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Median graphs and Helly hypergraphs*) 

by 

H.M. Mulder & A. Schrijver 

ABSTRACT 

One-to-one correspondences are establish~d between the following 

combinatorial structures: (i) median interval structures (or median segments, 

introduced by SHOLANDER); (ii) maximal Helly hypergraphs such that with 

each edge also its complement is in the hypergraph; and (iii) median graphs 

(connected graphs such that for any three vertices u, v, w there is exactly 

one vertex x such that d(u,v) = d(u,x) + d(x,v), d(v,w) = d(v,x) + d(x,w) 

and d(w,u) = d(w,x) + d(x,u), where dis the distance function of the graph). 

KEY WORDS & PHRASES: median, interval structure, HeZZy hypergraph, aopair, 

median graph. 

This report will be submitted for publication elsewhere 
H.M. Mulder, Vrije Universiteit Amsterdam 



O. INTRODUCTION 

In this paper one-to-one correspondences will be established between 

three at first sight fairly distinct concepts. These concepts are: 

(i) median intewaZ stPUatures introduced by M. SHOLANDER [7], [8] under 

the name of median segments (cf. I.I); 

(ii) ma:cimaZ HeZZy aopair hypergraphs (i.e. simple Helly hypergraphs, the 

edge-set of which contains with each edge its' complement, and which 

are maximal with respect to this property; see 1.2); and 

(iii) median graphs, introduced in section 1.3. 

The one-to-one correspondences are established in section 2. 

In section 3 is elaborated how to construct a maximal Helly copair 

hypergraph from a median graph, using results of SHOLANDER [9]. 

With minor adaptations we adopt the terminology of BERGE [1] on hyper

graphs, of WILSON [10] on graphs and of BIRKHOFF [2] on lattice theory. 

I. DEFINITIONS AND PRELIMINARIES 

Throughout this paper V denotes a fixed finite set. 

1.1. INTERVAL STRUCTURES. A function I:V x V + P(V) is called an intewaZ 

structure on V if 

(II) x,y E I(u,v) iff I(x,y) c I(u,v) (x,y,u,v e V), 

(12) I(u,v) n I(v,w) n I(w,u) ~ 0 (u,v,w e V). 

Each set I(u,v) is called an intewaZ. A subset U of Vis I-convex if for 

all u, v- EV the interval I(u,v) is contained in U. The notion of 

interval structure was introduced in [3]. Examples of interval structures 

on V can be obtained from trees with vertex-set V (then take I(u,v) = 

{w EV I w lies on the shortest u,v-path}), and from lattices (V,~) (in 

this case I(u,v) = {w EV I u Av~ w ~ u v v}). 

If I satifies condition (II) and the following condition 

(I2') I I(u,v) n I(v,w) n I(w,u)! = I (u,v,w e V), 
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then I is called a median interval structure on V. interval stuctures 

obtained from trees as indicated above are median interval structures. An 

interval structure obtained from a lattice is a median interval structure 

iff the lattice is distributive (cf. [2]). SHOLANDER [8] has given the 

following characterization of median interval structures (he used the term 

median segments): 

THEOREM 1. (SHOLANDER [8]) A funation I:V x V • P(V) is a median interval 

struature on V iff 

if w E I(u,v) then I(u,w) c I(u,v) n I(v,u) 

jI(u,v) n I(v,w) n I(w,u)I = 1 

I(v,v) = {v} 

(u,v EV), 

(u,v,w e: V), 

(v EV). 

1.2~HYPERGRAPHS. In this paper a hypergraph H = (V,E) consists of a 

vertex-set Vanda family E c P(V) of nonvoid subsets of V, the members of 

which are called edges. Occasionally we will write E instead of (V,E). 

A hypergraph is a HeZZy hypergraph if it satisfies the HeZZy property, 

i.e. every subfamily of E, any two members of which meet, has a non-empty 

int~rsection. For vertices u and v of the hypergraph (V,E) define 

I (u,v) = n {Be: EI u,v e: B}. 
E 

A theorem of P.C. GILMORE (see [SJ, or [I] p. 396) can be formulated as 

follows: 

THEOREM 2. (GILMORE) A hypergra:ph (V,E) satisfies the HeZZy property iff 

IE is an interval structure on V. 

As a consequence of GILMORE's "theorem we have: Let I be an interval 

struature on V. Any family E of nonvoid I-aonvex subsets of V satisfies 

the Belly property. 

A hypergraph (V,E) with the property that V\B EE for all Be: E will 

be called a aopair hypergraph. We call the set {B,V\B} a copair of V and 

{¢,V} the trivial copair. A Helly copair hypergraph of course is a copair· 

hypergraph, which satisfies the Belly property. Finally a ma.ximaZ HeZly 

aopair hypergra:ph (V,E) is a Helly copair hypergraph such that: if {A,V\A} 



is a non-trivial copair and Eu {A,V\A} satifies the Helly property then 

A E E. 
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A hypergraph (V,E) is said to separate vertices if for any two distinct 

vertices u,v EV there exists an edge A EE such that u EA and vi A. 

LEMMA 3. Let (V,E) be a HeZZy copair hypergraph. Then (V,E) is mazimaZ iff 

(V,E) separates vertices. 

PROOF. Note that (V,E) separates vertices iff IE(v,v) = {v} for all v EV. 

Assume that E does not separate vertices. That is there exists a 

vertex v EV such that IE(v,v) contains besides v another vertex. Using 

GILMORE's theorem it can be verified that in this case Eu {{v}, V\{v}} 

satisfies the Helly property. Therefore Eis not maximal. 

To prove sufficiency of vertex separation let {A,V\A} be a non

trivial copair of V not in E. Take a vertex u EA and a vertex v E V\A such 

that I IE(u,v) I is as small as possible. We assert that IE(u,v) n A= {u} 

and IE(u,v)\A = {v}. 

For suppose IE(u,v) n A/ {u} and let w E IE(u,v) n A with w / u. 

Since E separates vertices, there exists an edge CE E such that w EC and 

u i C. Then we have that v EC. Sou i IE(w,v) c IE(u,v), contradicting 

the minimality of IE(u,v). In the same way we prove IE(u,v)\A = {v}. Hence 

IE(u,v) = {u,v}. 

Let BEE be an edge such that v EB and u i B. Then An BI 0 or 

(V\A) n (V\B) I 0, since Ai {B,V\B} c E; say An B j 0. Now the set of 

edges, which contain both u and v , together with A and B forms a family 

of subsets of V, any two members of which meet. The intersection of this 

family equals 

IE(u,v) n An B = {u,v} n An B, 

which clearly is empty. Thus E u {A, V\A} does not satisfy the Helly property. 

D 

COROLLARY 4. Let (V,E) be a maximal HeZly copair hypergraph. Then 
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l.3 MEDIAN GRAPHS. Let G be a simple loopless graph with vertex-set V and 

distance function d. G will be called a median graph if it is connected 

and satisfies the graph median property, i.e. for any u,v,w EV there exists 

precisely one vertex x EV, called the graph median of u,v and w, such 

that 

•{d(u,x) + d(x,v) = d(u,v) 
d(v,x) + d(x,w) = d(v,w) 
d(w,x) + d(x,u) = d(w,u). 

Note that all trees and then-cubes are median graphs. It is easy to see 

that each median graph is bipartite. 

2. THE THEOREM 

THEOREM 5. There exists a one-to-one correspondence between the median 

interval structures on V, the maximal Helly copair hypergr<Iphs with vertex

set V and the median gr<Iphs with vertex-set V. The one-to-one correspon

dences are indicated in the following diagram, which commutes in all direc

tions. 

(V,E) median 

graph 

I median interval 

structure on V 

copairs 

UV EE iff u # V and 
n{B E Elu,v EB}= 

Helly 

co air hypergraph 

{u,v} 
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The proof of the theorem amounts to the following propositions (the direct 

correspondence between median graphs and maximal Helly copair hypergraphs 

will be explained in section 3). 

For vertices u and v of the graph G = (V,E) define 

.IG(u,v) = {w EV I w lies on a shortest u,v-path in G}. 

PROPOSITION 6. Let G = (V,E) be a median gro:ph. Then IG is a median intervai 

structure on V. 

PROOF. IG satisfies the conditions mentioned in theorem I. D 

PROPOSITION 7. Let I be a median intervai structure on V. Define the gro:ph 

GI with vertex-set V by 

UV€ E(GI) iff u ~ V and I(u,v) = {u,v} (u,v EV). 

Then GI is a median gro:ph. 

PROOF. We will prove that GI is .connected and that IG = I. Then clearly 
I GI is a median graph. 

First observe that for u,v,w EV we have 

w E I(u,v) if£ I(u,w) n I(w,v) = {w}. 

Thus for w E I(u,v)\{u,v} holds u i I(w,v) c I(u,v) and vi I(u,w) c I(u,v). 

Using this it is easily verified by induction on II(u,v)I that I(u,v) 

induces a connected subgraph of GI for all u,v EV. Hence GI is connected. 

To prove that I(u,v) = IGI(u,v) for all u,v EV we use induction on 

d(u,v). Clearly I(u,v) = IGI(u,v) for all u,v EV with d(u,v) ~ I. So take 

vertices u,v EV with d(u,v) > I. 

Let w E IGI(u,v)\{u,v}. Then d(u,w) < d(u,v) and d(w,v) < d(u,v), so 

IcI(u,w) = I(u,w) and IcI(w,v) = I(w,v). Since clearly IGI(u,w) n IG1(w,v) = 

{w}, we have w E I(u,v) and thus IG1 (u,v) c I(u,v). 
Assume I(u,v)\IGI(u,v) ~ 0. 
For any vertex w E I(u,v)\IGI(u,v) we must have I(u,w) n Ic1Cu,v)={u}, 
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and similarly I(w,v) n IG1(u,v) = {v}. For if w' E I(u,w) n IGI(u,v), with 

w' + u, then w E I(w',v) and by the induction hypothesis I(w',v) = IG1 (w',v) 

c IGI(u,v). Hence w E IGI(u,v), contradicting the choice of w. 

Since I(u,v) induces a connected subgraph of GI, there exists a path 

p from u to v, all the internal vertices of which lie in I(u,v)\IG1 (u,v). 

Clearly the length of P exceeds d(u,v) so P has at least two distinct 

internal vertices, say x and y. 

Since d(u,v) ~ 2, there exists a vertex z E IGI(u,v)\{u,v}. By the 

induction hypothesis we have I(u,z) = IcI(u,z) and I(z,v) = IG1 (z,v). Now 

u E I(u,z) n I(u,x) = IGI(u,z) n I(u,x) c IGI(u,v) n I(u,x)={u}. 

Sou E I(z,x). Similarly v E I(z,x) and thus I(u,v) c I(z,x) c I(u,v). 

In the same way it follows that I(u,v) = I(z,y). But then 

x,y E I(x,y) = I(z,x) n I(x,y) n I(y,z), 

contradicting the fact that I is a median interval structure. Conclusion: 

I(u,v) = IGI(u,v). D 

In the proof of the preceding proposition we have seen that for a median 

interval structure I holds: IGI =I.Furthermore from propositions 6 and 7 

follows immediately that, when G is a median graph, we have GrG = G. 

PROPOSITION 8. Let (V,E) be a maximal Helly aopair hypergra:ph. Then IE is 

a median interval struatu:r>e on v. 

PROOF. Assume that there exist vertices u,v,w EV such that x,y E IE(u,v) n 

n IE(v,w) n IE(w,u) for vertices x,y EV, with x + y. According to lemma 3 

there is an edge BEE such that x EB and y i B. Then one of the edges B 

and V \ B, say B, must contain at least two of the three vertices u, v and 

w, say u and v. But then y i IE(u,v). Contradiction. D 

PROPOSITION 9. Let I be a median interval struature on V and let 

EI= {B c vi¢+ B + V, Band V\B are I-convex}. 
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Then (V,EI) is a mazimaZ HeZZy oopair hypePgPccph. 

PROOF. Clearly (V,EI) is a Helly copair hypergraph. By lellllll.a 3 it suffices 

to show that EI separates vertices. So suppose that for vertices u,v € V, 

with u ~ v, there is no edge B such that u €Band vi B. Assume futher

more that u and v are su~h that jI(u,v)I is as small as possible. 

We first prove that I(u,v) = {u,v}. Suppose w E I(u,v)\{u,v}. Since 

II(u,w)I < II(u,v)I, there exists an edge A such that u ~ A and w i A. It 

follows that v EA (u and v cannot be separated). Sow E I(u,v) c A, for A 

is I-convex, contradicting w i A. Therefore I(u,v) = {u,v}. 

Now let B = {z E Vivi I(u,z)}. 

Then V\ B = {z E v!u i I(z,v)}, since I(u,z) n I(z,v) n {u,v} is a 

singleton. We assert that Band V\ Bare I-convex, that is BE EI. Since 

u EB and vi B this contradicts our assumption that EI does not separate 

vertices. 

We only prove that Bis I-convex (the I-convexity of V\B can be 

treated similarly). 

Note that for each z EB we have I(u,z) c B, since vi I(u,z). Let 

x,y EB and suppose I(x,y) ¢ B. Take w € I(x,y)\B. Since I(u,x) c I(v,x) 

and I(u,y) c I(v,y) we have that 

{z} = I(u,x) n I(x,y) n I(y,u) = I(v,x) n I(x,y) n I(y,v) 

for some z EB. Now also 

{z} c I(z,w) n I(z,v) c I(x,y) n I(x,v) n I(y,v) = {z}~ 

since z,w E I(x,y) and z E I(u,x) n I(u,y) c I(v,x) n I(v,y). This implies 

z E I(w,v) according to the observation made at the beginning of the proof 

of proposition 7. So I(z,v) ~ I(w,v). But, since w i B, u i I(w,v) and 

thus u i I(z,v), that is z € V\ B, contradicting the fact that z EB. D 

From propositions 8 and 9 we deduce: let I be a median interval 

structure on V, then IEr = I; and let (V,E) be a maximal Helly copair hyper

graph, then EIE = E. 
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3. MEDIAN GRAPHS AND HELLY HYPERGRAPHS 

In this section the direct correspondence between median graphs and 

maximal Helly copair hypergraphs with vertex-set V, mentioned in the theorem, 

is further elaborated. 

3.1.MEDIAN SEMILATTICES. Let (V,~) be a partially ordered set (poset). v 

is said to aover u (u,v EV), if u ~ v and there is now EV such that 

u < w < v. A semilattice (V,~) is a poset, in which any two elements u,v 

have a greatest lower bound u Av. For u,v EV set [u,v] = {w E Vju ~ w ~ v}. 

The semilattice (V,~) is called distributive if ([u,v],~) is a distributive 

lattice for all u,v EV. The semilattice is said to satisfy the coronation 

property if for any three elements u,v,w EV, such that the three least 

upper bounds u v v, v v w, w vu exist, there exists a least upper bound 

U V V V w. 

A median semilattiae is a distributive semilattice, which satisfies 

the coronation property. This concept was introduced by SHOLANDER [9]. 

On a median semilattice (V,~) the ternary operation (u,v,w) = (u A v)v 

v (u Aw) v (w Au) EV can be defined, called the median of u,v and w 

(SHOLANDER [ 9 ] also characterized medians). 

We review some results of SHOLANDER [9] reformulating them in our 

terminology: 

(A) Eaah median semilattiae (V,s) yields a median interval structure 

I~ on V, where 

I~(u,v) = {wlw is the median of u,v,w} (u, V E V). 

(B) Let I be a median interval struature on V and u E V. Define an 

ordering ~I on V by ,u 

Vs w iff VE I(u,w) I,u (v,wEV). 

Then (V,s1,u)is a median semilattiae. Furthermore the aorrespondenaes 
given in (A) and (B) comrrrute. 



(C) Let (V,~) be a median semiZattice. Then (V,~) can be embedded in a 

Boolean algebra by a:n order preserving mapping~ which also perserves 

the covering relation in (V,~). 
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3.2 CUTSET COLOURINGS. A cutset colouring of a connected graph is a colour

ing of the edges in such a way that the edges of any colour form a matching 

as ·well as a cutset (i.e. a minimal disconnecting edge-set). If we want to 

establish a cutset colouring of a graph we are forced to colour non-adjacent 

edges in each circuit of length four with the same colour. Sothen-cube 

admits a cutset colouring with n colours, which is uniquely determined up 

to the labelling of the colours. Deleting the edges with a given colour 

from then-cube breaks the graph up into two components, which both are 

(n- 1 )-cubes. 

Note that not all connected graphs admit a cutset colouring. Neces

sary conditions for the existence of a cutset colouring of the edges of a 

connected graph are for instance that the graph is simple, loopless and 

bipartite and that it does not contain K2, 3 as a subgraph. 

3.3 MEDIAN GRAPHS AND MAXIMAL HELLY COPAIR HYPERGRAPHS. The diagraph of a 

poset (V,~) is the graph with vertex-set V, in which two vertices are joined 

by an edge iff one of the two covers the other in the poset. Clearly, the 

diagraph of the Boolean algebra on 2n elements is then-cube. As a con

sequence of (A) and (B) and propositions 6 and 7 we have 

PROPOSITION 10. Let G be a graph. Then G is a median gra:ph iff G is the 

diagra:ph of a median semiZattice. 

PROPOSITION 11. Let G be a graph. Then G is a median graph iff G is a 

connected induced subgraph of an n-cube such that with any three vertices 

of G their graph median in then-cube aZso is a vertex of G. 

PROOF. The only if part follows from proposition 10 and (C). 

The if part follows as soon as we have proved that the distance in G 

between two vertices equals their distance in then-cube. Let d be the distance 

function of G and e that of then-cube. Assume that there are vertices 

u,v of G with d(u,v) 1 e(u,v) and let k:= d(u,v) be as small as possible. 
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Note that k > 2. 

Let w be a vertex of G with d(u,w) = 2 and d(w,v) = k - 2. Then 

e(u,w) = 2 and e(w,v) = k - 2. Let z be the graph median of u,v and win 

then-cube. Thus z is a vertex of G. 

If z = w then e(u,v) = e(u,w) + e(w,v) = 2 + k - 2. So z ~ w. But 

then, sincee(u,w) = 2 = d(u,w), z is a comm.on neighbour of u and w. Now 

e(z,v) = e(w,v) - e(w,z) = k - 2 - = k - 3. Thus d(u,v) ~ d(u,z)+d(z,v)= 

= 1 + e(z,v) = k - 2 < k, which is a contradiction. D 

Let G be a median graph with vertex-set V. Embed Gin an n-cube K 

with n as small as possible. Since G is connected G has at least one edge 

of each colour from the cutset colouring of K. 

The cutset colouring of K induces an edge colouring of G. According 

to proposition 10 with any two vertices u and v of Ga shortest u,v-path 

of u lies entirely in G. So the induced edge colouring of Gin fact is a 

cutset colouring. Any cutset from this colouring induces a copair of V: 

after deleting the cutset from G the graph breaks up into two components, 

the vertex-sets of which form the complementary subsets of the copair. In 

this way the cutset colouring of G induces a copair hypergraph (V,EG). 

Since G is an induced subgraph of Kit follows that EG consists of IG-con

vex subsets of V. Besides it follows that EG separates vertices. And thus 

according to le!Illila 3 (V,EG) is a maximal Helly copair hypergraph. Further

more uv is an edge in Giff u f v and n {BE EGju,v EB}= {u,v}. That is 

GifG = G. 

Starting with a maximal Helly copair hypergraph (V,E) then GE= Gif 

is a median graph with vertex-set V. Moreover E consists of IGf-convex 

subsets of V. But also EGE is a Helly copair hypergraph consisting of IaE

convex subsets of V. Since both E and EGE are maximal, we have that E = EGE· 

The preceding observations imply that a median graph G, with vertex

set V, admits only one cutset colouring which induces a maximal Helly 

copair hypergraph. Let us call the copairs of V induced by this cutset 

colouring of G the canonical aopairs of G. (In fact it can be proved that 

up to the labelling of the colours a median graph admits exactly one cutset 

colouring of its edges, cf. [6].) 

Recapitulating we have proved: 
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PROPOSITION 12. The hypergraph (V,E) is a maximal Helly copair hypergraph 

iff E consists of the canonical copairs of a median graph with vertex-set 

v. 

3.4 CONCLUDING REMARKS. Let G be a connected graph with n vertices, which 

admits a cutset colouring. Since each cutset contains edges of a spanning 

tree, the number of colours in the cutset colouring is at most n - I. 

LEMMA 13. Let G be a connected gPaph with n vertices admitting a cutset 

colouring. Then the number of colours in the cutset colouring is n - I 

iff G is a tree. 

PROOF. The if part of this lemma is trivial. To prove the only if part let T 

be a spanning tree of G. Then T has n - l edges, so the edges of Tall have 

different colours. Thereby every edge of T determines exactly one cutset 

of the colouring. Assume that there is an edge joining u and v in G, which 

is not in T. The u,v-path in T must contain at least two edges, say f 1 ,f2 , ••• 

But then the edge uv is in the cutset determined by f 1 and in the cutset 

determined by f 2 , which is a contradiction. D 

The term maxirrrum will be used in the sense of: with a maximal number 

of edges. 

PROPOSITION 14. The hypergPaph (V,E) is a maxirrrum Helly copair hypergraph 

iff E consists of the canonical copairs of a tree with vertex-set V. 

COROLLARY 15. Let (V,E) be a Belly copair hypergraph. Then 

JEI s 2clvl - 1). 

COROLLARY 16. (E.C. MILNER, cf. [4]). Let (V,E) be a Belly hypergraph. 

Then 

jvj - I 
!El s 2 +Iv! - 1. 
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