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Superextensions which are Hilbert cubes*) 

by 

J. van Mill & A. Schrijver 

ABSTRACT 

It is shown that each separable metric, not totally disconnected, topo­

logical space admits a superextension homeomorphic to the Hilbert cube. 

Moreover, for simple spaces, such as the closed unit interval or the 

n-spheres S, we give easily described subbases for which the corresponding n 
superextension is homeomorphic to the Hilbert cube. 

KEY WORDS & PHRASES: superextension, HiZbert cube, Z-set, convex. 

*) . 
This paper is not for review; it is meant for publication elsewhere 



l • INTRODUCTION 

In [5], DE GROOT defined a space X to be supercompact provided that it 

possesses a binary closed subbase, i.e. a closed subbase S with the property 

that if S' c Sand ns 1 =~then there exist s0 ,s 1 ES' such that s0 n s1 = ~­

Clearly, according to the lennna of ALEXANDER, every supercompact space is 

compact. The class of supercompact spaces contains the compact orderable 

spaces, compact tree-like spaces (BROUWER & SCHRIJVER [3], VAN MILL [8J)and 

compact metric spaces (STROK & SZYMANSKI [12]). Moreover, there are compact 

Hausdorff spaces which are not supercompact (BELL [2], VAN MILL [JO]). There 

is a connection between supercompact spaces and graphs (see e.g., DE GROOT 

[6], BRUIJNING [4], SCHRIJVER [11]); moreover, supercompact spaces can be 

characterized by means of so-called interval structures (BROUWER & SCHRIJVER 

[3]). 

Let X be a T1-space and Sa closed T1-subbase for X (a closed subbase 

S for Xis called T1 if for all S ES and x EX with xi S, there exists an 

s0 ES with x E s0 and s0 n S = ~). The superextension \S(X) of X relative 

the subbase S is the set of all maximal linked systems f{ c S (a sub-

system of Sis called linked if every two of its members meet; a maximal 

linked system or mls is a linked system not properly contained in another 

linked system) topologized by taking { {H E \_c;CX) IS E M} IS E S} 

as a closed subbase. Clearly, this subbase is binary, hence AS(X) is super­

compact, while moreover X can be embedded in \S(X) by the natural embedding 

i: X + AS(X) defined by i(x) :={SE S I x ES}. VERBEEK's monograph [12] 

is a good place to find the basic theorems about superextensions. In this 

paper we will show that for many spaces there are superextensions homeo­

morphic to the Hilbert cube Q; moreover for simple spaces such as the unit 

interval or then-spheres S we will present easily described subbases for 
n 

which the corresponding superextension is homeomorphic to Q. Here, a classi-

cal theorem of KELLER [7], which says that each infinite-dimensioml compact 

convex subset of the separable Hilbert space is homeomorphic to Q, is of 

great help. 
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2. SOME EXAMPLES 

In this section we will give some examples. If Xis an ordered space, 

then the Dedekind completion of X will be denoted by X. Roughly speaking, 

X can be obtained from X by filling up every gap. We define X to be that 

ordered space which can be obtained from X by filling up every gap with two 

points, except for possible endgaps, which we supply with one point. The 

compact space X thus obtained, clearly contains X as a dense subspace. 

Define 

G 1 = { A c X I 3 x e: X: A = ( + , x J or A = [ x,-+) } 

and 

T1 ={Ac X I A is a closed half-interval} 

(as usual, a half-interval is a subset Ac X such that either for all a,b e: X: 

if b ~ a e: A then be: A, or for all a,b e: X: if b ~ a e: A then b EA) 

and 

Ao n Al}. 

respectively. 

Notice that G1 equals T1 in case Xis compact or connected. It is easy to 

see that AG(X) ~ X and that AT(X) ~ X. 
I I What about AT (X) ? 

2 

Example (i) If X = I, then AG (X) = AT (X) ~I.On the other hand Ay 2 (x) 

h . 1 • l 
is omeomor~hic to the Hilbert cube Q (see section 4). 

(ii) If X = ~. then AG (X) '.:::'.. I and AT (X) is a non-metrizable sepa-
l - 1 

rable compact ordered space, which has much in common with the 

well-known Alexandroff double of the closed unit interval. 

In this case, AT2 (X) is a compact totally disconnected perfect 

space of weight 2~o. (The total disconnectedness of AT (X) 
2 

follows from the following observation: for every T0 ,T 1 e: T2 
with TO n T1 = 0 there exists a TO e: T2 such that TO c To' and 

TO n T1 = 0 and X\T0 E T2. For every finite linked system 

{X\T. IT. E T2 , i dl,2, ... ,n}} it is easy to construct two 
i i 
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distinct mls's L0 and L1 belonging to .Q {Me:" (X) IT. <t M} 
• • 1.-l T2 1. 

(iii). 

showing that "T (X) is perfect. Finally "T can be embedded in 
2 1 

"T (X); hence weight (AT (X)) = 2~0.) 
2 2 

If X = R \IQ, then "G (X) :::. I, while "T (X) :::. "T (X) '.:::'.. C, the 
I - I - 2 -

Cantor discontinuum, for it is easy to see that "T (X) and 
I 

"-y2 (X) both are totally disconnected compact metric perfect 

spaces. 

Finally define 

Notice that G2 equals T2 in case Xis compact or connected. 

Example (i) If X = I, then "G2(X) ~ Q (section 4). 
(ii) If X = IQ' then "G/X) ~ Q. 

(iii) If X = R\Q, then "G (X):::. Q. 
2 -

The fact that "G (Q) :::. "G ( R\Q) '.:::'.. Q can be derived from the result )..G (I) ~ Q. 
2 - :12 - 2 

To see this, define 

G' = 2 {Ac I IA e: G2 and A has rational endpoints} 

and 

" 
G2 = {Ac I IA e: G2 and A has irrational endpoints}-

By theorem 5 and theorem 7 of [9] (cf. theorem 3.1 below), it follows that 

and 

3. SUPEREXTENSIONS WHICH ARE HILBERT CUBES 

In this section we will show that for each separable metric, not totally 
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disconnected topological space X, there exists a normal closed T1-subbase S 

such that AS(X) is homeomorphic to the Hilbert cube Q. First we will give 

some preliminary definitions and recapitulate some well-known results from 

the literature, which are needed in the remainder of this section. A closed 

subset B of Q is called a Z-set ([!]), if for each s > 0 there exists a map 

f: Q • Q\B such that d (f, id) < s. Examples of Z-sets are compact subsets of 

(0,1) 00 and closed subsets of Q which project onto a point in infinitely 

many coordinates. In fact, Z-sets can be characterized by the property that 

for every Z-set B there exists an autohomeomorphism ¢ of Q which maps B onto 

a set which projects onto a point in infinitely many coordinates ([I]). Ob­

viously, the property of being a Z-set is a topological invariant. Moreover, 

it is easy to show that a closed countable union of Z-sets is again a Z-set. 

Th~ importance of Z-sets is illustrated by the following theorem due to 

ANDERSON[!]. 

THEOREM. Any homeomorphism between two Z-sets in Q can be extended to an 

autohomeomorphism of Q. 

We will apply this theorem to show that every separable metric, not to­

tally disconnected topological space X can be embedded in Qin such a way 

that Q has the structure of a superextension of X, i.e. every point of Q 

represents an mls in a suitable closed subbase for X. The canonical binary 

subbase for Q 1.s 

T = {A c Q I A = TT - 1 [ 0 , x J 
n 

-1 
or A = TT [x, I], with n E :N and x E I} n 

and consequently, if we embed X in Qin such a way that for every two ele­

ments T0 ,T 1 ET with T0 n T1 1 0 we have that T0 n T1 n X f ~. then Q is a 

superextension of X; this 1.s a consequence of the following theorem ([9], 

theorem 5). 

THEOREM 3.1. Let X be a subspace of the topological space Y. Then y is ho­

meomorphic to a superextension of X if and only if Y possesses a binary closed 

subbase T such that for all T0 ,T 1 ET with T0 n T1 =f. 0 we have that 

To n T I n x =/- 0. 
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In particular, in theorem 3.1 Y ~ ATnX(X), where T n X = {T n X IT ET}. 

THEOREM 3.2. For every separable metric, not totally disconnected topological 

space X, there exists a normal closed r 1-subbase S such that AS(X) is homeo­

morphic to the Hilbert cube Q. 

:N PROOF. Assume that Xis embedded 1.n Q(=I ) and let C be a non-trivial compo-

of X. Choose a convergent sequence Bin C. Furthermore, define a sequence 

{yn}:=O in Q by 

for i = 1,2, ... , . 

It is clear that 

Moreover define z E Q by 

if 

if 

i -:/- n 

i = n, 

z. = 0 (i=l,2, ... ,). Then 
1. 

E = {y In E :N} u {z} 
n 

is a convergent sequence and therefore is homeomorphic to B. Since Band E 

both are closed countable unions of Z-sets in Q, they themselves are Z-sets. 

Choose a homeomorphism¢: B • E and extend this homeomorphism to an auto­

homeomorphism of Q. This procedure shows that we may assume that Xis embedded 

in Qin such a way that E c C. Let r0 ,T1 ET such that T0 n T1 # 0, where T 

is the canonical binary closed subbase for Q. We need only consider the fol­

lowing 4 cases: 

-1 - - I 
CASE I: TO =TTnO [O,x]; T1 = TTnO [y,l] (x:2:y). 

Since z E T0 and y0 E T1 and C is connected, it follows that 

¢-:/- T0 n T 1 n cc T0 n r 1 n x. 
-l -I 

CASE 2: TO = TTnO [O,x]; T1 = TTnl [y, I J (n0/n 1) · 

Then ynO E TO n T1 n X. 
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-l -1 
CASE 3: T = TT [O,x]; Tl = TT [0,y]. 

0 no nl 

Then z E TO n T1 n X. 

-l -1 
CASE 4: T = TT [x,I]; Tl = TT [y,l]. 

0 no nl 

Then Yo E Ton Tl n X. 

This completes the proof of the theorem. • 

4. A SUPEREXTENSION OF THE CLOSED UNIT INTERVAL 

In the present section we will prove that AG 2(I) is homeomorphic to the 

cube, where G2 = {[x,y] lx,y EI} u {[O,x] u [y,I] lx,y EI}. For this pur­

p0se we introduce 

F = {f:I + Ii f(O) 

f(x) s y - x}. 

0 and if x,y EI and x s y then O ~ f(y)-

Hence each f E Fis continuous and monotone non-decreasing. On F we define 

a topology by considering Fas a subspace of C[I,I] with the point-open to­

pology. We obtain the same topology on F by ordering F partially as follows: 

f s g iff for each x EI: f(x) s g(x), (f,g E F), 

and then ta~ing as a closed subbase for F the collection of all subsets of 

the form {f E Flf s f 0 } or {f E Flf ~ f 0}, where f 0 runs through F. 
We first prove that F:;;; Q and next that AG (I)'.:::'. F; we conclude that 

2 -
AG (I)'.:::'. Q. 

2 -

THEOREM 4.1. F:;;; Q. 

PROOF. We show that Fis a compact, infinite-dimensional, convex subspace 
I 

of I, with countable base; hence, by KELLER's theorem, Fis homeomorphic to 

the Hilbert cube Q. 

Fis clearly a convex subspace of II; it is also clear that (F,s), as 

defined above, is a complete lattice, whence Fis compact. F has a countable 

subbase, since the collection of all subsets of the forms {f E Flf(x) ~ y} 

and {f E Flf(x) s y} where x,y E ~ n I, forms a countable closed subbase for F. 
Finally, Fis infinite-dimensional, because Q can be embedded in F. 
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For, let §! = (a 1 ,a2 ,a3 , • • .) E IE. Let G(!!!) be the smallest function f in 

F (in the orderings of F) such that for each i = l,2,3, .•. the following 
holds: 

It can be seen easily that G defines a topological embedding of Q 1n F. O 

THEOREM 4.2. AG (I)~ F. 
2 -

PROOF. Define a function K: AG ( I) + I by: 
2 

K(M) = inf{x E Ij[O,x] e: M}, 

and a function H: AG ( I) + F by: 
2 

(ME AG (I)), 
2 

H(M)(i) = inf{x E Il[O,xJ u [y,l] EM, x + y = K( 11 ) + 1."} (1" I M ' (I)) M ' E , E /1.G • 

We prove that His an homeomorphism between AG (I) and F. 
2 First we observe that: 

K(M) S X if£ ro,x] E M; 

K(M) ::C: X iff [x, I ] E M; 

K(M) = X iff [O,x] E M and [x,I] e: M; 

H(M)( i) S X iff [O,x] u [K(M) + i - x, I] E M; 

H(M)(i) ::C: X iff [x,K(M) + i - x] EM; 

H(M) (i) = x iff [O,x] u [K(M) + i - x, 1 J E M and 

[ x,K(M) + i - x] EM; 

'2 

these facts follow easily from the fact that M 1.s a maximal linked system 

in G2 . Also we have K(M) = H(M)(I). 

Next we show that H(M) e: F, for each maximal linked system M. In fact 

(i) H(M)(O) = 0, for [0,0] u [K(M),l] e: ,\ii and [O,K(M)J e: M; (ii) if is j, 

H(M)(i) = x, H(M) (j) = y, then x s y, for [x,K(M) + j - x] ::) [x,K(M) + i - x] 

EM, hence [x,K(M) + J - x] EM and y = H(M)(j):::: x; also y - x s j - i, 
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for [y - j + i, K(M) + i - (y-j+i)J::, [y,K(M) + J - y] e M, hence 

X = H(M)(i) ~ y - j + 1. 

H is a one-to-one function, for suppose M1 , M2 e AG (I), M1 i= M2 and 

H(M 1) = H(M2). Let a= K(M 1) = H(M 1)(1) = H(M2)(l) = K(a2), i.e. 

[O,a] e M1 n M2 and [a,I] e M1 n M2. Since M1 1 M2 we may suppose that there 

are x' and y' such that [0,x'] u [y',I] E M1 \ M2 • Since [O,a] e M2 and 

[a,IJ e M2 , we have x' <a< y'. Let i = x' + y' - a e [x',y'] c I. Then since 

[O,x'] u [a+i-x',I] = [O,x'] u [y',I] e M1 \ M2 , we find that 

H(M 1)(i) $ x' < H(M 2)(i) and this is a contradiction. His also a surjection. 

Take f e F and let: 

L = {[f(i), f(J) + 1 - f(i)] li EI} u {[0,f(i)J u [f(I) + l. - f(i),1]1 

l. e I}. 

Then by definition off, it is easy to see that Lis a linked system 1.n G2• 

L is contained in some maximal linked system M of G2, and for this M it 

holds that K(M) = f(l) while for each i e I: H(M)(i) = f(i); i.e. H(M) = f. 

Finally we prove that His continuous. Let i,x e I. Then 

{ME AG (I)IH(M)(i) ~ 
2 

x} = ~{Me AG (I)j[O,x] u [y,l] e Mor 
ye 2 

[O, X + y - i] EM}, 

and hence this set is closed. For, let Me AG (I) such that H(M)(i) 

this last inequality means that 
2 

[O,x] u [K(M) + i - x, 1 J EM. If 

y ?: K(H) + i - x, then [O, y + X - i]::, ro, K(M)l E M; if y :s; K(M) 

[O,x] u [y,l]::, [O,x] u [K(M) + i - x, l J E M. 
Conversely, suppose that 

[O,x] u [y,l] e Mor [O, x + y - i] e M, 

:s; x· 
' 

+ 1 - x then 

- x; for each ye I, then also [O, x + y - i] i M for each y < K(M) + 1 

hence [O,x] u [y,I] e M; we conclude that [O,x] u [K(M) + i - x, I J E M, 
i.e. H(M)(i) ~ x. 
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In the same way one proves: 

{M E >-G(I)! H(M)(i) ;::: x} = 
2 

n1{M e: >-r.;(I)l[x, y] e: M 
ye: '2 

or [x + Y - i,JJe:M}, 

and hence is closed. D 

As a consequence of these two theorems we have, as announced, 

THEOREM: 4.3. AG (I)~ Q. 
2 

5. A SUPEREXTENSION OF THE n-SPHERE 

In this final section we show that the superextension of then-sphere 

Sn with respect to the collection of all closed massive n-balls in Sn is 

homeomorphic with the Hilbert-cube. As usual, then-spheres Sn is the space 

and the closed massive n-ball with centre x E Sn and radius E;::: 0 is the 

set 

Writing B for the collection of all closed massive n-balls in Sn, we will 

prove that, if n;::: 1, >-B(Sn) ~ Q. Obviously ;i_ 8 (s 1) is the superextension of 

the circle with respect to the set of closed intervals. For the definition 
n+l 

of Bit does not matter whether the euclidian metric of R or the sphere 

metric of Sn (in this case the distance between~ and l in Sn is 
n n 

arccos Ei=Oxiyi' i.e. the minimum length of a curve between! and l on S) 

is used. However, in the proof of the theorem we need the latter metric and 

we call this metric d. Furthermore we define, for each point 

~ = (x0 ,x 1, ••• ,xn) E Sn, the antipode~ of~ by~= (-x0 ,-x1, ... ,-xn). 

THEOREM 5.1. If n;::: I, ;i_ 8 (sn) is homeomorphic to the Hilbert-eu,be Q. 



10 

PROOF. In fact we show that AB(Sn) is compact and infinite-dimensional and 
n has a countable base and that AB(S) can be embedded as a convex subspace 

in RS0 ; hence, by KELLER's theorem, AB(Sn) is homeomorphic to Q. 

Clearly, AB(Sn) is compact. 
n To prove that AB(S) has a countable base, let X be a countable dense 

subset of Sn. Define B0 = {B(~,s)I! EX, £ E ~, £ ~ O}. It is not difficult 

to see that P: AB(Sn) + AB (Sn), such that P(M) =Mn B0 (MEAB(Sn)) is a 

homeomorphism; hence, sine~ AB0 (sn) has a countable base, A8(sn) also has 

a countable base. Next, A8 (sn) is infinite-dimensional, since AG2 (I)(:;;;:,Q) 

can be embedded in A8 (sn). For, let 

this subspace is homeomorphic to I. Let G2 be as defined in section 3, i.e. 

G2 is the collection of all closed subsets Y' of Y such that Y' is connected 

or Y \ Y'is connected. Define T: AG2(Y)--+- A8(sn) by T(M) ={BE BIB n YEM}, 

(MEAG2(I)). Again it is not difficult to prove that Tis a topological em­

bedding. Hence AG (I):;; Q can be embedded in A8 (sn), i.e. A8 (sn) is infinite-
2 

dimensional. 
Sn 

Finally we embed A8 (sn) as a convex subspace in R , by means of the 
n sn 

function U: A8(s ) _. R , determined by: 

U(M)(~) =inf{£~ OIB(!,£) EM}, (MEAG (Sn), !ESn). 
2 

The mapping U is continuous and one-to-one since U(M)(!) ~ £ iff B(~,£) EM, 

and U(M)(!) ~ £ iff B(~,n-£) EM. And indeed, U[A8 (sn)J is a convex subspace 
sn n of R . In order to show this, we need only prove: if M1 ,M2 E A8(s ), then 

there exists an ME AB(Sn) such that U(M) = ½ U(M 1) + ½ U(M2) (U[AB(Sn)l 
sn 

being compact and hence closed in R ) . So take M1 ,M2 E A8(sn) and let 

M3 = {B(~,£)1~ E Sn,£ 2: ¼U(M 1)(!) +. ~U(M2)(!)}. Then M3 is a linked system, 

because if B(~,£) and B(y,o) E M3(!,lESn, £ ~ !U(M 1)(!) + !U(M2)(~), o ~ 
iu(M 1)(y) + !U(M2)(y)), then: 



d(!,y) s U(M 1)(!) + U(M 1)(y), and 

d(!,I) s U(M2)(!) + U(M2)Ci); hence 

d(!,Y) so+£, i.e. B(~,£) n B(y,o) f ~-

Let M3 be a maximal linked system containing M3 (in fact M3 is itself a 

maximal linked system). Then, clearly, 

U(M3)(!) s ½U(M 1)(!) + ½U(M2)(!), and 

U(M3)(!) s ½U(M 1)(!) + ~U(M2)(!), for each x E Sn. 

1 l 

But, since for each maximal linked system M: U(M)(!) + U(M)(~) = TI we have 

for each x E Sn. 

Thus 
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