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A comparison of bounds of Delsarte and Lovéss

by

A. Schrijver

ABSTRACT

We gompare two upper bound functions: Delsarte's linear programming
bound (an upper bound for the cardinality of cliques in association schemes)
and Lovdsz's 6-function (an upper bound for the Shannon capacity of a graph).
We show that the two bounds can be treated in a unified fashion. Delsarte's
linear programming bound can be generalized to a bound 6'(G) for the inde-
pendence number «(G) of arbitrary graphs G, such that 8'(G) < 6(G). On the
other hand, if the edge set of G is the union of some classes of a symmetric
association scheme, 68(G) may be calculated by means of linear programming.
We show that for such graphs G the product 6(G)-0(G) is equal to the number

of vertices of G.

KEY WORDS & PHRASES: linear programming bound, association scheme, Shannon
capacity, positive semi-definite, codes, constant

weight codes.
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1., INTRODUCTION

The purpose of this note is to compare two upper bound functions, both
being bounds for numbers motivated by more or less information-theoretical
problems: Delsarte's linear programming bound, an upper bound for the
cardinality of cliques in association schemes, and Lovasz's 6-function,
yielding an upper bound for the Shannon capacity of a graph. The first
bound may be conceived of as a bound for the independence number o(G) of
certain graphs G, whereas Lovdsz's bound limits u(Gk), the independence
number of the normal product of k copies of G.

We first give, in brief, these two bounds and their theoretical background.

(A graph is an undirected graph, without loops or multiple edges.)

Association schemes and Delsarte's linear programming bound (Delsarte [2],

cf. MacWilliams & Sloane [5]). A pair (X,R), where R = (RO,...,Rn) is a
partition of XxXX, is called a (symmetric) association scheme, with

intersection numbers ptj (i,3,k=0,...,n), if

(1) R, = { (x,x) |xex};
(2) Ril = {(y,x)[ (x,y)eRk} = R, for k = 0,...,n;
(3) for all i,j,k = 0,...,n, and (x,y)eRk:
[{z | (x,2)eR, and (z,y)eR.}]| = pk .
' i ! J ij
k k . . .
So pij = pji' We may consider the pairs (X'Ri) as graphs (i=1,...,n).
0] 0
i = = =46,.v,.
(X,Ri) is regular of valency v, <3 (vO 1) . Therefore pij lJvl

Let Di be the adjacency matrix of (X,Ri); DO is the identity matrix. Since,

by (3), the symmetric matrices DO""'Dn commute there exists a matrix

P = (P

n n
k’k,u=0

such that PO P are the eigenvalues of D

k,.—-, k (k=0,.-.,n),

k



u u
and the eigenvalues PO,....Pn of DO""'Dn’

eigenvector

respectively, have a common

0
(u=0,...,n). We may assume that Pk = v for all k. Set

i~

u u

(4) o == B

k

where u is the dimension of the common eigenspace of DO""’Dn belonging
u

u

to PO,...,PE, respectively (u=0,...,n). It can be shown that

n
u_u u_ v
= m. =m-8
(5) ) P.0p = m-6,, and Y PO, = m 8 .
u=0 k=0
- T . .
where m = [X|. So P and m l-Q represent inverse matrices.

Coding theorists are interested in two families of association schemes:

the families of Hamming schemes and Johnson schemes, respectively.

Let n and g be natural numbers and let X be the set of vectors of length n,

with entries in {0,...,g-1}. Moreover let, for k = 0,...,n:

(6) R = {(x,y)exxx ‘dH(X:Y) =k},

where dH(x,y) denotes the Hamming distance between the vectors x and vy,

i.e. the number of coordinate places in which x and y differ. Let

R = (RO""'Rn)' As can be checked easily (X,R) is a symmetric association

scheme; schemes obtained in this way are called Hamming schemes.

For Hamming schemes the values of Vier uu and PE are given by:

(7) we = ()o@ w = Moy,

for k,u=20

vl
1}
Il >

x - K o=

(_1)3 _ k—j uy (n-u
, (g-1) (])(k_j)

) I (g-1) K3 (n-3
(-q) - (g-1) (k—j

| 15

J =0

reeen (Kk(U) is the Krawtchouk polynomial of degree k in the

(5,

J



variable u).
The second family is obtained as follows. Let v and n be natural numbers
and let X be the set of 0,l-vectors of length v with exactly n ones (nskv).

Moreover, let, for k = 0,...,n,

(8) R, = {(x,y)exxx | a;(x,y) = k},
where dJ(x,y) = %dH(x,y) is the Johnson distance between x and y. Let
R = (RO,...,Rn). Then (X,R) is a symmetric association scheme; schemes

constructed in this manner are called Johnson schemes. Their parameters

are:
ny (v-n _ (v vy _ v=2u+l (v
(9) Yk T (k)(n—k)' Hu T (u) - (u—l) - v—u+1°(u)'
u X k-j n-jy (m-uy (v-n+j-u X jruy (n-uy (v-n-u
Py = Ep(w) = jzo 0 OO - jzo 07 () G5 (%]

for k,u = 0,...,n (Ek(u) is the Eberlein polynomial of degree 2k in the
variable u).

(A third family of symmetric association schemes is formed by strongly
regular graphs. These are exactly those graphs (X’Rl) such that (%x,R) is

a symmetric association scheme, where R = (RO’Rl’RZ)' R2 = (XXX)\(ROURl).
It follows that the complementary graph of a strongly regular graph is
strongly reéular.)

The main problem in combinatorial coding theory is to estimate the maximum
size of any subset C (a "code") of (the set X in) Hamming and Johnson schemes
such that no two elements in C have (Hamming or Johnson) distance less than
a given value d. A generalized translation of this problem into the

language of association schemes needs the notion of an M-clique; given

0eMc{0,...,n} a subset Y of X is an M-clique if (X’y)eukeMRk for all x,yeY.

).



So the coding problem is to determine the maximum cardinality of
{O,d,d+1,...,n}—cliques'in Hamming and Johnson schemes.
To obtain an upper bound for the size of cliques in a symmetric association

scheme (X,R) define, for YcX, the inner distribution (ao,...,an) of Y by

IR n(¥xy) |

for k =0,...,n; so a, = 1 and Z

n . . .
0 k=0 % = |¥|. Moreover, if Y is an M-clique
then a = 0 if kdM. Delsarte showed that, for the inner distribution of any

sybset Y of X, one has

n
(11) ] aqQ’>o0,
oo B

for u 0,...,n. Therefore, for M-cliques Y one has

(12) Iyl

IA

n n u _
maX{zk=0 akl ao,...,aHZO, ao—l, ak—O for kéM; zk=0 akaZEO} =

. n >0. —-1. n 11<
mm{zu:O b lbyreasb 205 bo=1; [° b P<0 for keM\{0}}.

The equality in (12) follows from the duality theorem of linear programming.
This bound on the size of cliques is called Delsarte's linear programming
bound. One may apply linear programming technigues to calculate its value -
see [1] for applications in coding theory.

The.following result of Delsarte shows that the linear programming bound

is a sharpening of the Hamming bound in coding theory. Let (X,R) be a
symmetric association scheme, with R = (RO,...,Rn), and let 0eMc{0,...,n}

and M = {0}u({0,...,n}\M). Then



(13) the product of the linear programming bound for M-cliques and

the linear programming bound for ﬁ;cliques is at most [X].

Hence |Y|+|2|<|X| for M-cliques Y and M-cliques Z. Taking M = {0,d,d+1,...,n}

in a Hamming scheme the Hamming bound follows.

The Shannon capacity and Lovdsz's bound. Lovadsz [ 4] introduced, for any

graph G, the number 6(G), which is an upper bound for the "Shannon capacity"
©(G). Let a(G) be the maximum number of independent (i.e. pairwise non-
adjacent) points in a graph G, and let G-H denote the (normal) product of
graphs G and H, i.e. the point set of G-H is the cartesian product of the
point sets of G and H, whereas two distinct points of G-H are adjacent iff
in both coordinate places the elements are adjacent or equal. Gk denotes

the product of k copies of G.

Shannon [9] introduced the following number for graphs G:

(14) 0(G) = sup ¥ = 1im Fud) |
k koo
which is called the Shannon capacity of G.

If one considers the points of G as letters in an alphabet, two points
being adjacent iff they are "confoundable", then u(Gk) may be interpreted
as the maximum number of k-letter messages such that any two of them are
inconfoundable in at least one coordinate place.

Since a(G)ksa(Gk), it follows that o (G)<®(G). Equality does not hold in

2
5)

general; e.g. d(CS) = 2, whereas a(C 5 < @(05)2. Lovdsz showed that,
in fact, ©(G) = V5. Actually, he gave a general upper bound for ©(G) as

follows.

Let G = (V,E) be a graph, with vertex set V = {1,...,n}, and define



(15) 8(G) = min{KQVAl A=(aij) is a symmetric nXn~matrix such that
aj; = 11if {i,3}4E},

where £evA denotes the largest eigenvalue of A. Now, if o(G) = k, each
matrix A satisfying the conditions mentioned in (15) has a kxk all-one
principal submatrix (with largest eigenvalue k), hence £evA>k. Therefore
a(G) < 6(G). Since, as Lovdsz proved, 8(G-H) = 6(G)-6(H) for all graphs
G and H, one has a(Gk)Se(G)k, which yields the stronger inequality
©(G)<6 (G) (Haemers [3] showed the existence of graphs G with ©(G)<8(G)).

Moreover Lovasz showed

(16) 8(G) = max{zi 5 bijl B=(bij) is an nxn positive semi-definite
7

matrix, with TrB=1, and bij=o whenever {i,j}eE}.

So 8(G) may be considered as both a maximum and a minimum, which makes the'
function 8 easier to handle. Lovdsz found, inter alia, for graphs G (with

n points):

(17) 6(G)-8(G) 2 n (where G is the complementary graph), with equality

if G is vertex-transitive;

and

-ni .
(18) 8(G) < 3 _xn if G is regular (Xl and Kn being the largest and
1 n
smallest eigenvalues of the adjacency matrix of G), with equality

if G is edge~transitive.

A consequence of (18) is: let v22n and let X(v,n) be the graph whose vertices



are the n-subsets of some fixed v-set, two vertices being adjacent iff

they are disjoint; such graphs are called Kneser-graphs. Then

v—l)

(19) 8(k(v,n)) = (7

(by (18) it is sufficient to calculate the eigenvalues of K(v,n)), generalizing

v—1).

the Erdds-Ko-Rado theorem, which says that a(X(v,n)) = (n—l

The theories of Delsarte and Lovasz appear to have certain common
characteristics, such as bounding cliques or independent sets in graphs,
using eigenvalue-techniques on matrices determined by graphs, yielding
relations between a graph and its complement, and being applicable to allied
structures such as "constant weight codes" and Kneser-graphs. The purpose

of this note is to go further into this relationship.

Clearly, Delsarte's linear programming bound may be conceived of as an upper
bound for o (G) for graphs G whose edge set is the union of some classes Ri
of a symmetric association scheme (X,R). We show that Delsarte's bound can
be extended to a bound 6'(G) for o(G) for arbitrary graphs G; the description
of 6'(G) has many features in common with Lovdsz's 6(G). It will follow that
8'(G) £ 8(G) (in general 0'(G) # 6(G)). On the other hand, if the edge set
of G is the union of some classes of a symmetric association scheme (X,R)
the number 6 (G) may be calculated by means of a linear program obtained

from (12) by dropping the nonnegativity constraints for agre--r . It
follows that also for such graphs G one has 8(G)-08(G) = |X| (cf. (13) and

(17)).
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2. A COMPARISON OF THE BOUNDS OF DELSARTE AND LOVASZ

First recall the following strong form of the duality theorem of linear
programming. Let C and D be closed convex cones in ka and me, respectively,
with dual cones C* and D*, respectively (that is, C* consists of all vectors
in ZRK having a nonnegative inner product with each element of C). Let M

be a real-valued mXk-matrix, and let ce:Rk and deimm. Then
* *
(20) max{cx | xeC; d-MxeD} = min{yd | yeD ; yM-ceC },

provided that the object sets are nonempty and closed. Furthermore, notice
that the closed convex cone of all real-valued symmetric positive semi-
definite nXn-matrices, conceived of as nz—vectors, has as dual cone the

set of real-valued nxn-matrices U such that y'Uy20 for all real n-vectors y.
(So symmetric matrices in the dual cone are positive semi-definite.) For |
convenience, we use the following inner product notation for nxn-matrices

A= (a,.) and B = (b,.):
1]
(21) A*B = ) a,.-b,.,

.
that is, A*B = Tr(A B). So A*I = TrA and A%J = )° . . a,..
i, j=1 7ij

Let G be a graph, with point set {1,...,n}. Lovasz defined

(22) 0(G) = max{zi jbij IB=(bij) is a symmetric positive semi-definite
14
nxn-matrix with TrB=1, and bij=0 if {i,j}eE} =
min{ﬂevAI A=(aij) is a symmetric nXn-matrix with aij=1 if

{i,j}4E}.



Now define 6'(G) as follows.

(23) 8'(G) = max{zi jbijl B=(bij) is a nonnegative symmetric positive
7
semi-definite nXn-matrix with TrB=1, and

bij=0 if {i,j}eE},

so the difference with (22) is the restriction of the range for the maximum

to nonnegative matrices B.
THEOREM 1. a(G) < 8'(G) < 6(@G).

PROOF. Clearly, 6'(G) < 8(G). Suppose Yc{l,...,n} is an independent set
with o (G)=k elements. Define bij = 1/k if i,jeY, and bi' = 0, otherwise.
Then B=(bij) is nonnegative and positive semi-definite with trace 1, and
by =0 if {i,9}€E. Furthermore, Xi'jbij = k. Hence a(G) = k < 6'(G). 0
THEOREM 2. 6'(G) = min{feva | A=(aij) is a symmetric nXn-matrix with

a,.21 if {i,j}4E}.
1]
PROOF. By definition

(24) 8'(G) = max{B*J | B=(bij) is a symmetric positive semi-definite
nxn-matrix such that: B*I=1, B*Fij=0 for

{i,j}eE, and B*FijZO for {i,jl4E},

where F. . is the nxn-(0,1)-matrix with only ones in the positions (i,j) and
1]
(j,i). From the above-mentioned form of the linear programming duality

theorem it follows that this maximum equals
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(25) min{AeIQZMm(mij) is a symmetric nxn-matrix; mijSO if {i,3}4E;

AI+M-J is positive semi-definite}.

Putting A = J-M, one has, since, for symmetric A, the largest eigenvalue
of A is equal to the minimum value of A such that AI-A is positive semi-

definite,

(26) g'{G) = min{EQVAI A=(aij) is a symmetric nXn-matrix such that

a, .21 if {i,3}YéE}. O
ij

Since the largest eigenvalue of a matrix is not increased by decreasing
diagonal elements we may suppose that the minimum is attained by some A
with ones on the diagonal.

We secondly prove that for graphs derived from symmetric association schemes
8'(G) coincides with Delsarte's linear programming bound.

Let (X,R) be a symmetric association scheme, with R = (R .,Rn), and let

S

Ri' Clearly, M-cliques

0eMc{0,...,n}. Let G=(X,E) be the graph with E = Ui&M

in the association scheme coincide with independent sets in G.

THEOREM 3. 8'(G) is equal to the linear programming bound for M-cliques

in (XIR) .

PROOF. The linear programming bound is, by definition (cf. (12))

n u
(27) max{zk=0 akl ao,...,anzo; ao=1; ak=0 for kéM; ;=O aka > 0 for

u=0,...,n}.

Let ao,...,an attain this maximum, and put



a 11

' n
(28) (b,) =B = )

where m, vk and Dk are as in section 1. Then B satisfies the conditions

mentioned in (23); B is positive semi-definite since, by ;he commutativity

of DO""'Dn’ the matrix B has eigenvalues
n a n a
k u k u
(29) Z m-v. Pk = Z m-u Qk’
=0 k k=0 u

for u=0,...,n. Since D, *J = v, -m, it follows that B*J = z = Zkak'

k k i,jbij
Therefore, the linear programming bound is at most 0'(G).

To prove the converse, let bo,...,bn attain the minimum in (12), and let

A= Zubu' Define

n 4 u n n bu
(30) A=2I- ] —o'p +J3=Ai1- ] (] ———QE—l)-Dk.
k,u=0 H k=0 u=0 "u
Since AI-A has eigenvalues
n n b v n bu
(31) I (I Fol-n.p) = ] —ms _-6,20
k=0 u=0 uu u=0 Ha
(v=0,...,n) the matrix A has largest eigenvalue at most A. Furthermore, by

(4) and (12), aij > 1 if {i,3} ¢ E. Therefore, the minimum in (12) is at
least the minimum of theorem 2, or the linear programming bound is at

least 6'(c). O

If (X,R) is a Johnson scheme with n classes (cf. Delsarte L2]) and
M={0,...,n-1}, then G=K(v,n). As Lovasz showed that 6(K(v,n))=(z:i), also

Delsarte's linear programming bound yields the Erdds-Ko-Rado theorem.
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Using techniques similar to those used in the proof of theorem 3 one
proves for symmetric association schemes (x,R) and graphs G related as

mentioned before theorem 3:

n n u _
THEOREM 4. 6(G) = max{] . a |a =1; a,=0 for kdiM; Loeo 22,20 for u=0,...,n} =

. n . =.l'1 u= \
min{]7_ b | byre..b 205 bo=1; } o b P =0 for keM\[0}].

PROOF. Similar to the proof of theorem 3. [J

So for graphs derived from symmetric association schemes there is an easier

way to calculate the 6-value. As a generalization of Delsarte's result (13)

one has
THEOREM 5. Let the edge set E of the graph G = (V,E) be the union of some
classes of a symmetric association scheme. Then 6(G)-6(E§ = |x]|.

PROOF. Lovdsz proved that for all graphs G:8(G)-8(G)=|x]|.

Now suppose E is the union of some classes of an association scheme, as
described before theorem 3. Then by theorem 4, 6(G) = zkak’ for some
ao,...,an, where a0=1, ak=0 for k¢éM and zkakQEZO for u=0,...,n. Set

. n a]{Qu
_ Lx=0%%"k
(32) bu R TONE

Then bo,...,anO and b0=1; furthermdre, for kéM (cf. (5)):

n

u
(33) ) b Py =
u=0

V]

___1..__ZaQuPu=_1__z . 8 _k'm_
56" L%k T B@ 5% e < Bey ~ O

14
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so bO""’bn satisfy the conditions mentioned in the minimum-side of

theorem 4, with G instead of G. Also

n
I u_ 1 o _ 1 . i
o Zbu =@ L A% = wel %l %= Fer L A Oy = 8(G)
u=0 k,u X o "

Since, by theorem 4, Zubu > 6(G) we have shown that 0(G)-6(G) < |x|. O

Because there are (many) strongly regular graphs that are not vertex-

transitive (cf. Seidel [8]) theorem 5 is not included in (17).

M.R. Best found the following example of a graph G with 6'(G) < 6(G). The

points of G are all vectors in {0,1}%, two vectors being adjacent iff

their Hamming distance is at most 3 (so the edge set is the union of some
16

classes of a Hamming scheme). Then 6'(G) = 4 whereas 6(G) = 7.

After completing this research I learnt that partially similar results have
been obtained, independently, by McEliece, Rodemich & Rumsey L[7] (cf. [6]).

Their functions aL(G) and GL(G) are equal to 8'(G) and 6(G), respectively.
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