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Given an undirected graph G=(V, E) and a partition {S, T} of V, an S—T
connector is a set of edges F < F such that every component of the subgraph ( V, F)
intersects both S and 7. We show that G has & edge-disjoint S-T connectors if and
only if [8g( V1)U -+ UdgV,)] 2kt for every collection { Vy, ..., V,} of disjoint non-
empty subsets of S and for every such collection of subsets of 7. This is a common
generalization of a theorem of Tutte and Nash-Williams on disjoint spanning trees
and a theorem of Konig on disjoint edge covers in a bipartite graph.  © 1998
Academic Press

1. INTRODUCTION

Let G=(V, E) be an undirected graph, S a subset of its vertices, and T
the complement of S in V. An S-T connector in G is a set F of edges such
that every component of the subgraph (V, F) intersects both S and 7. Let
k be a nonnegative integer. In this note, we prove the following theorem on
packing S-T connectors.

THEOREM 1. G contains k edge-disjoint S-T connectors if and only if
|0(W)| =k |W]| for every subpartition W of S or T.

A subpartition W of a set X is a collection of pairwise disjoint nonempty
subsets of X. If W={U,,..,U,} is a subpartition of S or T, then ()
denotes the set of edges with one end in U, and one end in V\U, for some
index i

Theorem 1 has two well-known special cases. First, if G is bipartite with
colour classes S and T, then an S-T connector is an edge cover of G (a set
of edges covering all vertices), and Theorem 1 specializes to a theorem of
Konig [5] and Gupta [2], saying that the maximum number of edge-
disjoint edge covers of a bipartite graph is equal to the minimum vertex
degree. Second, if either S or T is a singleton, then an S-7 connector is a
connected spanning subgraph of G, and Theorem 1 specializes to a result
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of Tutte [9] and Nash-Williams [6], giving a necessary and sufficient
condition for a graph to have k disjoint spanning trees. We state this result
here as a lemma, since we will use it in the proof of Theorem 1.

LEMMA 1. Let G=(V, E) be an undirected graph. Then G contains k
edge-disjoint spanning trees if and only if |0(P)| = k(|P|—1) for every
partition P of V into nonempty subsets.

Lemma 1 is a special case of the matroid base packing theorem.

At this point, observe that an S-T" connector is a common spanning set
of two matroids on E, namely the cycle matroids of the graphs G and G,
respectively. Here, G is the graph obtained from G by shrinking the set .S
into a single vertex s (if an edge of G connects two vertices in S, then in
Gy there is a loop corresponding to this edge), and G, ¢ are defined
similarly. Therefore, matroid intersection provides a min-max relation for
the minimum cardinality (or weight) of an S-T connector in G. However,
no general theorem is known for the packing of common spanning sets of
two matroids. Thus, our theorem gives a case where a min-max relation
for packing common spanning sets of two matroids is possible {although
graphic matroids generally axe not “strongly base orderable”). (For
matroid theory we refer to [10].)

The concept of an S-T connector in an undirected graph is related to the
concept of a bibranching in a directed graph. Given a directed graph
D=(V,A)and aset SSV (with T:= V\S), an S-T bibranching is a set of
arcs B< A containing a directed v— T path for every ve S and a directed
S—v path for every veT.

With respect to packing bibranchings, Schrijver [ 7] proved the following
result, which is the second constituent of the proof of Theorem 1.

LemMa 2. Let D= (V, A) be a digruph, let S< V, and let T=V\S. Then
D contains k arc-disjoint S-T bibranchings if and only if [05(U)| =k for
every nonempty US S and |5 5(U)| =k for every nonempty U= T.

Here, 0 5 (U) denotes the set of arcs leaving U and 6 ; (U) denotes the set
of arcs entering U in D.

2. PACKING CONNECTORS

In this section we prove Theorem | by combining Lemma 1 and Lemma 2.

Proof of Theorem 1. Necessity is straightforward. To see sufficiency, let
G be such that |3(W)| =k |W)| for every subpartition W of S or T. Then
G satisfies the condition of Lemma 1 (if P is a partition of the vertex set
of G, omit the class of P that contains s to obtain a subpartition W of T
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with |d(W)|=|d(P)| and |W|=|P|—1). Therefore, it contains k disjoint
spanning trees. The same holds for G,. Now orient the edges of the span-
ning trees in Gg away from s and orient the edges of the spanning trees in
G, towards . Note that there is no conflict for edges that are both in a
spanning tree of Gz and in a spanning tree of G 7, since these edges connect
S and 7. Orienting the remaining edges of G arbitrarily, we obtain an
orientation D of G. Clearly, |0, (U)| >k for every U= T and |67(U)| >k
for every U< S. Therefore, by Lemma 2 D contains k& arc-disjoint S-7°
bibranchings. Since each bibranching in D gives an S-T connector in G,
this implies the theorem. |}

The above proof gives rise to a polynomial algorithm for packing S-7°
connectors. Indeed, packing spanning trees can be done with any matroid
partition algorithm (or alternatively, Barahona [ 1] reduces the problem to
maximum flow computations). Moreover, disjoint bibranchings can be
found in polynomial time, using the ellipsoid method (see [7]). A direct
combinatorial algorithm for packing connectors is described in a sub-
sequent paper [3]. An extension of the method used in that paper also
yields a combinatorial algorithm for packing bibranchings.

For the problem of finding a minimum-weight bibranching a com-
binatorial algorithm is described in [4].

3. POLYHEDRAL INTERPRETATION

In this section we show that Theorem 1 implies the integer rounding
property for a set of linear inequalities associated with packing S-7°
connectors. (For background, see [8].)

Assume that G contains an S-T connector. Equivalently, both Ggand G
are connected. Because an S-7-connector is a common spanning set of two
matroids, the convex hull of all incidence vectors of S-7" connectors in G
can be derived from the theory of matroid polytopes:

conv.hull{y”| Fe 7}
={xeRF|0<x<I, x(d(W))=|W)| foreach We #'}.

Here, y¥ denotes the incidence vector of a set F< E, and .# the set of all
S-T connectors of G. Moreover, #~ denotes the set of all subpartitions of
S and T. Finally, if xe Rf and FSE, x(F) is short for 3,z x(e).

It follows that the polyhedra

P:=conv.hull{y|Fe 7} + RE
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and
Q :=conv.hull{ y*™/|W| |We # '} + RE

form a blocking pair. In other words, P={zeR% |x"z>1Vxe Q} and
O={xeR%|zTx=1VzeP}.

Now, let M be the .# x E matrix with rows the incidence vectors of all
S-T connectors of G. Then the fact that P and Q form a blocking pair
implies:

min{ w7 |W| | We# '} =min{wTx|x=0, Mx>1}
=max{yT1]y=0, y"M <w}. (1)

The last equality is linear programming duality.
Theorem 1 has the following polyhedral formulation:

THEOREM 2. For every w: E— 7
max{yT1|y=0, y"M <w, yintegral} = min{wT* ™| W| | Wew'} |.

Proof. This follows from Theorem 1 by replacing every edge e of G by
w(e) parallel edges. |

COROLLARY 1. The set of linear inequalities x>0, Mx>=1 has the
integer rounding property. That is, for every w: E— 7

max{ p71|y >0, "M <w, yintegral} = max{yT1| y =0, y"M <w} J.
Proof. Directly from Theorem 2 with (1). |

Corollary 1 is equivalent to: the polyhedron P has the integer decom-
position property; that is, for each k, any integer vector in k - P is the sum
of k integer vectors in P.

REFERENCES

1. F. Barahona, Packing spanning trees, Math. Oper. Res. 20 (1995), 104-115.
. R. P. Gupta, A decomposition theorem for bipartite graphs, in “Theory of Graphs”
(P. Rosenstiehl, Ed.), pp. 135-138, Gordon & Breach, New York, 1967.

3. J. Keijsper, “An Algorithm for Packing Connectors,” Report 97-9, Faculteit WINS,
Universiteit van Amsterdam, 1997.

4. ). Keijsper and R. Pendavingh, An efficient algorithm for minimum-weight bibranching,
J. Combin. Theory Ser. B, in press.

5. D. Kénig, Uber Graphen und ihre Anwendung auf Determinantentheorie und Mengen-
lehre, Math. Ann. 77 (1916), 453-465.

(89



188 KEIJSPER AND SCHRIJVER

6. C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math.
Soc. 36 (1961), 445-450.

7. A. Schrijver, Min-max relations for directed graphs, Ann. Discrete Math. 16 (1982),
261--280.

8. A. Schrijver, “Theory of Linear and Integer Programming,” Wiley, Chichester, 1986.

9. W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London
Muath. Soc. 36 (1961), 221-230.

10. D. I. A. Welsh, “Matroid Theory,” Academic Press, London, 1976.



