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ABSTRACT

In this report we will study the period of a certain operator defined

on antichains in a partially ordered set.

0. INTRODUCTION

If (X,<) is a partially ordered set, then define for each A c X:

At s xex | 3a ¢ A: a < x},

AS = {x e X | x ¢ A},

A" = {ac A | Vb € A: b2 a b = a},
Set A(X) = the set of antichains in X (order—free subsets of X), and for
cach A ¢ A(X): F(a) = aTmeX,

Then one can easily see: F is a bijection of A(X) onto A(X), and for
each A ¢ A(X) there exists a k > 0 so that Fk(A) = A,
Motivated by an abundance of examples we conjectured that, if X is
a Boolean algebra with 2" elements, for each antichain A ¢ A(X) the relation
Fn+2(A) = A would be valid. This conjecture turned out to be wrong. However,
the following can be proved:
1. If n £ 4 and X is a Boolean—algebra with 2™ elements, then for each
Ae AR): F2a) = A
2. For each n ¢ N the following propositions are equivalent:
a, If X is a Boolean algebra with ot elements and A ¢ A(X), then
Fn+2(A) - A;
b. If £l+£2+...+ﬂp =n, X = {O,...,K]} X4 uoX {O,...,Kp} (the cardinal
product of p chains) and A ¢ A(X), then Fn+2(A) = A.
3. If X is the cardinal product of the 2 chains {0,...,£} and {0,...,m}

and A ¢ AX), then FE™2(a) = A.

1. BASIC DEFINITION AND PROPERTIES

In the sequel all sets (except N and Z) are supposed to be finite.
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If (X,,€.),¢e..,(X ,< ) are p.o.sets (partially ordered sets) then the

Xi,s) is the p.o.set ﬂ2= X, with order:

1 1

(x],...,xn) < (yl,...,yn) > X Sl FyseeesX

<
1 n n-°'n

€ N then n is the totally ordered set {0,...,n} with 0 < 1 <...<n.

A lattice L of dimension k is the product of k totally ordered sets.

= Elx"'xﬁk then n +...+n is called the length of L.

If n ¢ N, we identify the following p.o.sets:

the power-set-algebra P(X), where X is any set with |X| = n (ordered
by inclusion),

the Boolean algebra with 2™ elements (as a lattice),

the n-cube {0,1}" (with (xl,...,xn) < (yl,...,yn) = x1£y1,...,xn5yn).
of these p.o.sets will be denoted by 2",

In particular: 2" is a lattice with dimension n and length n.

If (X,<) is a p.o.set and A c X, define

A" = {xe X | 3aeA: acxx},

AY = {(x e X | 3a ¢ A: x < a},

AT = (x e A | Vy ¢ At y 2 x>y = x},
min

A ={xeA|VyecAty<sx~+y=x},

A" = {xe X | x ¢ A},
A is an antichain if Vx,y e At x < y->x =1y,

A(X) is the set of antichains in X.

Proposition 1.1. If (X,<) Zs a p.o.set and A c X, then

oo™ oAt At oAt

5, aRaX.max _ Apax, pRin.min _ Amln’

3. A is antichain < A" = A Amin = A,
4, ASC = a,

5. A+min _ Amin’ A+max - Apax’

6. Amin+ - A+, Amax+ - A+,

7. A+c+ - A+c, A+c+ - A+C.

Proof. obvious. a



If (X,£) is a p.o.set, define: F: A(X) > A(X)
+cmax

by F(A) = A for each A ¢ A(X);

and G: AX) » A(X)

by G(a) = AY™T £or cach A € A(X).
Propositions 1.2. F and G are bijections from A(X) onto A(X) and F_] = G.
Proof. For each A ¢ A(X), F(G(A)) = A+cm1n+cmax - A+c+cmax - A+ccmax =
= AYEAX _ aT3X _ 4 and similarly G(F(A)) = A. [

If A c 2n, define AS = {x ¢ 2" | x' ¢ A}.

Proposition 1.3. If A c 2% then

1. ASS = 4,

2. ASS = ASC,

3. ATS - afY, ate oSt

4. Amln_(_: = Agmax’ Amax_g = Agmln.

Proof. obvious. g

+cmaxg

Define H: A(2n) > A(2n) by H(A) = A for each A ¢ A(2™).

Proposition 1.4.

1. For each A ¢ A(2™), H(A) = F(A)S = ¢(aS),
2. H Zs a bijection from A(Zn) onto A(2n) and H~1 = H.

Proof.

4+cmaxc
- H(A) ?

1. FQ)E =a
G(AS) - Ag¢cm1n - A+gcm1n = A = A = H(A).

2. H(H(A)) = H(FA)S) = ¢(F(a)SS) = G(FA)) = A. [

4cemin 4+ cmaxc



2, EXAMPLES

(For definitions and notations of graph- and matroid-theory see R.J.

Wilson, Introduction to graph theory, Oliver & Boyd, Edinburgh, 1972).

ae.

Ce.

If G = (V,E) is an undirected graph (V is vertex-set and E is edge-
set), |E| = n, P(E) = 2% and A = {C c E | C a circuit in G and C con-
tains no other circuit},
then: A ¢ A(P(E)),

F(A) = {Fc E | F is a spanning forest of G} e A(P(E)).

and H(F(A)) = FPA)S = {Cc E | C is a cutset in G} ¢ A(P(E)).

If X is a k-dimensional linear space over a finite field, |X| = n,
PX) = 2n, and A = {L c X | L is linear dependent in X and L contains
no other linear dependent set},
then: A e A(P(X)),
F(A) = {B < X | B is basis of X},
and FZ(A) ={YcX | Yis a (k-1)~dimensional subspace of X}.

If G = (V,E) is an undirected graph, |[V| = n, P(V) = Zn, and

A = {{x,y} | (x,y) € E},

then: A e A(P(V)),
F(A) = {I ¢ V| I is a maximal edge-independent set of
vertices},

and H(A) = {Cc V | C is a minimal edge-covering set of vertices}.

If (X,<) is a p.o.set, |X] = n, P(X) = Zn, and A = {{x,y} | x £ v and
y t x},
then: A e A(P(X)),

and F(A) = {Ac X | A is a maximal chain in X}.

If M= (X,B) is a matroid, |X| = n, P(X) = 2n, and B is the collection
of basis of M,
then: B ¢ A(P(X)),

G(B) is the collection of circuits of M,

and H(B) is the collection of co-circuits of M.



Our principal interest will be in the orbit of an antichain under re-

peated application of F. In the remainder of this section we show these

orbits in a few cases, both in lattices and in general p.o.sets.

1]

f. If X = {a,b,c,d}
and A = {{a,b},{a,c},{b,c,d}},
then A € A(P(X)),
At = {{a,b},1a,c},la,b,c},{a,b,d},{a,c,d},{b,c,d} {a,b,c,d}},
A"C = (9,1a},{b},{c},{d},{a,d},{b,c},{b,d},{c,d}},

ATCMEE _ p(a) = {{a,d},{b,c},{b,d},{c,d}}.
F2(a) = {{a,b},{a,c},{d}},
F3(a) = {{a},{b,c}},
F*(a) = ({b,d},{c,d}},
FS(A) = {{a,b,c},{a,d}},
and F6(A) = {{a,b},{a,c},{b,c,d}} = A.
g. If X = {a,b,c,d}
and A= {YcX | |Y| = 2},
then F(A) = {Y ¢ X | |Y] = 1},
r(a) = {93,
F>(a) = 0,
F4(A) = {X},
F(A) = {Y < X | || = 3},
FOA) = (Y X | |¥] = 2} = A.
h. If X = {a,b,c},
and A = {{a,b},{a,c}},
then F(A) = {{a},{b,c}},
F2(a) = ({b},{c}},
F>(a) = ({a}},
F*(a) = {{b,c}},
P (a) = {{a,b},{a,c}} = A.



If X = {a PN } and A = {{a ,an}} = {X},
then F(A) = {all (n—l) subsets of X},

anl(A) = {all singletons in X},

) = {9},
n+l(A) - ﬂ
(A) = {X} =
If X=35%x3
and A = {(1,2),(3,1)},

then F(A) = {(0’3),(291)’(5,0)}:
F (A) = {(1,2),(4,0)},

F2(a) = 10,3), (3,1}, 3

i(A) - {(2,2), (5,03, 2 &

@A) = {(1,3),,1D)},

o) = £00,3),(3,2), (5,0}, ! <
P (a) = ((2,2), (4, D1, .

) = 1(1,3),(3,1), (5,0}, o 1 2 3
9(A) = {(0,3),(2,2), (4,00},

(A) = {(1,2),(3,1)}= A.

If L= ﬁlxﬁzx"'xﬁk’ D+t =

then F(A) = {(x ,xk) | Z._ x, = N =1},

T = LGpen) | I % = 1,

F (A) = {(0,...,0)1},

FN+1 4) = w:

FN+2(A) = {(nl,...,nk)} = Aj

this orbit is called the principal orbit of the lattice.



In general, the principal orbit of a p.o.set is the orbit (under action
of F) of the empty set. It is easily seen, that the principal orbit of a
p.o.set, on which a height function can be defined, comsists of those sets,
that contain all elements of a given height, and has length H+2 if H is the
height of the p.o.set.

As the following examples show, the length of an orbit other than the

principal ome need not be correlated with the height of the p.o.set.

e
1. If X = {al,...,an,c,d,e} with a1<a2<...<an<b<c<e;b<d<e . 4
and c f£d, d ¢ c, 1
and A = {{cl}},
then F(A) = ({d}}, “n
FZ(A) = {{c}} = A. a
m. If keN, k even, k 2 8 and X = {1,...,k}, 1 3 5 7

and £ < £ -1and £ < £+ 1 if £ is even,
and k < 1, \ !

and A = {1,4},

then F(A) = {2} u {£ | £ 0odd, 7 < £ < k - 1},
F2(A) = {5} u {£ | £ even, 8 < £ < Kk},
B2 (a) = {3,6},
¥°(a) = (5,8},
Fl(a) = {1,4} = A, if m =—23—k.

(For k=6 we get, if A={1,4}, FS(A) = A which is not a special case of the

behaviour shown above).

3. THE CONJECTURE

Proposition 3.1. If (X,<) 7Zs a p.o.set and A ¢ A(X), then there exists a
k > 0 with F(A) = A.

Proof. F is a permutation of A(X). [

Examples f,g,h,i suggest the following



Conjecture. If A ¢ A(2n) then Fn+2(A) = A,

In fact one can prove
Theorem 3.2. If n < 4 and A € A(Zn), then Fn+2(A) = A,
Proof. Check each antichain., [
Theorem 3.3. If ne N and A = (2%} then Fn+2(A) = A,
Proof. See example i. [J

There exists a connection between the above conjecture and an ana-

logous one for lattices:

Theorem 3.4. If n € N, then the following assertions are equivalent:
(i) VA ¢ AQQY: Fn+2(A) = A (the conjecture for n),

(ii) each lattice L with length n satisfies: VA e A(L): F*'2(a) = A.

Proof. (ii) - (i): 2" is a lattice with length n.

(i) » (ii): Suppose L = ﬁlx"'xak’ with n,+...4n = .

Let Xl,...,X be k pairwise disjoints sets with 1Xj| =

(1<j<k), andkset X = X U...UX .
Now |X| = n and P(X) = 2,
Define ¢: P(X) = L by
o (Y) = (ml,...,mk) if Y ¢ X and I? ﬂAle = mj'(lsjsk).
Then it is easily seen that:
(1) ¢.1is' a function onto,
(2) for each A ¢ A(L) ¢—1[A] e A(P(X)), and
(3) for each A e A(L) ¢ '[F(A)] = F(¢_'[A]).
Therefore, if A e A(L), for each k ¢ Z, ¢ [F<(A)] = (o~ 'rAT)
and ¢ 'TF""2 )7 = P*2(¢7[A). But, by (i), since
37'[A] € ACP(R)), P27 AT) = ¢7'[AD, and so

20y = 007 P2 a)] = 0P 267 AT) = 00 ' [AT= A. O

Corollary 3.5. Each lattice L with length n < 4 satisfies: VA € A(L):

F*2(a) = A,

n.

J



Proof. Consequence of theorems 3.2 and 3.4. O

Remark. Example £ shows that not each modular (general) lattice L with

length n < 4 satisfies VA € A(L), Fn+2(A) = A.

Corollary 3.5 gave a sufficient condition on the length of a lattice.

The next theorem gives a sufficient condition bn the dimension of a lattice.

Theorem 3.6. Fach lattice L with dimension 2 and length n satisfies:

VA ¢ AL, F*2(a) = A.

Proof. Suppose L = T x m, n=£+mand A e A(L). Define for each t ¢ Z the
sets X(t) ¢ £ and Y(t) < @, by

X(t) = {xe £ | 3y e @: (x,5) € FF(A)}

and

Y(t) ={y e@m | 3x € £: (x,9) € Fo(a)}.

]

The theorem will be proved by demonstrating the following facts:
I. for each t € Z is Ft(A) completely determined by X(t) and Y(t),
I1. for each t € Z is X(t+n+2) = X(t) and Y(t+n+2) = Y(t).

Then, of course, for each t ¢ Z, Ft+n+2(A) = Ft(A) holds, and thus Fn+2(A) = A,
Proof of I: ¥Vt e Zis |X(t)| = [Y()| (if (x;,y) and (x,,7) « FE(A), then
x1=x2).

Suppose X(t) = {xl,...,xk} with 05x1<...<xks£,
and Y(t) = {yl,...,yk} with m2xl>...>xk20.
Then Ft(A) = {(x],yl),...,(xk,yk)}, S0 Ft(A) is determined by

X(t) and Y(t).

Proof of II:We first prove:
vteZ X(t+1)
and Y(t+1)

{x e Z ! x+ 1 e X(t)} u {£ I 04 Y(t)}
{yem | y+1eY()}uin]| 04¢ X(t)}. (%)
For suppose X ¢ E and x + 1 € X(t). Then, by definition of
X(t), for some y (x+1,y) € Ft(A), so (x,vy) ¢ Ft(A)¢, i.e.
(x,y) € Ft(A)+c. Then there exists (u,v) € Ft(A)+cmax so that

(x,y) < (u,v). But (x+l,y) € Ft(A), so x = u and
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(x,v) € Ft(A)+cmax’ hence x ¢ X(t+1). If 0 ¢ Y(t), then for all
x e £ (x,0) ¢ Ft(A) and consequently (£,0) ¢ Ft(A)+, i.e.

(£,0) € Ft(A)fc. So there exists (u,v) € Ft(A)fcmax such that

(£,0) < (u,v). But then £ = u and (£,v) € Ft(A)+cmax’ thus
£ e X(t+1).

Conversely (follows from the above by considering the re-
verse order on L): if x € X(t+1) and x # £ then there exists
y so that (x,y) € Ft+l(A), then (x+1,y) 4 Ft+](A)+, i.e.
(x+1,y) € Ft+](A)+c. Then for some (u,v) € Ft+1(A)+cmin
(u,v) < (x+1,y). But (x,y) € Ft+l(A), sou=x + 1 and
(x+1,v) « Ft+l(A)+cmin
£ ¢ X(t+1), then for some y, (£,y) € Ft+](A), so (£,0) € Ftt
and (£,0) ¢ Ft+](A)+c. Thus Vx ¢ £ (x,0) ¢ FtH(A)+Cmin =
= or™'(a) = F*(a), i.e. 0 ¢ X(t). This proves (x).

The proof of II is then as follows: for each t € Z

, hence x + 1 ¢ X(t). Finally, if

1(A)+

X € X(t) « 0 € X(t+x) &> m ¢ Y(t+x+l) & 0 ¢ Y(t+x+l+m) <
£ e X(t+x+l4m+l) &= x e X(t+x+l+m+l+(L-x)) = X(t+L+m+2) = X(t+n+2).
Similarly: y € Y(t) <=y € Y(t+n+2). [

Finally we prove the following
Theorem 3.7. The conjecture is false.

Proof. Take X = {a,b,c,d,e} and A = {{a,b},{b,c},{c,d},{d,e},{e,a}};n = 5.
Then F(A) = {{a,c},{b,d},{c,e},{d,a},{e,bl},
and  F2(a) = {{a,b},{b,c},{c,d}, d,e},le,al} = A,
therefore F7(A) F(A) # A. 0

4, SOME NUMERICAL RESULTS

For n < 5 the integers which occur as the period of the F-operator on
. . . n
antichains in 2° are completely known.

For n > 5 we only have some incidental results.
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. . . n
periods occurring in 2

0 2

1 3

2 2 and 4

3 5

4 2,3 and 6

5 2,3,7,16 and 27
6 .among others:

2,4,6,8,10,12,14,16,18,20,
24,28,32,34,35,39,40,42,48,54,
64,68,72,76,78,81,82,86,90,92,94,98,
102,104,106,108,120,124,128,132,134,144,168,
188,204,216,219,222,228,234,252,256,270,
288,348,366,380,384,396,414,616,

1026 ,1032

For n = 5 and n = 6 the period n + 2 is by far the most frequent

one.

Below the output of a conversational program on the PDP8/I computer
is reproduced. Input is the value of n and an antichain in 2", Output 1is
the length of the period and if desired the entire period. Note that all
numbers are in octal notation.

Antichain notation: {{a,b,c},{a,b,d},{c,d}} is printed ABC/ABD/CD/,
{@} is printed /,

) is printed

.4' = :v-i.[.
Ul o~ nNTICEeEINS /
7

”?l?? 1B EWTInT CYCLEY

UL LECTTR/
Ll S CLE/ACTE /AL DE /AT CE/ALCT /
itz CLE/F DE/ECE/ECT /ADE /ACE /ACD/AEE/LED /APC/
LS LE/CE/CD/LE/E DJLC/AE/AD/AC/AT /
LA F/DICE By
Wit 7 /
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N :.)

LaPUT ANTICEALWe TE/CE/CTD/EE/AD/AR/

ISP DE/CE/CD/LE/AD/AE/

ol LD/DC/AE/ACY
Je2 CCE/LE/AL/AL/
s DE/LCD/ACE/

Cvwd [L.CE/RCD/ATLE/AED/ALC/
Lok S CDE/t DE/ECD/ADE/ACE/AY/
Lols DE/LD/LCLE/AE/ACD/

ks 7 CE/CL/LE/AD/ALC/

bl DE/eD/BC/AE/AC/AL/

w1l CE/CD/EE/AD/

Lele DL/EL/AE/RLC/

ol 13 LCE/ACDL/AE/

Felé CDE/LDE/ECD/ADE/ACE/
wiol D LE/ECE/ACD/AEE/AED/AEC/
vl & [E/ECD/AD/ACE/AL /

LT CDE/LD/EC/AE/AC/

coel LL/CE/ACD/AE/AL /AL Y/

1.1n1 THE EZRTIRE CYCLE?Y

LuiUT ANTICHALNS DE/CE/EE/BCD/AD/
SN DE/CE/LE/ECD/AD/

rnliT TRE EMNTIRE CYCLE?Y

Ciw l CD/LT/AE/AEC/
v L CE/FCL/AD/AC/ALY/
Kk d CL/LE/ECD/ARE/

Lk LE/ACD/RED/ELCY
N PCE/LCT/AL/ACE/AEE/
cend CLE/ETE/RE/RLCY
ko T LZ/LCE/ECL/ACD/AEDY/
b CUs/tL/RL/ACE/ALE/AEC/
S DL/ CL/AE/AC/RE/
1o CL/LE/ECD/AL/
e lo LL/CL/LD/AL/ZATCY/
Cle SCE/RD/RC/EL Y
it CLe/LTC/ECD/ZAEY
15 TL/ECL/ACL/ALD/RICY
s 1T CCD/AD/ACE/FTES
Vo CLL/LLe/ECL/RE/RIC/
T LL/CE/LE/LCD/ACD/ALD Y/

Loee Cu/t L/e/aD/ELC/
RPN LL/LCE/BC/nLY/
IUNPARS CE/PE/LCD/RE/RDY/
vl CL/CL/LL/RICY/

kel LCE/HD/ACE/EDE/
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NI CLDE/LDE/ECL /AE/ARC/

I LE/ECE/ACL /AED Y/

erol LCL/AD/ACE/ATE/AECY/

S CCE/L'CE/ECE/AE/AC/AR/
N De/CE/LE/ECD/EDY/

N4

INPUT aNTICHAIN: DE/CE/ED/AC/AR/
ceee DE/CE/ED/AC/ARY/

Fricl THD ENTIRE CYCLEZRY

NS CD/EE/EC/AE/RD Y/

Liled DE/CE/ED/AC/ET /

14PUT 4 W11CHATI Xs DE/IC/ACE/APD/
L0l DE/LC/ACE/AED/

I4T THE ENTIKRE CYCLE?Y
1 CE/ED/ACD/ATE/
e CD/EE/ATE/REC/
K} LE/EC/ACE/AED/

PUT ANTICHAIN: F/DE/CE/EE/ECD/AD/
n33¢ F/DE/CE/EE/ECD/AD/

JIN1T THE ENTIRE CYCLE?ZN

ADDENDUM

Applying Ramsey's theorem M.M. Krieger has proved in [1] that for each
n with 11 = N(3,45;2)+2 < n < N(4,4;3) there exists an antichain A ¢ A(2n)
with FZ(A) = A. By a result of Isbell [2] it is known that N(4,4;3) > 13.
Furthermore, for each even n there exists an A € A(Zn) with FZ(A) = A.
(If X = {0.1,...k,k+1,...,2k}, then set ‘
A={Y cXx||¥Y] =k and |Y n {1,...,k}| is even}).

[1] M.M. Krieger, On permutations of Antichains in Boolean lattices:
An application of Ramsey's Theorem; preprint Computer Science
Dept., University of California, Los Angeles.

[2] J.R. Isbell, "N(4,433) 2 13", J. Combinatorial Theory,.6 (1969) 210.



