
ar
X

iv
:1

40
1.

09
12

v2
  [

qu
an

t-
ph

]  
23

 A
ug

 2
01

4

Rational approximations and quantum algorithms with
postselection

Urmila Mahadev∗ Ronald de Wolf†

Abstract

We study the close connection between rational functions that approximate a given Boolean function,
and quantum algorithms that compute the same function usingpostselection. We show that the minimal
degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We give
optimal (up to constant factors) quantum algorithms with postselection for the Majority function, slightly
improving upon an earlier algorithm of Aaronson. Finally weshow how Newman’s classic theorem about
low-degree rational approximation of the absolute-value function follows from these algorithms.

1 Introduction

1.1 Background: low-degree approximations from efficient quantum algorithms

Since the introduction of quantum computing in the 1980s [Fey82, Deu85], most research in this area has
focused on trying to find applications where quantum computers significantly outperform their classical
counterparts: new quantum algorithms, quantum cryptography, communication schemes, uses of entangle-
ment etc. One of the more surprising applications of quantumcomputing in the last decade has been its
use, in some way or other, in obtaining results inclassicalcomputer science and mathematics (see [DW11a]
for a survey). One direction here has been the use of quantum query algorithms to show the existence
of low-degree polynomial approximations to various functions. This direction started with the observa-
tion [FR99, BBC+01] that the acceptance probability of aT -query quantum algorithm withN -bit input can
be written as anN -variate multilinear polynomial of degree at most2T . For example, Grover’sO(

√
N)-

query algorithm for finding a 1 in anN -bit input [Gro96] implies the existence of anN -variate degree-
O(

√
N) polynomial that approximates theN -bit OR-function, and (by symmetrization) of a univariate

polynomialp such thatp(0) = 0 andp(i) ≈ 1 for all i ∈ {1, . . . , N}. Accordingly, one way to design
(or prove the existence of) a low-degree polynomial with a certain desired behavior, is to design an efficient
quantum algorithm whose acceptance probability has that desired behavior. Results based on this approach
include tight bounds on the degree of low-error approximations for symmetric functions [Wol08], a new
quantum-based proof of Jackson’s theorem from approximation theory [DW11b], and tight upper bounds
for sign-approximations of formulas [Lee09].
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1.2 Quantum algorithms with postselection

In this paper we focus on a related but slightly more complicated connection, namely the use of quantum
query algorithmswith postselectionto show the existence of low-degreerational approximations to various
functions. We will define both terms in more detail later, butfor now let us just state that postselection is
the (physically unrealistic) ability of an algorithm to choose the outcome of a measurement, thus forcing
a collapse of the state to the corresponding subspace. Postselection allows some functions to be computed
much more efficiently. A good example of this is theN -bit OR function, which takes value 1 if the input
x ∈ {0, 1}N contains at least one 1, and takes value 0 otherwise. Grover’s algorithm takesO(

√
N) queries

to compute this, which is known to be optimal (precise understanding of this algorithm and its optimality
are not required for this paper). However, a postselection algorithm could choose a tiny but positiveε and
start with initial state

ε|0〉|1〉 +
√

1− ε2

N

N∑

i=1

|i〉|0〉.

Making one quantum query to the input gives

ε|0〉|1〉 +
√

1− ε2

N

N∑

i=1

|i〉|xi〉.

Now postselect on the last qubit having value 1. This collapses the state to

ε|0〉|1〉 +
√

1− ε2

N

∑

i:xi=1

|i〉|1〉,

times a normalizing constant1/
√
ε2 + |x|(1 − ε2)/N . If x = 0N then the state is simply|0〉|1〉, and

measuring the first register gives outcome 0 with certainty.If x 6= 0N , then (assumingε2 ≪ 1/N ) measuring
the first register will probably give an indexi for whichxi = 1. Thus we can compute OR using only one
query. The error probability can be made arbitrarily small (though not 0!) by choosingε to be very small.

1.3 Rational functions

A rational function is the ratio of two polynomials. Its degree is the maximum of the degrees of the numer-
ator and denominator polynomials. For example, here is a degree-1 rational approximation to OR (again fix
smallε > 0): ∑N

i=1 xi

ε+
∑N

i=1 xi
.

This rational function equals 0 ifx = 0N , and equals essentially 1 ifx 6= 0N . Thus it approximates the OR
function very well, using only degree-1 numerator and denominator. Again, the error can be made arbitrarily
small (though not 0!) by choosingε to be very small. In contrast, a polynomial that approximates OR up to
constant error needs degreeΘ(

√
N)[NS94].

It is no coincidence that for the OR function both the complexity of postselection algorithms and the
rational degree are small. The connection between postselection and rational approximation was first made
by Aaronson. In [Aar05], he provided a new proof of the breakthrough result of Beigel et al. [BRS95] that
the complexity class PP is closed under intersection. He didthis in three steps:
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1. Define a new class PostBQP, corresponding to polynomial-time quantum algorithms augmented with
postselection.

2. Prove that PP = PostBQP.

3. Observe that PostBQP is closed under intersection, whichis obvious from its definition.

While very different from the proof of Beigel et al. (at leaston the surface), Aaronson noted that his proof
could actually be viewed as implicitly constructing certain low-degree rational approximations to the Ma-
jority function1; the fact that the resulting polynomial has low degree follows from the fact that Aaronson’s
algorithm makes only few queries to the input of Majority. Such rational approximations also form the key
to the proof of Beigel et al.

Our goal in this paper is to work out this connection between rational functions and postselection algo-
rithms in much more detail, and to apply it elsewhere.

1.4 Definitions

In order to be able to state our results, let us be a bit more precise about definitions.

Polynomial approximation. An N -variate polynomial is a functionP : SN → R that can be written
asP (x1, . . . , xN ) =

∑
d1,...,dN

cd1,...,dN
∏N

i=1 x
di
i with real coefficientscd1,...,dN . In our applications, the

domainS of each input variable will be eitherR or {0, 1}. Thedegreeof P is deg(P ) = max{∑N
i=1 di |

cd1,...,dN 6= 0}. When we only care about the behavior of the polynomial on theBoolean cube{0, 1}N ,
thenxdi = xi for all d ≥ 1, so then we can restrict tomultilinear polynomials, where the degree in each
variable is at most 1 (and the overall degree is at mostN ). Let ε ∈ [0, 1/2) be some fixed constant. A
polynomialP ε-approximatesf : SN → R if |P (x)−f(x)| ≤ ε for all x ∈ SN . Theε-approximate degree
of f (abbreviateddegε(f)) is the minimal degree among all such polynomialsP . Theexactdegree off
is deg(f) = deg0(f).

Rational approximation. A rational functionis a ratioP/Q of twoN -variate polynomialsP,Q : SN →
R, whereQ is required to be nonzero everywhere onSN to prevent division by 0. Its degree is the maximum
of the degrees ofP andQ. A rational functionP/Q ε-approximatesf if |P (x)/Q(x) − f(x)| ≤ ε for all
x ∈ SN . Theε-approximate rational degree off (abbreviatedrdegε(f)) is the minimal degree among all
such rational functions. Theexactrational degree off is rdeg0(f).

Quantum query algorithms with postselection. A quantum query algorithmwith postselection(short:
postselection algorithm) is a regular quantum query algorithm [BW02] with two output bitsa, b ∈ {0, 1}.
We say the postselection algorithm computes a Boolean function f : {0, 1}N → {0, 1} with error probabil-
ity ε if for everyx ∈ {0, 1}N , we havePr[a = 1] > 0 andPr[b = f(x) | a = 1] ≥ 1−ε. The idea is that we
can computef(x) with error probabilityε if we could postselect on measurement outcomea = 1. In other
words, the second output bitb computes the function when the first is forced to output 1. This “forcing”
is the postselection step, which is not something we can actually implement physically; in that respect the
model of postselection is mostly a tool for theoretical analysis, not a viable model of computation. The
postselection query complexityPostQε(f) of f is the minimal query complexity among such algorithms.2

1TheN -bit Majority is the Boolean function defined by MAJN (x) = 1 iff the Hamming weight|x| :=
∑N

i=1
xi is ≥ N/2.

2The way we defined it here, a postselection algorithm involves only one postselection-step, namely selecting the valuea = 1.
However, we can also allow intermediate postselection steps without changing the power of this model, see [DW11a, Section 4.3].
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1.5 Our results

Rational degree≈ quantum query complexity with postselection. Our first result in this paper (Sec-
tion 2) is to give a very tight connection between rational approximations of a Boolean functionf :
{0, 1}N → {0, 1} and postselection algorithms computingf with small error probability. We show that
the minimal degree needed for the former equals the minimal query complexity needed for the latter, to
within a factor of 2:

1

2
rdegε(f) ≤ PostQε(f) ≤ rdegε(f).

In other words, minimal rational degree is essentially equal to quantum query complexity with postselection.
The fact that low query complexity of postselection algorithms gives low rational degree has been known
since Aaronson’s paper [Aar05]; what we add in this paper is the converse, that low rational degree also
gives efficient postselection algorithms. This tight relation (to within a factor of 2) should be contrasted
with the better-studied case of polynomial approximation,where the approximate degreedegε(f) equals the
bounded-error quantum query complexityto within a polynomial factor[BBC+01], and there are actually
polynomial gaps [Amb03].

Optimal postselection algorithm for Majority. In his paper, Aaronson [Aar05, Theorem 4] implicitly
gave an efficient postselection algorithm for the Majority function with polynomially small error probability:

PostQ1/N (MAJN ) = O
(
(logN)2

)
.

For constant error probability, one can obtain a postselection algorithm usingO(log(N) log log(N)) queries
from his proof [DW11a, Theorem 4.5].

Our second result in this paper is to optimize Aaronson’s construction to have minimal query complexity
up to a constant factor (and hence the induced rational approximation for majority will have minimal degree),
for every error probabilityε ∈ (2−N , 1/2):

PostQε(MAJN ) = O (log(N/ log(1/ε)) log(1/ε)) .

Combined with the above constant-factor equivalence ofrdegε(f) andPostQε(f), this reproves the upper
bound of Sherstov [She13, Theorem 1.7]. In fact, we could just have combined Sherstov’s upper bound
with that equivalence, but our derivation of minimal-degree polynomials by means of a postselection algo-
rithm is very different from Sherstov’s proof. Sherstov’s matching lower bound for the degree of rational
approximations shows that also our algorithm is optimal (upto a constant factor).

Newman’s Theorem. One of the most celebrated results in rational approximation theory is Newman’s
Theorem [New64]. This says that there is a degree-d rational function that approximates the absolute-value
function |x| on the intervalx ∈ [−1, 1] up to error2−Ω(

√
d). In contrast, it can be shown that the smallest

error achievable by degree-d polynomials isΘ(1/d). The proof of Newman’s Theorem is not extremely
complicated:

Definea = e−1/
√
d, p(x) =

∏d−1
k=0(a

k + x), and degree-d rational functionr(x) = p(x)−p(−x)
p(x)+p(−x) .

Half a page of calculations shows thatr(x) ε-approximates the sign-function on the interval

[−1,−ε] ∪ [ε, 1], for ε = e−Ω(
√
d). We haver(x) ∈ [−1, 1] andsgn(x) = sgn(r(x)) on the

whole interval[−1, 1], hence the degree-(d + 1) rational functionx · r(x) ε-approximates the
absolute-value function on the whole interval[−1, 1].
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In fact the optimal errorε achievable by degree-d rational functions is known much more precisely [PP87,
Theorem 4.2]: it isΘ(e−π

√
d). The proof of this tighter bound is substantially more complicated.3

In Section 4 we show how our postselection algorithm for Majority can be used to derive Newman’s
Theorem.4 While this proof is not easier than Newman’s by any reasonable standard, it (like the reproof of
Sherstov’s result mentioned above) is still interesting because it gives a new, quantum-algorithmic perspec-
tive on these known results that may have other applications.

2 Query complexity with postselection≈ degree of rational approximation

We first show that rational approximation degree and quantumquery complexity with postselection are
essentially the same for all Boolean functions.

Theorem 1 For all ε ∈ [0, 1/2) andf : {0, 1}N → {0, 1} we haverdegε(f) ≤ 2PostQε(f).

Proof. Consider a postselection algorithm forf with T = PostQε(f) queries and errorε. Then
by [BBC+01], the probabilitiesQ(x) = Pr[a = 1] andP (x) = Pr[a = b = 1] can be written as poly-
nomials of degree≤ 2T . Their ratioP/Q is a rational function that equals the conditional probability
Pr[b = 1 | a = 1]. By definition, the latter is in[1 − ε, 1] for inputsx ∈ f−1(1), and is in[0, ε] for
x ∈ f−1(0). HenceP/Q is a rational function of degree≤ 2T = 2PostQε(f) thatε-approximatesf . ✷

Theorem 2 For all ε ∈ [0, 1/2) andf : {0, 1}N → {0, 1} we havePostQε(f) ≤ rdegε(f).

Proof. Consider a rational functionP/Q of degreed = rdegε(f) that ε-approximatesf . It will be
convenient to convertf to a±1-valued function. DefineF (x) = 1 − 2f(x) ∈ {±1} andR(x) = Q(x) −
2P (x), thenR/Q = 1− 2P/Q is in [−1− 2ε,−1+2ε] if F (x) = −1, and in[1− 2ε, 1+2ε] if F (x) = 1.
We will write R andQ in their Fourier decompositions:5

R(x) =
∑

S⊆[N ]

R̂(S)(−1)x·S and Q(x) =
∑

S⊆[N ]

Q̂(S)(−1)x·S .

Now set up the following(N + 1)-qubit state (up to a global normalizing constant):

|0〉
∑

S

Q̂(S)|S〉+ |1〉
∑

S

R̂(S)|S〉,

where|S〉 is theN -bit basis state corresponding to the characteristic vector of S. Note thatR̂(S) andQ̂(S)
are 0 whenever|S| > d. Hence by makingd queries tox, successively querying the indicesi ∈ S and
adding their value as a phase(−1)xi , we can add the phases(−1)x·S :

|0〉
∑

S

Q̂(S)(−1)x·S |S〉+ |1〉
∑

S

R̂(S)(−1)x·S |S〉.

3In fact, in the 19th century Zolotarev [Zol77] already gave the optimal polynomial for each degreed. Later, Akhiezer [Akh29]
worked out the asymptotic decrease of the error as a functionof d, stating Newman’s Theorem much before the paper of Newman
(who was apparently unaware of this Russian literature).

4Actually, Aaronson’s above-mentionedO((logN)2)-query postselection algorithm with errorε = 1/N can already be used
for this purpose; this application does not require our optimized version of the algorithm.

5The Fourier coefficientsof a functiong : {0, 1}N → R are ĝ(S) = 1

2N

∑
x∈{0,1}N g(x)(−1)x·S, whereS ∈ {0, 1}n

corresponds to a subset of[N ] (i.e., a subset of theN input variables);x ·S denotes the inner product between the twoN -bit strings
x andS. The Fourier decomposition ofg is g(x) =

∑
S
ĝ(S)(−1)x·S .
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Now a Hadamard transform on each of then qubits of the second register gives a state proportional to

|0〉
(
∑

S

Q̂(S)(−1)x·S |0N 〉+ · · ·
)

+ |1〉
(
∑

S

R̂(S)(−1)x·S |0N 〉+ · · ·
)

= |0〉
(
Q(x)|0N 〉+ · · ·

)
+ |1〉

(
R(x)|0N 〉+ · · ·

)
,

where the· · · indicates all the basis states other than|0N 〉. Postselect on measuring|0N 〉 in the second
register (more precisely, set the bita to 1 only for basis state|0N 〉). What is left in the first register is the
following qubit:

|βx〉 = c(Q(x)|0〉 +R(x)|1〉) = cQ(x)

(
|0〉+ R(x)

Q(x)
|1〉
)
,

wherec = 1/
√
Q(x)2 +R(x)2 is a normalizing constant. SinceR(x)/Q(x) ≈ F (x) ∈ {±1}, a Hadamard

transform followed by a measurement will with high probability tell us the signF (x) of R(x)/Q(x). If
F (x) = 1, the error probability equals

|〈−|βx〉|2 =
(Q(x)−R(x))2

2(Q(x)2 +R(x)2)
=

(1−R(x)/Q(x))2

2(1 + (R(x)/Q(x))2)
≤ (2ε)2

2(1 + (1− 2ε)2)
=

ε2

1− 2ε+ 2ε2
≤ ε,

where the last inequality used thatε ≤ 1− 2ε + 2ε2 for all ε ∈ [0, 1/2). If F (x) = −1 then an analogous
calculation works. Hence we have found ad-query postselection algorithm that computesf with error
probability≤ ε. ✷

3 An optimal postselection algorithm for Majority

In this section we give an optimized postselection algorithm for Majority, slightly improving Aaronson’s
construction. We will require the following result from [Aar05, first paragraphs of proof of Theorem 4]:

Lemma 1 (Aaronson) Let α, β > 0 satisfyα2 + β2 = 1. Using one query to inputx ∈ {0, 1}N and
postselection, we can construct the following qubit:

c

(
α|x||0〉 + β

N − 2|x|√
2

|1〉
)
, (1)

wherec = 1/
√
α2|x|2 + β2

2 (N − 2|x|)2 is a normalizing constant.

For the sake of being self-contained, we repeat Aaronson’s proof below.

Proof. Assume for simplicity thatN is a power of 2, soN = 2n and we can identify the indicesi ∈ [N ]
with n-bit strings. Lets = |x|. Start with(n+1)-qubit state|0n+1〉, and apply Hadamard transforms to the
first n qubits and then one query tox, to obtain

1√
N

∑

i∈{0,1}n
|i〉|xi〉.
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Again apply Hadamard transforms to the firstn qubits, and postselect on the firstn qubits being all-0. Up
to a normalizing constant, the last qubit will now be in state

|ψ〉 = (N − s)|0〉 + s|1〉.

Add a new qubit prepared in stateα|0〉 + β|1〉 to (the left of) this qubit|ψ〉. Conditioned on this new qubit,
apply a Hadamard transform to|ψ〉, giving

α|0〉|ψ〉 + β|1〉H|ψ〉 = α|0〉 ((N − s)|0〉+ s|1〉) + β|1〉
(
N√
2
|0〉 + N − 2s√

2
|1〉
)

=

(
α(N − s)|0〉+ β

N√
2
|1〉
)
|0〉+

(
αs|0〉+ β

N − 2s√
2

|1〉
)
|1〉.

If we now postselect on the last qubit being 1, the first qubit collapses to the state promised in the lemma.✷

Our goal is to decide whether|x| ≥ N/2 or not. Consider the qubit of Eq. (1). If0 < |x| < N/2 then
this qubit is strictly inside the first quadrant (i.e., both|0〉 and|1〉 have positive amplitude), and if|x| ≥ N/2
then it is not. In the first case, for some choice ofα, β the qubit will be close to the state|+〉 = 1√

2
(|0〉+|1〉),

while in the second case it will be far from|+〉 for everychoice ofα, β. The algorithm tries out a number of
(α, β)-pairs in order to distinguish between these two cases. Lett be some positive integer (which we will
later set to⌈log(2/ε)⌉ for our main algorithm). Let

A = {−⌈log(N/t)⌉, . . . ,−1, 0, 1, . . . , ⌈log(N/t)⌉},

and for alli ∈ A let |ai〉 be the qubit of Eq. (1) withαβ = 2i. Let

B = {0, . . . , t− 1} ∪ {N/2 − t+ 1, . . . , N/2 − 1}

if t ≥ 2, andB = ∅ otherwise. For alli ∈ B let |bi〉 be the qubit of Eq. (1) withαβ = N−2i√
2i

. Note that

|b|x|〉 = |+〉.
The intuition of the algorithm is that we are trying to eliminate fromA andB all i corresponding to

states whose squared inner product with|+〉 is at most 1/2. If|x| ≥ N/2 (i.e., MAJN (x) = 1) then we
expect to eventually eliminate alli, while if |x| < N/2 (i.e., MAJN (x) = 0) then for at least onei, the
squared inner product with|+〉 will be close to 1, and thisi will probably not be eliminated by the process.
We start with a procedure that tries to eliminate the elements ofA:

Lemma 2 For every integert ∈ {1, . . . , N/4} there exists a postselection algorithm that usesO(log(N/t))
queries to its inputx ∈ {0, 1}N and distinguishes (with success probability≥ 2/3) the case|x| ∈
{t, . . . , N/2 − t} from the case|x| ≥ N/2.

Proof. The algorithm is as follows:

1. Initializek = 1 andA1 = A.

2. Repeat the following until180 log(N/t) queries have been used (or untilAk is empty):

(a) For alli ∈ Ak:
create5k copies of|ai〉 and measure each in the|+〉, |−〉 basis;
setMk,i = 1 if this resulted in a majority of|+〉 outcomes, and setMk,i = 0 otherwise.
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(b) SetAk+1 = {i ∈ Ak |Mk,i = 1}. Setk to k + 1.

3. Output 0 if the finalAk is nonempty, and output 1 otherwise.

Clearly the query complexity isO(log(N/t)). We now analyze what happens in both cases.
Case 1:|x| ∈ {t, . . . , N/2− t}. For these values of|x|, the ratio between|x| andN −2|x| lies between

t/N andN/t. Hence there exists ani ∈ A such that|ai〉 and |ai+1〉 lie on opposite sides of|+〉. In the
worst case,|+〉 lies exactly in the middle between|ai〉 and|ai+1〉, in which case〈+|ai〉 = 〈+|ai+1〉. In this

case,|ai〉 =
√

1
3 |0〉 +

√
2
3 |1〉, so〈+|ai〉 = 1+

√
2√

6
=: λ. We will show that thisi is likely to remain in all

setsAk, in which case the algorithm outputs the correct answer 0.
Each iteration of step 2 will be called a “trial”. Letm be the number of the trial being executed when the

algorithm stops (thism is a random variable). The algorithm gives the correct output 0 iff Am is nonempty.
First, by a Chernoff bound6 for everyk

Pr[Mk,i = 0] ≤ exp
(
−2 · 5k(λ2 − 1/2)2

)
≤ 2−(k+2).

Now by the union bound, the error probability in this case is

Pr[Am = ∅] ≤ Pr[i /∈ Am] = Pr[∃ k s.t. Mk,i = 0] ≤
∞∑

k=1

2−(k+2) =
1

4
.

Case 2:|x| ≥ N/2. We first show that the algorithm is likely to go through at least logN trials. Since
|x| ≥ N/2, for all i ∈ A we have|〈+|ai〉|2 ≤ 1

2 and hencePr[Mk,i = 1] ≤ 1
2 for all k. Therefore

E[|Ak+1|] =
∑

i∈A

k∏

ℓ=1

Pr[Mℓ,i = 1] ≤ |A|
2k

≤ log(N/t)

2k−1
.

LetQ =
∑logN

k=1 5k|Ak| be the number of queries used in the firstlogN trials (with the number of queries
set to 0 for the non-executed trials after themth). Now:

E[Q] ≤ 5 log(N/t)

logN∑

k=1

k

2k−1
≤ 20 log(N/t),

where we used ∞∑

k=1

k

2k−1
=

∞∑

k=1

∞∑

ℓ=k

1

2ℓ−1
= 4

∞∑

k=1

2−k
∞∑

ℓ=1

1

2ℓ
= 4

∞∑

k=1

2−k = 4.

By Markov’s inequality

Pr[Q ≥ 180 log(N/t)] ≤ Pr[Q ≥ 9E[Q]] ≤ 1

9
.

So with probability at least89 we haveQ < 180 log(N/t), meaning the algorithm executes at leastlogN
trials before it terminates. In that case each element ofA has probability at most1/2logN = 1/N to survive
logN trials. Hence, by the union bound

Pr[A2 logN+1 6= ∅] ≤ |A|
N

≤ 1

4
,

6For K coin flips X1, . . . , XK , each taking value 1 with probabilityp, the probability that their sum
∑K

i=1
Xi is at most

K(p− ε), is upper bounded byexp(−2Kε2). See for example [AS08, Appendix A]. We apply this here withK = 5k, p = λ2 ≈
0.97, andε = p− 1/2.
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for N sufficiently large. Therefore the final error probability isat most89
1
4 +

1
9 = 1

3 in this case. ✷

Note that if we sett = 1 in this lemma then we obtain anO(logN)-query postselection algorithm that
computes MAJN with error probability≤ 1/3 for all x 6= 0N (we can ensurex 6= 0N for instance by fixing
the first two bits ofx to 01, so then we would be effectively computing MAJN−2). This improves upon the
O(log(N) log log(N)) algorithm mentioned in Section 1.5.

We can reduce the error probability to anyε ∈ (0, 1/2) by the standard method of running the al-
gorithmO(log(1/ε)) times and taking the majority value among the outputs. This gives anε-error algo-
rithm usingO(log(N) log(1/ε)) queries. However, a slightly more efficient algorithm is possible if we set
t = ⌈log(2/ε)⌉ and separately handle the inputs with|x| /∈ {t, . . . , N/2 − t}.

Lemma 3 For every integert ∈ {2, . . . , N/4} there exists a postselection algorithm that usesO(t) queries
to its inputx ∈ {0, 1}N and distinguishes (with success probability≥ 1 − 2−t) the case|x| ∈ {0, . . . , t −
1} ∪ {N/2 − t+ 1, . . . , N/2 − 1} from the case|x| ≥ N/2.

Proof. The algorithm is as follows:

1. InitializeB = {0, . . . , t− 1} ∪ {N/2 − t+ 1, . . . , N/2− 1}
2. Repeat the following8t times (or untilB is empty):

take the firsti ∈ B, create one copy of|bi〉 and measure it in the|+〉, |−〉 basis;
if the outcome was|−〉 then removei fromB.

3. Output 0 if the finalB is nonempty, and output 1 otherwise.

Clearly the query complexity isO(t). We now analyze what happens in both cases.
Case 1:|x| ∈ {0, . . . , t− 1} ∪ {N/2 − t+ 1, . . . , N/2 − 1}. Because|b|x|〉 = |+〉, the indexi = |x|

will remain inB with certainty.
Case 2: |x| ≥ N/2. In this case, for alli in the initial setB we have|〈+|bi〉|2 ≤ 1

2 . Hence each
measurement has probability at least 1/2 of producing outcome |−〉 and reducing the size ofB by 1. Since
B initially has2t − 1 elements, it will only end up nonempty if there are fewer than2t − 1 |−〉 outcomes
among all8t measurements. The probability of this event is upper bounded by the probability of< 2t − 1
“heads” amongK = 8t fair coin flips. By the Chernoff bound (see footnote 6, withp = 1/2 andε = 1/4),
that probability is at mostexp(−2K(1/2 − 1/4)2) = exp(−t) ≤ 2−t. ✷

To obtain our main algorithm we sett = ⌈log(2/ε)⌉. If ε ≤ 2−Ω(N) then the trivial algorithm that
queries allN bits to determine Majority will be optimal up to a constant factor, so below we may assume
t ≤ N/4. We now run the algorithm of Lemma 2 with error reduced toε/2, and the algorithm of Lemma 3
(with error≤ 2−t ≤ ε/2), and we output 1 if both algorithms outputted 1. It is easy tosee that this computes
Majority with error probability≤ ε on every input. This proves:

Theorem 3 For everyε ∈ (2−N , 1/2) there exists a postselection algorithm that computesMAJN using
O (log(N/ log(1/ε)) · log(1/ε)) queries with error probability≤ ε.

The latter algorithm is asymptotically better than the earlier O(log(N) log(1/ε)) algorithm if ε is
slightly bigger than2−N . For example, ifε = 2−N/ logN then the earlier algorithm has query complex-
ity O(N) while Theorem 3 givesO(N log log(N)/ log(N)) = o(N).

Sherstov [She13, Theorem 1.7] proved anΩ(log(N/ log(1/ε)) · log(1/ε)) lower bound on the degree
of ε-approximating rational functions for MAJN , for all ε ∈ (2−N , 1/2). Together with our Theorem 1, this
shows that the algorithm of Theorem 3 has optimal query complexity up to a constant factor.
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4 Deriving Newman’s Theorem

We now use the postselection algorithm for Majority to derive a good, low-degree rational approximation
for the sign-function:

Theorem 4 For everyd there exists a degree-d rational function thatε-approximates the sign-function
sgn(z) on [−1,−ε] ∪ [ε, 1] for ε = 2−Ω(

√
d) (and which lies in[−1, 1] for all z ∈ [−1, 1]).

Proof. Setε = 2−Ω(
√
d) with a sufficiently small constant in theΩ(·), andN = ⌈2ε⌉. Consider the algorithm

described after Lemma 2 witht = 1 and error reduced toε/2. It provides twoN -variate multilinear
polynomialsP andQ, each of degreed = O(log(N) log(1/ε)) = O(log(1/ε)2), such that for allx ∈
{0, 1}N , ∣∣∣∣

P (x)

Q(x)
− MAJN (x)

∣∣∣∣ ≤
ε

2
.

Note thatP can be written as
∑

j cj(
∑

i xi)
j , as canQ, because the amplitudes of the states|ai〉 and|bi〉

in the proof of Theorem 3 are functions of|x| =∑i xi. To convertP to a univariate polynomialp, replace∑
i xi with real variablez to obtainp(z) =

∑
j cjz

j . Similarly convertQ(x) to q(z). Let majN represent the

univariate version of MAJN : majN returns 0 on inputx ∈ [0, . . . , N2 ) and returns 1 onx ∈ [N/2, . . . , N ].
We now have: ∣∣∣∣

p(x)

q(x)
− majN (x)

∣∣∣∣ ≤
ε

2

for x ∈ {0, . . . , N}. Crucially, this inequality also holds for real valuesz ∈ [1, N/2 − 1] ∪ [N/2, N ]. This
is because the analysis of the algorithm described after Lemma 2 (witht = 1 and error reduced toε/2) still
works when we replace the integer|x| with real valuez. Sincesgn(z) = 2majN (N(z+1)

2 )− 1, we have

∣∣∣∣∣∣

2p
(
N(z+1)

2

)
− q

(
N(z+1)

2

)

q
(
N(z+1)

2

) − sgn(z)

∣∣∣∣∣∣
≤ ε

for all z ∈ [−1,− 2
N ] ∪ [0, 1]. SinceN = ⌈2ε ⌉, we have the desired approximation on[−1,−ε] ∪ [ε, 1]. ✷

It is easy to see that multiplying the above rational function byz gives an approximation of the absolute-
value function|z| on the whole intervalz ∈ [−1, 1]. Thus we have reproved Newman’s Theorem in a new,
quantum-based way:

Corollary 1 (Newman) For every integerd ≥ 1 there exists a degree-d rational function that approximates
|z| on [−1, 1] with error ≤ 2−Ω(

√
d).

5 Open questions

We mention a few open questions. First, we have very few techniques for quantum algorithms with post-
selection. Aaronson’s techniques from [Aar05] (and our variations thereof) is the main technique we know
that makes non-trivial use of the power of postselection. What other algorithmic tricks can we play us-
ing postselection? Using the equivalence between postselection algorithms and rational degree, we can
try to obtain new algorithms from known rational approximations. Very tight bounds are known for the
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rational degree of approximations of the univariate exponential functionsexp(x) andexp(−x) [PP87, Sec-
tions 4.4 and 4.5]. In particular, rational degreed is necessary and sufficient to achieve approximation-error
exp(−Θ(d)) for the functionexp(−x) on the interval[0,∞). This implies the following for postselection
algorithms. Consider the real-valuedn-bit functionf : {0, 1}n → R defined byf(x) = exp(−|x|). Then
for every integerd > 0 there exists a quantum algorithm with postselection, that makesO(d) queries to
its input x ∈ {0, 1}n, and whose acceptance probability is withinexp(−d) of f(x). Can we use such a
postselection algorithm to compute something useful?

Second, we showed here how a classical but basic theorem in rational approximation theory (Newman’s
theorem) could be reproved based on efficient quantum algorithms with postselection. Is it possible to prove
newresults in rational approximation theory using such algorithms?

Finally, the following is a long-standing open question attributed to Fortnow by Nisan and Szegedy [NS94,
p. 312]: is there a polynomial relation between theexactrational degree of a Boolean functionf : {0, 1}N →
{0, 1} and its usual polynomial degree? It is known that exact and bounded-error quantum query complex-
ity and exact and bounded-error polynomial degree are all polynomially close to each other [BW02], so
rephrased in our framework Fortnow’s question is equivalent to the following: can we efficiently simulate
an exactquantum algorithm with postselection by a bounded-error quantum algorithm without postselec-
tion?7 We hope this more algorithmic perspective will help answer his question.

Acknowledgment. We thank André Chailloux for helpful discussions, and Sushant Sachdeva for asking
us about rational approximations of exponential functions. We also thank the anonymous QIC referees for
many helpful comments.
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