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Rational approximations and quantum algorithms with
postselection

Urmila Mahadev Ronald de Wolf

Abstract

We study the close connection between rational functicstsshproximate a given Boolean function,
and quantum algorithms that compute the same function ysietgelection. We show that the minimal
degree of the former equals (up to a factor of 2) the minimargwomplexity of the latter. We give
optimal (up to constant factors) quantum algorithms witktpelection for the Majority function, slightly
improving upon an earlier algorithm of Aaronson. Finally st®w how Newman's classic theorem about
low-degree rational approximation of the absolute-valuefion follows from these algorithms.

1 Introduction

1.1 Background: low-degree approximations from efficient gantum algorithms

Since the introduction of quantum computing in the 1980y82¢ Deu85], most research in this area has
focused on trying to find applications where quantum compuséynificantly outperform their classical
counterparts: new quantum algorithms, quantum cryptdgragpmmunication schemes, uses of entangle-
ment etc. One of the more surprising applications of quantomputing in the last decade has been its
use, in some way or other, in obtaining resultslassicalcomputer science and mathematics (5ee [DW11a]
for a survey). One direction here has been the use of quantiery @lgorithms to show the existence
of low-degree polynomial approximations to various fuoet. This direction started with the observa-
tion [FR99, BBC 01] that the acceptance probability of'aquery quantum algorithm with/-bit input can

be written as arV-variate multilinear polynomial of degree at magt. For example, Grover®)(v/N)-
guery algorithm for finding a 1 in aV-bit input [Gro96] implies the existence of aki-variate degree-
O(v/N) polynomial that approximates th&-bit OR-function, and (by symmetrization) of a univariate
polynomial p such thatp(0) = 0 andp(i) ~ 1 foralli € {1,...,N}. Accordingly, one way to design
(or prove the existence of) a low-degree polynomial with dade desired behavior, is to design an efficient
guantum algorithm whose acceptance probability has treitetkbehavior. Results based on this approach
include tight bounds on the degree of low-error approxioratifor symmetric functions [Wol08], a new
quantum-based proof of Jackson’s theorem from approximaheory [DW11b], and tight upper bounds
for sign-approximations of formulas [Le€09].
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1.2 Quantum algorithms with postselection

In this paper we focus on a related but slightly more comfdigaconnection, namely the use of quantum
query algorithmswith postselectioio show the existence of low-degrestional approximations to various
functions. We will define both terms in more detail later, fartnow let us just state that postselection is
the (physically unrealistic) ability of an algorithm to as® the outcome of a measurement, thus forcing
a collapse of the state to the corresponding subspace.elmtisn allows some functions to be computed
much more efficiently. A good example of this is thebit OR function, which takes value 1 if the input
x € {0,1} contains at least one 1, and takes value 0 otherwise. Gsaalgorithm take®) (v/N) queries

to compute this, which is known to be optimal (precise undexding of this algorithm and its optimality
are not required for this paper). However, a postselectigorithm could choose a tiny but positiveand

start with initial state
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Making one quantum query to the input gives

N
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Now postselect on the last qubit having value 1. This collafibe state to

o+ 3,

;=1

times a normalizing constant//s2 + |z|(1 — 2)/N. If 2 = 0V then the state is simplj0)|1), and
measuring the first register gives outcome 0 with certaifity.£ 0", then (assuming? < 1/N) measuring
the first register will probably give an indéxor which x; = 1. Thus we can compute OR using only one
guery. The error probability can be made arbitrarily smthlb(gh not 0!) by choosing to be very small.

1.3 Rational functions

A rational function is the ratio of two polynomials. Its degris the maximum of the degrees of the numer-
ator and denominator polynomials. For example, here is eedetj rational approximation to OR (again fix

smalle > 0):
Zz]\;1 Li

This rational function equals 0 if = 0V, and equals essentially 1:4f£ 0"V. Thus it approximates the OR
function very well, using only degree-1 numerator and deinator. Again, the error can be made arbitrarily
small (though not 0!) by choosingto be very small. In contrast, a polynomial that approxired@R up to
constant error needs degré¢y/ N )[NS94].

It is no coincidence that for the OR function both the comipferf postselection algorithms and the
rational degree are small. The connection between postegieand rational approximation was first made
by Aaronson. In[[Aar05], he provided a new proof of the braettigh result of Beigel et al. [BRSO5] that
the complexity class PP is closed under intersection. Héhildn three steps:



1. Define a new class PostBQP, corresponding to polynoima-juantum algorithms augmented with
postselection.

2. Prove that PP = PostBQP.

3. Observe that PostBQP is closed under intersection, vigichvious from its definition.

While very different from the proof of Beigel et al. (at least the surface), Aaronson noted that his proof
could actually be viewed as implicitly constructing cemtéow-degree rational approximations to the Ma-
jority functiory; the fact that the resulting polynomial has low degree fefidrom the fact that Aaronson’s
algorithm makes only few queries to the input of Majority.cBuational approximations also form the key
to the proof of Beigel et al.

Our goal in this paper is to work out this connection betwestional functions and postselection algo-
rithms in much more detail, and to apply it elsewhere.

1.4 Definitions

In order to be able to state our results, let us be a bit momgara@bout definitions.

Polynomial approximation. An N-variate polynomial is a functio®® : SV — R that can be written
asP(w1,...,TN) = D 4 4y Cdirdy 1Y, 2% with real coefficients:y, .._4,. In our applications, the
domains$ of each input variable will be eithék or {0,1}. Thedegreeof P is deg(P) = max{>~ , d; |
Cdy,...dy 7 0}. When we only care about the behavior of the polynomial onBbelean cub€0, 1},
thenxgl = x; for all d > 1, so then we can restrict tmultilinear polynomials, where the degree in each
variable is at most 1 (and the overall degree is at mdpt Lete € [0,1/2) be some fixed constant. A
polynomial P s-approximatesf : SV — Rif |[P(x) — f(x)| < eforallz € SV. Thee-approximate degree
of f (abbreviateddeg,_(f)) is the minimal degree among all such polynomi&ls The exactdegree off

is deg(f) = degy(f).

Rational approximation. A rational functionis a ratioP/Q of two N-variate polynomials?, @ : SV —

R, whereQ is required to be nonzero everywhere$H to prevent division by 0. Its degree is the maximum
of the degrees oP and@. A rational functionP/(Q e-approximatesf if |P(z)/Q(x) — f(x)| < ¢ for all

r € SN. Thee-approximate rational degree ¢f(abbreviateddeg_(f)) is the minimal degree among all
such rational functions. Thexactrational degree of is rdeg,(f).

Quantum query algorithms with postselection. A quantum query algorithmvith postselectior{short:
postselection algorithm) is a regular quantum query dlgoriiBWO0Z] with two output bitsz, b € {0,1}.
We say the postselection algorithm computes a Booleani@mgt: {0,1}"V — {0, 1} with error probabil-
ity e if for everyx € {0,1}"V, we havePr[a = 1] > 0 andPr[b = f(x) | a = 1] > 1—¢. The idea is that we
can computef (x) with error probabilitye if we could postselect on measurement outcame 1. In other
words, the second output kitcomputes the function when the first is forced to output 1.sTforcing”

is the postselection step, which is not something we caraligtimplement physically; in that respect the
model of postselection is mostly a tool for theoretical ggigl, not a viable model of computation. The
postselection query complexiBpstQ.(f) of f is the minimal query complexity among such algoritlﬂns.

1The N-bit Majority is the Boolean function defined by MAJz) = 1 iff the Hamming weightz| := Zf\r:l x; i8> N/2.
>The way we defined it here, a postselection algorithm insbwaly one postselection-step, namely selecting the valuel.
However, we can also allow intermediate postselectiorssigfhout changing the power of this model, see [DW11a, 8necti3].
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1.5 Our results

Rational degree~ quantum query complexity with postselection. Our first result in this paper (Sec-
tion [2Z) is to give a very tight connection between rationgpragimations of a Boolean functioif :
{0,1}¥ — {0,1} and postselection algorithms computifignith small error probability. We show that
the minimal degree needed for the former equals the minimatygcomplexity needed for the latter, to
within a factor of 2:

%rdega(f) < PostQ,(f) < rdeg.(f).

In other words, minimal rational degree is essentially ¢tuguantum query complexity with postselection.
The fact that low query complexity of postselection alduoris gives low rational degree has been known
since Aaronson’s paper [Aar05]; what we add in this papehésdonverse, that low rational degree also
gives efficient postselection algorithms. This tight relat(to within a factor of 2) should be contrasted
with the better-studied case of polynomial approximatishere the approximate degréeg, () equals the
bounded-error quantum query complexitywithin a polynomial factofBBCT01], and there are actually
polynomial gaps. [AmbQ3].

Optimal postselection algorithm for Majority. In his paper, Aaronson _[Aar05, Theorem 4] implicitly
gave an efficient postselection algorithm for the Majoritgdtion with polynomially small error probability:

PostQq/n (MAJN) = O ((log N)?).

For constant error probability, one can obtain a postseleetgorithm using) (log(N) log log(N)) queries
from his proof [DW11a, Theorem 4.5].

Our second result in this paper is to optimize Aaronson’station to have minimal query complexity
up to a constant factor (and hence the induced rational ajppation for majority will have minimal degree),
for every error probability € (2=, 1/2):

PostQ.(MAJy) = O (log(N/log(1/¢))log(1/e)) .

Combined with the above constant-factor equivalenceleg, (/) andPostQ.(f), this reproves the upper
bound of Sherstov [Shell3, Theorem 1.7]. In fact, we coult iase combined Sherstov’s upper bound
with that equivalence, but our derivation of minimal-degpolynomials by means of a postselection algo-
rithm is very different from Sherstov’s proof. Sherstov'suching lower bound for the degree of rational
approximations shows that also our algorithm is optimaltfug constant factor).

Newman’s Theorem. One of the most celebrated results in rational approximati@ory is Newman’s
Theorem|[New64]. This says that there is a degteational function that approximates the absolute-value
function || on the interval: € [—1,1] up to error2=2(V4)_ |n contrast, it can be shown that the smallest
error achievable by degreképolynomials is©(1/d). The proof of Newman'’s Theorem is not extremely
complicated:

Definea = e1/V4, p(z) = [[¢Z (a* + ), and degree* rational functionr(z) = %.

Half a page of calculations shows thdtr) c-approximates the sign-function on the interval

[—1,—¢] U [e, 1], fore = e~ VD) We haver(z) € [—1,1] andsgn(xz) = sgn(r(z)) on the

whole interval[—1, 1], hence the degregt + 1) rational functionz - r(x) e-approximates the

absolute-value function on the whole interjall, 1].
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In fact the optimal erroe achievable by degreé+ational functions is known much more precisely [PP87,

Theorem 4.2]: it iSB(e_”‘/E). The proof of this tighter bound is substantially more cdmﬂbcﬁ

In Section 4 we show how our postselection algorithm for Majocan be used to derive Newman'’s
Theorentl While this proof is not easier than Newman’s by any reas@nataindard, it (like the reproof of
Sherstov’s result mentioned above) is still interestingaose it gives a new, quantum-algorithmic perspec-
tive on these known results that may have other applications

2 Query complexity with postselection~ degree of rational approximation

We first show that rational approximation degree and quarquery complexity with postselection are
essentially the same for all Boolean functions.

Theorem 1 Forall ¢ € [0,1/2) and f : {0,1}" — {0, 1} we haverdeg_(f) < 2PostQ_(f).

Proof.  Consider a postselection algorithm f@grwith 7' = PostQ_(f) queries and erroe. Then
by [BBCT01], the probabilities)(z) = Pr[a = 1] and P(z) = Pr[a = b = 1] can be written as poly-
nomials of degree< 27. Their ratio P/Q is a rational function that equals the conditional prohgpbil
Pr[b = 1 | a = 1]. By definition, the latter is irffl — ¢,1] for inputsz € f~'(1), and is in[0, £] for
r € f~1(0). HenceP/Q is a rational function of degree 2T = 2PostQ_(f) thate-approximatesf. O

Theorem 2 Forall € € [0,1/2) and f : {0,1}" — {0, 1} we havePostQ,(f) < rdeg.(f).

Proof. Consider a rational functio®®/Q of degreed = rdeg.(f) thate-approximatesf. It will be
convenient to converf to a+1-valued function. Defind’(z) =1 — 2f(z) € {£1} andR(z) = Q(z) —
P(z),thenR/Q =1—-2P/Qisin[-1—2¢, -1+ 2%” F(z)=—1,andin[l —2¢,1+ 2¢] if F(x) =

We will write R and@ in their Fourier decompositio

R(z)= Y R(S)(-1)™% and Q(z) = Y Q(S)
SC[N] SC[N]

Now set up the following N + 1)-qubit state (up to a global normalizing constant):
0)Y_QS)IS) +11) D R(S)IS
s s

where|S) is the N-bit basis state corresponding to the characteristic veéts. Note thatR(S) andQ(S)
are 0 whenevefS| > d. Hence by making! queries tor, successively querying the indicés= S and
adding their value as a phagel)®:, we can add the phasés 1)5”'5:

wZQ Mw+uZR —1)"%8).

3In fact, in the 19th century Zolotare [Zoll77] already galve bptimal polynomial for each degréeLater, Akhiezer[[Akh2B]
worked out the asymptotic decrease of the error as a funofidnstating Newman'’s Theorem much before the paper of Newman
(who was apparently unaware of this Russian literature).

“Actually, Aaronson’s above-mentioned((log N)?)-query postselection algorithm with errer= 1/N can already be used
for this purpose; this application does not require ourrojaied version of the algorithm.

®The Fourier coefficientsof a functiong : {0,1}" — R areg(s) = 5k 3,01y~ 9(2)(=1)""%, whereS € {0,1}"
corresponds to a subset[d¥] (i.e., a subset of th& input variables)z - S denotes the inner product between the Mubit strings
z andS. The Fourier decomposition gfis g(z) = 3~ 4 §(S)(—1)""%.



Now a Hadamard transform on each of ihqubits of the second register gives a state proportional to

0) (Z Q(S)(~1)= 5|0y +-- ) + 1) (Z R(S)(—1)5|oN) + - )
S S
=10) (Q(@)[0Y) + -+ ) + 1) (R(x)[0Y) +--+),

where the- - - indicates all the basis states other thafi). Postselect on measuriig") in the second
register (more precisely, set the hito 1 only for basis staté)”)). What is left in the first register is the
following qubit:

) = QD) + R)1) = Q) (10) + 7 1D).

wherec = 1/4/Q(x)? + R(x)? is anormalizing constant. Siné&(z)/Q(x) = F(z) € {£1}, aHadamard
transform followed by a measurement will with high prob#gitell us the signF'(z) of R(x)/Q(z). If
F(x) = 1, the error probability equals

Q@) -R@)? _ (-R@/Qw? _ @ &
2Q(2)2+ R(2)?) 21+ (R(2)/Q(x))2) — 2(14+(1—-28)2) 1—2e+42e2 7

[(~182) =

where the last inequality used thak 1 — 2 + 2¢2 for all e € [0,1/2). If F(z) = —1 then an analogous
calculation works. Hence we have foundiajuery postselection algorithm that compugésvith error
probability < e. |

3 An optimal postselection algorithm for Majority

In this section we give an optimized postselection algorifior Majority, slightly improving Aaronson’s
construction. We will require the following result from [A@5, first paragraphs of proof of Theorem 4]:

Lemma 1 (Aaronson) Let o, 3 > 0 satisfya? + 32 = 1. Using one query to input € {0,1}" and
postselection, we can construct the following qubit:

N —2|z|
c (a\xum n ﬁTm) , 1)

wherec = 1/\/a2\x12 + %2(N — 2|z|)? is a normalizing constant.

For the sake of being self-contained, we repeat Aaronsaasf fpelow.

Proof. Assume for simplicity thatV is a power of 2, saV = 2™ and we can identify the indicasc [N]
with n-bit strings. Lets = |x|. Start with(n + 1)-qubit statd0"**), and apply Hadamard transforms to the
first n qubits and then one query ig to obtain

S i)

1e{0,1}n
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Again apply Hadamard transforms to the firstjubits, and postselect on the firstjubits being all-0. Up
to a normalizing constant, the last qubit will now be in state

) = (N = $)|0) +s[1).
Add a new qubit prepared in stai¢0) + 5|1) to (the left of) this qubitt)). Conditioned on this new qubit,
apply a Hadamard transform @), giving

alO)v) + SIVAI) = al0) (V= 3)10) +si1) + 511 (5100 + 1)

= (o =900+ 50 ) 10+ (asl0) + 5520 )

If we now postselect on the last qubit being 1, the first qubliapses to the state promised in the lemma.

Our goal is to decide whethé¢r| > N/2 or not. Consider the qubit of EQ.(1). 0f < |z| < N/2 then
this qubit is strictly inside the first quadrant (i.e., béahand|1) have positive amplitude), and|if| > N/2
then itis not. In the first case, for some choicexf; the qubit will be close to the state ) = %(!@ +(1)),

while in the second case it will be far frof#) for everychoice ofa, 5. The algorithm tries out a number of
(«, B)-pairs in order to distinguish between these two casest hetsome positive integer (which we will
later set toflog(2/<)] for our main algorithm). Let

A= {_ﬂOg(N/tﬂ» . '7_1707 17- ce DOg(N/tﬂ}»
and for alli € A let |a;) be the qubit of EqL{1) Witr% =27, Let
B={0,...,t —1}U{N/2 —t+1,...,N/2 -1}

if ¢ > 2, andB = () otherwise. For ali € B let|b;) be the qubit of Eq.[{1) witl§ = % Note that
[b2p) = |+)-

The intuition of the algorithm is that we are trying to elirate from A and B all i corresponding to
states whose squared inner product Wit is at most 1/2. Ifiz| > N/2 (i.e., MAJy(z) = 1) then we
expect to eventually eliminate all while if || < N/2 (i.e., MAJy(z) = 0) then for at least ong, the
squared inner product with-) will be close to 1, and thiswill probably not be eliminated by the process.
We start with a procedure that tries to eliminate the elemehs:

Lemma 2 For every integet € {1,..., N/4} there exists a postselection algorithm that uegkg(N/t))
queries to its inputz € {0,1}" and distinguishes (with success probability 2/3) the case|z| €
{t,...,N/2 —t} from the caséz| > N/2.

Proof. The algorithm is as follows:
1. Initialize k = 1andA; = A.
2. Repeat the following until80 log(N/t) queries have been used (or untjl is empty):

(a) Foralli € Ay:
createbk copies ofja;) and measure each in the), |—) basis;
setM}, ; = 1 if this resulted in a majority of+) outcomes, and sét/;, ; = 0 otherwise.
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(b) SetAr 1 = {Z € A, ‘ Mkﬂ' = 1}. Setkto k + 1.
3. Output O if the finald,, is nonempty, and output 1 otherwise.

Clearly the query complexity i© (log(NN/t)). We now analyze what happens in both cases.

Case 1:|z| € {t,..., N/2—t}. For these values gk|, the ratio betweefz| and N — 2|z| lies between
t/N and N/t. Hence there exists anc A such thata;) and|a;+;) lie on opposite sides df+). In the
worst case|+) lies exactly in the middle betweea;) and|a;+1), in which cas€+|a;) = (+|ait+1). In this
case,a;) = f|0 )+ f|1 S0 (+|a;) = 1+—f =: \. We will show that thig is likely to remain in all

setsAy, in which case the algorithm outputs the correct answer O.

Each iteration of step 2 will be called a “trial”. Let be the number of the trial being executed when the
algorithm stops (thisn is a random variable). The algorithm gives the correct audatf A,,, is nonempty.
First, by a Chernoff boutftfor everyk

Pr[Mj,; = 0] < exp (—2-5k(\? — 1/2)?) < 27(k+2),

Now by the union bound, the error probability in this case is
Pr{Ay = 0] < Prfi ¢ Ap) =Pr{3kst. My, =0] <) 270+ = =

Case 2:|z| > N/2. We first show that the algorithm is likely to go through at tdag N trials. Since
|z| > N/2, for all i € A we have|(+|a;)|* < § and henc&@r[M;,; = 1] < 3 for all k. Therefore

A log(N/t
E[|Ag+1]] = ZHPTMM—I ’ ‘ < i(’f—l/ ).
€A (=1

Let@ = ZlOgN 5k|Ag| be the number of queries used in the flegf V trials (with the number of queries
set to O for the non-executed trials after théh). Now:

log N
E[Q] < 5log(N/t) > 2—k_1 < 20log(N/t),
k=1

where we used

[ee] k o0 [e.e] 1 e [e.e] e

2 g = 22 g SO Z =4y 27" =4

k=1 k=1 =k k=1 k=1
By Markov’s inequality

1
Pr{Q > 180log(N/#)] < Pr[Q > 9E[Q]] < 5.

So with probability at Ieasg we have@) < 180log(N/t), meaning the algorithm executes at lelagt NV
trials before it terminates. In that case each elemertt bés probability at most/2'°¢ Y = 1/N to survive
log N trials. Hence, by the union bound

Al _ 1
N 4’
SFor K coin flips X1, ..., Xk, each taking value 1 with probability, the probability that their sur'rzfi1 X, is at most

K(p —€), is upper bounded byxp(—2Ke?). See for examplé [AS08, Appendix A]. We apply this here with= 5k, p = \* =
0.97, ande = p — 1/2.

Pr[A2logN+1 7é @] < <




for IV sufficiently large. Therefore the final error probabilityeismosts £ + § = & in this case. O

Note that if we set = 1 in this lemma then we obtain an(log NV )-query postselection algorithm that
computes MAZ with error probability< 1/3 for all 2 # 0" (we can ensure # 0" for instance by fixing
the first two bits ofr to 01, so then we would be effectively computing M#&J,). This improves upon the
O(log(N)loglog(N)) algorithm mentioned in Section 1.5.

We can reduce the error probability to anye (0,1/2) by the standard method of running the al-
gorithm O(log(1/¢)) times and taking the majority value among the outputs. Thigsgane-error algo-
rithm usingO(log(N) log(1/¢)) queries. However, a slightly more efficient algorithm is gibke if we set
t = [log(2/e)] and separately handle the inputs wiith ¢ {¢,..., N/2 —t}.

Lemma 3 For every integett € {2,..., N/4} there exists a postselection algorithm that ugs) queries
to its inputz € {0,1}"V and distinguishes (with success probabilityl — 2*) the casdz| € {0,...,t —
1JU{N/2—-t+1,...,N/2 — 1} from the caséz| > N/2.

Proof. The algorithm is as follows:
1. Initialize B={0,...,t —1}U{N/2 -t +1,...,N/2 -1}

2. Repeat the followingt times (or until B is empty):
take the first € B, create one copy db;) and measure it in ther), |—) basis;
if the outcome wa$—) then remove from B.

3. Output 0 if the finalB is nonempty, and output 1 otherwise.

Clearly the query complexity i©(t). We now analyze what happens in both cases.

Case L:|z| € {0,...,t =1} U{N/2 =t +1,...,N/2 — 1}. Becauseb,|) = |+), the indexi = |z
will remain in B with certainty.

Case 2: [z| > N/2. In this case, for all in the initial setB we have|(+|b;)|> < 3. Hence each
measurement has probability at least 1/2 of producing oméde-) and reducing the size d¢ by 1. Since
B initially has 2t — 1 elements, it will only end up nonempty if there are fewer tBan- 1 |—) outcomes
among all8¢ measurements. The probability of this event is upper badibhgethe probability of< 2¢ — 1
“heads” amongk = 8t fair coin flips. By the Chernoff bound (see footnbte 6, with- 1/2 ande = 1/4),
that probability is at mostxp(—2K (1/2 — 1/4)?) = exp(—t) < 27, O

To obtain our main algorithm we set= [log(2/¢)]. If ¢ < 27%(W) then the trivial algorithm that
queries allN bits to determine Majority will be optimal up to a constanttta, so below we may assume
t < N/4. We now run the algorithm of Lemnia 2 with error reduced t8, and the algorithm of Lemnid 3
(with error< 2=¢ < ¢/2), and we output 1 if both algorithms outputted 1. It is easyee that this computes
Majority with error probability< e on every input. This proves:

Theorem 3 For everye € (27,1/2) there exists a postselection algorithm that comps] ;- using
O (log(N/log(1/e)) - log(1/e)) queries with error probability< e.

The latter algorithm is asymptotically better than the iearD(log(N)log(1/¢)) algorithm if ¢ is
slightly bigger thar2—". For example, if: = 2=/l N then the earlier algorithm has query complex-
ity O(N) while TheoreniB give®) (N loglog(N)/log(N)) = o(N).

Sherstov[[Shel3, Theorem 1.7] proved(fiog(NN/log(1/¢)) - log(1/¢)) lower bound on the degree
of e-approximating rational functions for MAJ for all ¢ € (2=, 1/2). Together with our Theoref 1, this
shows that the algorithm of Theorém 3 has optimal query cerilyl up to a constant factor.
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4 Deriving Newman'’s Theorem

We now use the postselection algorithm for Majority to derdvgood, low-degree rational approximation
for the sign-function:

Theorem 4 For everyd there exists a degre@-rational function thats-approximates the sign-function
sgn(z) on[—1, —¢] U[e, 1] for & = 2=V (and which lies if—1, 1] for all z € [—1,1)).

Proof. Setz = 2-2(V4) with a sufficiently small constant in the(-), andNV = {%1. Consider the algorithm
described after Lemmia 2 with = 1 and error reduced te/2. It provides twoN-variate multilinear
polynomials P and @, each of degred = O(log(N)log(1/e)) = O(log(1/¢)?), such that for ale €
{O’ 1}N|

9
< —.

‘P(”C) ~ MAJy(2)

Q(x)
Note thatP can be written a$; ¢;(>_; z;)7, as can@, because the amplitudes of the stdtg$ and|b;)

in the proof of Theorerl3 are functions foff = 3. ;. To convertP to a univariate polynomiap, replace
>_; z; With real variable: to obtainp(z) = cjz/. Similarly convert)(z) to ¢(z). Let majy represent the

univariate version of MAg: majy returns 0 on input: € [0, ..., %) and returns 1 o € [N/2,..., N].
We now have:
p(z)

: £
@) majy (z)| < >

for z € {0,..., N}. Crucially, this inequality also holds for real values [1, N/2 — 1] U [N/2, N]. This

is because the analysis of the algorithm described afteintaiéh(with¢ = 1 and error reduced to/2) still

works when we replace the integet with real valuez. Sincesgn(z) = 2majN(M) — 1, we have

2
2p (M5 — g (M5
g (M5

forall z € [-1,— %] U [0,1]. SinceN = [2], we have the desired approximation [erl, —¢] U [¢,1]. O

—sgn(z)| <e

Itis easy to see that multiplying the above rational funttiy z gives an approximation of the absolute-
value function|z| on the whole intervat € [—1, 1]. Thus we have reproved Newman’s Theorem in a new,
guantum-based way:

Corollary 1 (Newman) For every integerl > 1 there exists a degre@fational function that approximates
|| on[—1, 1] with error < 2-2(Vd),

5 Open questions

We mention a few open questions. First, we have very few fgales for quantum algorithms with post-
selection. Aaronson’s techniques from [Aar05] (and outatenms thereof) is the main technique we know
that makes non-trivial use of the power of postselection. atdther algorithmic tricks can we play us-
ing postselection? Using the equivalence between postiggiealgorithms and rational degree, we can
try to obtain new algorithms from known rational approxiroas. Very tight bounds are known for the

10



rational degree of approximations of the univariate exptinefunctionsexp(x) andexp(—z) [PP87, Sec-
tions 4.4 and 4.5]. In particular, rational degeeis necessary and sufficient to achieve approximation-error
exp(—0O(d)) for the functionexp(—z) on the interval0, o). This implies the following for postselection
algorithms. Consider the real-valueebit function f : {0,1}" — R defined byf(z) = exp(—|z|). Then

for every integerd > 0 there exists a quantum algorithm with postselection, thaktesO(d) queries to

its inputz € {0,1}", and whose acceptance probability is witkhitp(—d) of f(z). Can we use such a
postselection algorithm to compute something useful?

Second, we showed here how a classical but basic theoreridnakapproximation theory (Newman’s
theorem) could be reproved based on efficient quantum #hgosiwith postselection. Is it possible to prove
newresults in rational approximation theory using such athons?

Finally, the following is a long-standing open questiomibttted to Fortnow by Nisan and Szegedy [N594,
p. 312]: is there a polynomial relation between ¢actrational degree of a Boolean functign {0, 1}V —
{0,1} and its usual polynomial degree? It is known that exact anshtbed-error quantum query complex-
ity and exact and bounded-error polynomial degree are &hpmially close to each other [BW02], so
rephrased in our framework Fortnow’s question is equivaterthe following: can we efficiently simulate
an exactquantum algorithm with postselection by a bounded-err@ntum algorithm without postselec-
tion?] We hope this more algorithmic perspective will help answigmjuestion.

Acknowledgment. We thank André Chailloux for helpful discussions, and SudtSachdeva for asking
us about rational approximations of exponential functione also thank the anonymous QIC referees for
many helpful comments.
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