = n-l 

The theories of Delsarte and Lovasz appear to have certain common 

characteristics, such as bounding cliques or independent sets in graphs, 

using eigenvalue-techniques on matrices determined by graphs, yielding 

relations between a graph and its complement, and being applicable to allied 

structures such as "constant weight codes" and Kneser-graphs. The purpose 

of this note is to go further into this relationship. 

Clearly, Delsarte's linear programming bound may be conceived of as an upper 

bound for a(G) for graphs G whose edge set is the union of some classes R. 
l. 

of a symmetric association scheme (X,R). We show that Delsarte's bound can 

be extended to a bound 8' (G) for a(G) for arbitrary graphs G; the description 

of 8 1 (G) has many features in common with Lovasz's 8(G). It will follow that 

e' (G) ~ e (G) (in general e' (G) -/ e (G)). On the other hand, if the edge set 

of G is the union of some classes of a symmetric association scheme (X,R) 

the number 8(G) may be calculated by means of a linear program obtained 

from (12) by dropping the nonnegativity constraints for a 0 , ••• ,an. It 

follows that also for such graphs G ~ne has 8(G)·8(G) = !xi (cf. (13) and 

(17)). 
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2. A COMPARISON OF THE BOUNDS OF DELSARTE AND LOVASZ 

First recall the following strong form of the duality theorem of linear 

programming. Let c and D be closed convex cones in lRk and IRm, respectively, 

* * * with dual cones C and D, respectively (that is, C consists of all vectors 

in IRk having a nonnegative inner product with each element of C). Let M 

be a real-valued mxk-matrix, and let CE IRk and dE IRm. Then 

I I * * (20) max{cx XEC; d-MXED} = min{yd yED; yM-cEC }, 

provided that the object sets are nonempty and closed. Furthermore, notice 

that the closed convex cone of all real-valued symmetric positive semi­

definite nxn-matrices, conceived of as n2 -vectors, has as dual cone the 

set of real-valued nxn-matrices u such that yTUy~O for all real n-vectors y. 

(So symmetric matrices in the dual cone are positive semi-definite.) For 

convenience, we use the following inner product notation for nxn-matrices 

(21) 

(b .. ) : 
1.J 

n 
A*B = I 

i, j=l 
a .. ·b .. , 

1.J 1.J 

that is, A*B 
T 

= Tr(A B). So A*I TrA and A*J = I~,j=l a ..• 
1.J 

Let G be a graph, with point set {1, ..• ,n}. Lovasz defined 

(22) 8(G) = max{I, .b .. I B=(b .. ) is a symmetric positive semi-definite 
1.,J 1.J 1.J 

nxn-matrix with TrB=l, and b .. =O if {i,j}EE} = 
1.J 

min {.te.vA I A= (a .. ) is a symmetric nxn-matrix with a .. =1 if 
1.J 1.] 

{i,j}4E}. 
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Now define 8 1 (G) as follows. 

(23) 8'(G) = max(L, .b .. j B=(b .. ) is a nonnegative symmetric positive 
l,J l] l] 

semi-definite nxn-matrix with TrB=1, and 

b .. =O if {i,j}EE}, 
lJ 

so the difference with (22) is the restriction of the range for the maximum 

to nonnegative matrices B. 

THEOREM 1. a(G) ~ 8' (G) ~ 0(G). 

PROOF. Clearly, e• (G) ~ 0(G). Suppose yc{l, ... ,n} is an independent set 

with a(G)=k elements. Define b .. = 1/k if i,jEY, and b .. = 0, otherwise. 
l] l] 

Then B=(b .. ) is nonnegative and positive semi-definite with trace 1, and 
lJ 

b .. =0 if {i,j}EE. Furthermore, I .. b .. = k. Hence a(G) = k ~ 8' (G). D 
lJ l,J l] 

THEOREM 2. 0'(G) = min{le.vA / A=(a .. ) is a symmetric nxn-matrix with 
lJ 

a .. d if {i,j}E/:E}. 
lJ 

PROOF. By definition 

(24) 8' (G) = max{B*J I B=(b .. ) is a symmetric positive semi-definite 
lJ 

nxn-matrix such that: B*I=1, B*F .. =O for 
lJ 

{i,j}EE, and B*F .. ?:0 for {i,jHE}, 
1. J 

where F .. is the nxn-(0,1)-matrix with only ones in the positions (i,j) and 
l] 

(j,i). From the above-mentioned form of the linear programming duality 

theorem it follows that this maximum equals 
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{25) minP. e:R I M•(m ) is a s"mmetric nxn-matrix; m .. ~O if {i,j}4E; ij ~-- l.J 

AI+M-J is positive semi-definite}. 

Putting A= J-M, one has, since, for symmetric A, the largest eigenvalue 

of A is equal to the minimum value of A such that AI-A is positive semi-

definite, 

(26) 8' (G) = min{levA j A= (a .. ) is a symmetric nxn-matrix such that 
l.J 

a .. ~1 if {i,jHE}. 0 
l. J 

Since the largest eigenvalue of a matrix is not increased by decreasing 

diagonal elements we may suppose that the minimum is attained by some A 

with ones on the diagonal. 

We secondly prove that for graphs derived from symmetric association schemes 

e• (G) coincides with Delsarte's linear programming bound. 

Let (X,R) be a symmetric association scheme, with R = (R0 , ... ,Rn), and let 

Oe:Mc{O, ... ,n}. Let G=(X,E) be the graph with E = UitMRi. Clearly, M-cliques 

in the association scheme coincide with independent sets in G. 

THEOREM 3. 6'(G) is equal to the linear programming bound for M-cliques 

in (X,R). 

PROOF. The linear programming bound is, by definition (cf. (12)) 

(27) max{L~=O ak l a0 , ... ,an~O; a0=1; ak=O for ktM; l~=O ~Q~ ~ 0 for 

u=O, ... ,n}. 

Let a0 , ..• ,an attain this maximum, and put 



( 28) (b .. ) = B 
l.J 

11 n ak 
\' --D 
l m·v k' 

k=O k 

where m, vk and Dk are as in section 1. Then B satisfies the conditions 

mentioned in (23); Bis positive semi-definite since, by the commutativity 

of n0 , ••• ,Dn, the matrix B has eigenvalues 

(29) 
n a 
l _k_ Pu= 

k=O m·vk k 

for u=O, ... ,n. Since Dk*J = vk·m, it follows that B*J = I .. b .. = Ikak. 
l.,J l.J 

Therefore, the linear programming bound is at most 8 1 (G). 

To prove the converse, let b 0 , .•. ,bn attain the minimum in (12), and let 

;\=lb. Define 
u u 

(30) A 

Since ;\I-A has eigenvalues 

n 
(31) I 

k=O 

n b 
\' ~ Qu _ l) Pv 
l µ k • k 

u=O u 

n b 
= l ~-m-6 - okO ~ 0 

u=O µu uv 

(v=O, ... ,n) the matrix A has largest eigenvalue at most A. Furthermore, by 

(4) and (12), a .. ;:c: 1 if {i,j} ,l E. Therefore, the minimum in (12) is at 
l.J 

least the minimum of theorem 2, or the linear programming bound is at 

least 8' (G) . D 

If (X,R) is a Johnson scheme with n classes (cf. Delsarte [2]) and 

{ } (v-1) M= O, ... ,n-1 , then G=K(v,n). As Lovasz showed that 8(K(v,n))= n-l , also 

Delsarte's linear programming bound yields the Erdos-Ko-Rado theorem. 
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Using techniques similar to those used in the proof of theorem 3 one 

proves for symmetric association schemes (X,R) and graphs G related as 

mentioned before theorem 3: 

THEOREM 4. 8(G) = max{I~=O ¾ I a 0=1; ¾=O for k4M; I~=O akQ~~O for u=O, •.. ,n} = 

min{I:=0 bu I bo,·••1bn~O; bo=l; r:=O buP~ = 0 for keM\{0}}. 

PROOF. Similar to the proof of theorem 3. D 

So for graphs derived from symmetric association schemes there is an easier 

way to calculate the 8-value. As a generalization of Delsarte's result (13) 

one has 

THEOREM 5. Let the edge set E of the graph G = (V,E) be the union of some 

classes of a symmetric association scheme. Then 8(G) ·8(G) lxl. 

PROOF. Lovasz proved that for all graphs G:8(G) ·8(G)~lxl. 

Now suppose Eis the union of some classes of an association scheme, as 

described before theorem 3. Then by theorem 4, 8(G) = Ikak, for some 

a 0 , ..• ,an, where a 0=1, ak=O for k4M and lk¾Q~~O for u=O, ... ,n. set 

(32) b = 
u 

Then b 0 , ... ,bn~O and b 0=1; furthermore, for kiM (cf. (5)): 

(33) 
n 
I b Pu= 

0 u k 
u= 

ak-m 

= 8(G) = O, 



so b 0 , ... ,bn satisfy the conditions mentioned in the minimum-side of 

theorem 4, with G instead of G. Also 

n 

13 

!xi (34) I b 
u=O u 

= 8 (G) • 

Since, by theorem 4, I b ;,: 8 (G) we have shown that 8 (G) -8 (G) ~ Ix!. D 
u u 

Because there are (many) strongly regular graphs that are not vertex­

transitive (cf. Seidel [8]) theorem 5 is not included in (17). 

M.R. Best found the following example of a graph G with 8 1 (G) < 8(G). The 

points of Gare all vectors in {0,1}6 , two vectors being adjacent iff 

their Hamming distance is at most 3 (so the edge set is the union of some 

classes of a Hamming scheme). Then 8 1 (G) = 4 whereas 8(G) = 16 
3 • 

After completing this research I learnt that partially similar results have 

been obtained, independently, by McEliece, Rodemich & Rumsey [7] (cf. [6]). 

Their functions aL(G) and 8L(G) are equal to 8 1 (G) and 8(G), respectively. 
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