New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming

Dion Gijswijt,* Alexander Schrijver, \dagger Hajime Tanaka ${ }^{\ddagger}$

March 23, 2005

Abstract

We give a new upper bound on the maximum size $A_{q}(n, d)$ of a code of word length n and minimum Hamming distance at least d over the alphabet of $q \geq 3$ letters. By blockdiagonalizing the Terwilliger algebra of the nonbinary Hamming scheme, the bound can be calculated in time polynomial in n using semidefinite programming. For $q=3,4,5$ this gives several improved upper bounds for concrete values of n and d. This work is related to [6], where a similar approach is used to derive upper bounds for binary codes.

Keywords: codes, nonbinary codes, upper bounds, Delsarte bound, Terwilliger algebra, block-diagonalisation, semidefinite programming.

Fix integers $n \geq 1$ and $q \geq 2$, and fix an alphabet $\mathbf{q}=\{0,1, \ldots, q-1\}$. We will consider q-ary codes of length n, that is subsets of \mathbf{q}^{n}. The Hamming distance $d(\mathbf{x}, \mathbf{y})$ of two words \mathbf{x} and \mathbf{y} is defined as the number of positions in which \mathbf{x} and \mathbf{y} differ. For a word $\mathbf{x} \in \mathbf{q}^{n}$, we denote the support of \mathbf{x} by $S(\mathbf{x}):=\left\{v \mid \mathbf{x}_{v} \neq 0\right\}$. Note that $|S(\mathbf{x})|=d(\mathbf{x}, \mathbf{0})$, where $\mathbf{0}$ is the all-zero word.

Denote by $\operatorname{Aut}(q, n)$ the set of permutations of \mathbf{q}^{n} that preserve the Hamming distance. It is not hard to see that $\operatorname{Aut}(q, n)$ consists of the permutations of \mathbf{q}^{n} obtained by permuting the n coordinates followed by independently permuting the alphabet \mathbf{q} at each of the n coordinates. If we consider the action of $\operatorname{Aut}(q, n)$ on the set $\mathbf{q}^{n} \times \mathbf{q}^{n}$, the orbits form an association scheme known as the nonbinary Hamming scheme $H(n, q)$, with association matrices $A_{0}, A_{1}, \ldots, A_{n}$ defined by

$$
\left(A_{i}\right)_{\mathbf{x}, \mathbf{y}}:= \begin{cases}1 & \text { if } d(\mathbf{x}, \mathbf{y})=i \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

[^0]for $i=0,1, \ldots, n$. The association matrices span a commutative algebra called the BoseMesner algebra of the scheme. Diagonalizing the Bose-Mesner algebra yields the well-known linear programming bound of Delsarte [5], which gives a good upper bound on $A_{q}(n, d)$.

Here we will consider the action of $\operatorname{Aut}(q, n)$ on ordered triples of words, which will lead to a noncommutative algebra $\mathcal{A}_{q, n}$ containing the Bose-Mesner algebra. It turns out that the algebra coincides with the Terwilliger algebra [7] of $H(n, q)$. In section 3 it is shown how the algebra $\mathcal{A}_{q, n}$ can be used to obtain a new upper bound on $A_{q}(n, d)$. The bound is based on semidefinite programming and can be computed in time polynomial in n by using the block-diagonalisation constructed in section 2. The approach we follow is similar to the one in [6], which deals with binary codes. In fact we will use results from that paper to obtain our block-diagonalisation.

1 The Terwilliger algebra

To each ordered triple $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbf{q}^{n} \times \mathbf{q}^{n} \times \mathbf{q}^{n}$ we associate the four-tuple

$$
\begin{align*}
d(\mathbf{x}, \mathbf{y}, \mathbf{z}):= & (i, j, t, p), \text { where } \tag{2}\\
& i:=d(\mathbf{x}, \mathbf{y}), \\
& j:=d(\mathbf{x}, \mathbf{z}), \\
& t:=\mid\left\{v \mid \mathbf{x}_{v} \neq \mathbf{y}_{v} \text { and } \mathbf{x}_{v} \neq \mathbf{z}_{v}\right\} \mid, \\
& p:=\left|\left\{v \mid \mathbf{x}_{v} \neq \mathbf{y}_{v}=\mathbf{z}_{v}\right\}\right| .
\end{align*}
$$

Note that $d(\mathbf{y}, \mathbf{z})=i+j-t-p$ and $\left|\left\{v \mid \mathbf{x}_{v} \neq \mathbf{y}_{v} \neq \mathbf{z}_{v} \neq \mathbf{x}_{v}\right\}\right|=t-p$. The set of four-tuples (i, j, t, p) that occur as $d(\mathbf{x}, \mathbf{y}, \mathbf{z})$ for some $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{q}^{n}$ is given by

$$
\begin{equation*}
\mathcal{I}(q, n):=\{(i, j, t, p) \mid 0 \leq p \leq t \leq i, j \text { and } i+j \leq n+t\}, \tag{3}
\end{equation*}
$$

and will index various objects defined below.
Proposition 1. For $n \geq 1$ and $q \geq 3,|\mathcal{I}(q, n)|=\binom{n+4}{4}$.
Proof. If we substitute $p^{\prime}:=p, t^{\prime}:=t-p, i^{\prime}:=i-t$ and $j^{\prime}:=j-t$, then the integer solutions of $0 \leq p \leq t \leq i, j, \quad i+j \leq n+t$ are in bijection with the integer solutions of $0 \leq p^{\prime}, t^{\prime}, i^{\prime}, j^{\prime}, \quad p^{\prime}+t^{\prime}+i^{\prime}+j^{\prime} \leq n$.

The integers i, j, t, p parametrize the ordered triples of words up to symmetry. That is, if we define

$$
\begin{equation*}
X_{i, j, t, p}:=\left\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbf{q}^{n} \times \mathbf{q}^{n} \times \mathbf{q}^{n} \mid d(\mathbf{x}, \mathbf{y}, \mathbf{z})=(i, j, t, p)\right\}, \tag{4}
\end{equation*}
$$

for $(i, j, t, p) \in \mathcal{I}(q, n)$, we have the following.
Proposition 2. The sets $X_{i, j, t, p},(i, j, t, p) \in \mathcal{I}(q, n)$ are the orbits of $\mathbf{q}^{n} \times \mathbf{q}^{n} \times \mathbf{q}^{n}$ under the action of $\operatorname{Aut}(q, n)$.

Proof. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{q}^{n}$ and let $(i, j, t, p)=d(\mathbf{x}, \mathbf{y}, \mathbf{z})$. Since the Hamming distances $i, j, i+$ $j-t-p$ and the number $t-p=\left|\left\{v \mid \mathbf{x}_{v} \neq \mathbf{y}_{v} \neq \mathbf{z}_{v} \neq \mathbf{x}_{v}\right\}\right|$ are unchanged when permuting the coordinates or permuting the elements of \mathbf{q} at any coordinate, we have $d(\mathbf{x}, \mathbf{y}, \mathbf{z})=$ $d(\pi(\mathbf{x}), \pi(\mathbf{y}), \pi(\mathbf{z}))$ for any $\pi \in \operatorname{Aut}(q, n)$.

Hence it suffices to show that there is an automorphism π such that $(\pi(\mathbf{x}), \pi(\mathbf{y}), \pi(\mathbf{z}))$ only depends upon i, j, t and p. By permuting \mathbf{q} at the coordinates in the support of \mathbf{x}, we may assume that $\mathbf{x}=\mathbf{0}$. Let $A:=\left\{v \mid \mathbf{y}_{v} \neq 0, \mathbf{z}_{v}=0\right\}, B:=\left\{v \mid \mathbf{y}_{v}=0, \mathbf{z}_{v} \neq 0\right\}$, $C:=\left\{v \mid \mathbf{y}_{v} \neq 0, \mathbf{z}_{v} \neq 0, \mathbf{y}_{v} \neq \mathbf{z}_{v}\right\}$ and $D:=\left\{v \mid \mathbf{y}_{v}=\mathbf{z}_{v} \neq 0\right\}$. Note that $|A|=i-t$, $|B|=j-t,|C|=t-p$ and $|D|=p$. By permuting coordinates, we may assume that $A=\{1,2, \ldots, i-t\}, B=\{i-t+1, \ldots, i+j-2 t\}, C=\{i+j-2 t+1, \ldots, i+j-t-p\}$ and $D=\{i+j-t-p+1, \ldots, i+j-t\}$. Now by permuting \mathbf{q} at each of the points in $A \cup B \cup C \cup D$, we can accomplish that $\mathbf{y}_{v}=1$ for $v \in A \cup C \cup D$ and $\mathbf{z}_{v}=2$ for $v \in B \cup C$ and $\mathbf{z}_{v}=1$ for $v \in D$.

Denote the stabilizer of $\mathbf{0}$ in $\operatorname{Aut}(q, n)$ by $\operatorname{Aut}_{0}(q, n)$. For $(i, j, t, p) \in \mathcal{I}(q, n)$, let $M_{i, j}^{t, p}$ be the $\mathbf{q}^{n} \times \mathbf{q}^{n}$ matrix defined by:

$$
\left(M_{i, j}^{t, p}\right)_{\mathbf{x}, \mathbf{y}}:= \begin{cases}1 & \text { if }|S(\mathbf{x})|=i,|S(\mathbf{y})|=j,|S(\mathbf{x}) \cap S(\mathbf{y})|=t,\left|\left\{v \mid \mathbf{x}_{v}=\mathbf{y}_{v} \neq 0\right\}\right|=p \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathcal{A}_{q, n}$ be the set of matrices

$$
\begin{equation*}
\sum_{(i, j, t, p) \in \mathcal{I}(q, n)} x_{i, j}^{t, p} M_{i, j}^{t, p} \tag{6}
\end{equation*}
$$

where $x_{i, j}^{t, p} \in \mathbb{C}$. From Proposition 2 it follows that $\mathcal{A}_{q, n}$ is the set of matrices that are stable under permutations $\pi \in \operatorname{Aut}_{0}(q, n)$ of the rows and columns. Hence $\mathcal{A}_{q, n}$ is a complex matrix algebra called the centralizer algebra (cf. [1]) of $\operatorname{Aut}_{0}(q, n)$. The $M_{i, j}^{t, p}$ constitute a basis for $\mathcal{A}_{q, n}$ and hence

$$
\begin{equation*}
\operatorname{dim} \mathcal{A}_{q, n}=\binom{n+4}{4} \tag{7}
\end{equation*}
$$

by Proposition 1. Note that the algebra $\mathcal{A}_{q, n}$ contains the Bose-Mesner algebra since

$$
\begin{equation*}
A_{k}=\sum_{\substack{(i, j, t, p) \in \mathcal{I}(q, n) \\ i+j-t-p=k}} M_{i, j}^{t, p} \tag{8}
\end{equation*}
$$

Although it is not needed for the remainder of this paper, we would like to point out here, that $\mathcal{A}_{q, n}$ coincides with the Terwilliger algebra (see [7]) of the nonbinary Hamming scheme $H(n, q)$ (with respect to $\mathbf{0}$). The Terwilliger algebra $\mathcal{T}(q, n)$ is the complex matrix algebra generated by the association matrices $A_{0}, A_{1}, \ldots, A_{n}$ of the Hamming scheme and the diagonal matrices $E_{0}^{*}, E_{1}^{*}, \ldots, E_{n}^{*}$ defined by

$$
\left(E_{i}^{*}\right)_{\mathbf{x}, \mathbf{x}}:= \begin{cases}1 & \text { if }|S(\mathbf{x})|=i \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

for $i=0,1, \ldots, n$.

Proposition 3. The algebras $\mathcal{A}_{q, n}$ and $\mathcal{T}_{q, n}$ coincide.
Proof. Since $\mathcal{A}_{q, n}$ contains the matrices A_{k} and the matrices $E_{k}^{*}=M_{k, k}^{k, k}$ for $k=0,1, \ldots, n$, it follows that $\mathcal{T}_{q, n}$ is a subalgebra of $\mathcal{A}_{q, n}$. To show the reverse inclusion, define the zero-one matrices $B_{i}, C_{i}, D_{i} \in \mathcal{T}_{q, n}$ by

$$
\begin{align*}
B_{i} & :=E_{i}^{*} A_{1} E_{i}^{*} \tag{10}\\
C_{i} & :=E_{i}^{*} A_{1} E_{i+1}^{*} \\
D_{i} & :=E_{i}^{*} A_{1} E_{i-1}^{*} .
\end{align*}
$$

Observe that:

$$
\begin{aligned}
&\left(B_{i}\right)_{\mathbf{x}, \mathbf{y}}=1 \quad \text { if and only if } \\
&|S(\mathbf{x})|=i, d(\mathbf{x}, \mathbf{y})=1,|S(\mathbf{y})|=i, S(\mathbf{x})=S(\mathbf{y}) \\
&\left(C_{i}\right)_{\mathbf{x}, \mathbf{y}}=1 \quad \text { if and only if } \\
&|S(\mathbf{x})|=i, d(\mathbf{x}, \mathbf{y})=1,|S(\mathbf{y})|=i+1,|S(\mathbf{x}) \Delta S(\mathbf{y})|=1 \\
&\left(D_{i}\right)_{\mathbf{x}, \mathbf{y}}=1 \quad \text { if and only if } \\
&|S(\mathbf{x})|=i, d(\mathbf{x}, \mathbf{y})=1,|S(\mathbf{y})|=i-1,|S(\mathbf{x}) \Delta S(\mathbf{y})|=1
\end{aligned}
$$

For given $(i, j, t, p) \in \mathcal{I}(q, n)$, let $A_{i, j}^{t, p} \in \mathcal{T}_{q, n}$ be given by

$$
\begin{equation*}
A_{i, j}^{t, p}:=\left(D_{i} D_{i-1} \cdots D_{t+1}\right)\left(C_{t} C_{t+1} \cdots C_{j-1}\right)\left(B_{j}\right)^{t-p} \tag{12}
\end{equation*}
$$

Then for words $\mathbf{x}, \mathbf{y} \in \mathbf{q}^{n}$, the entry $\left(A_{i, j}^{t, p}\right)_{\mathbf{x}, \mathbf{y}}$ counts the number of $(i+j-t-p+3)$-tuples

$$
\mathbf{x}=\mathbf{d}_{i}, \mathbf{d}_{i-1}, \ldots, \mathbf{d}_{t}=\mathbf{c}_{t}, \mathbf{c}_{t+1}, \ldots, \mathbf{c}_{j}=\mathbf{b}_{0}, \ldots, \mathbf{b}_{t-p}=\mathbf{y} \in \mathbf{q}^{n}
$$

where any two consecutive words have Hamming distance 1 , the \mathbf{b}_{k} have equal support of cardinality j, and $\left|S\left(\mathbf{d}_{k}\right)\right|=k,\left|S\left(\mathbf{c}_{k}\right)\right|=k$ for all k. Hence for $\mathbf{x}, \mathbf{y} \in \mathbf{q}^{n}$ the following holds.

$$
\begin{gather*}
\left(A_{i, j}^{t, p}\right)_{\mathbf{x}, \mathbf{y}}=0 \quad \text { if } d(\mathbf{x}, \mathbf{y})>i+j-t-p \text { or }|S(\mathbf{x}) \Delta S(\mathbf{y})|>i+j-2 t \tag{13}\\
\\
\text { and } \tag{14}\\
\left(A_{i, j}^{t, p}\right)_{\mathbf{x}, \mathbf{y}}>0 \quad \\
\\
\\
\\
\quad \text { if }|S(\mathbf{x})|=i,|S(\mathbf{x})|=j \\
\\
d(\mathbf{x})=i+j-t-p \text { and }|S(\mathbf{x}) \Delta S(\mathbf{y})|=i+j-2 t .
\end{gather*}
$$

To see (14) one may take for \mathbf{d}_{k} the zero-one word with support $\{i+1-k, \ldots, i\}$, for \mathbf{c}_{k} the zero-one word with support $\{i+1-t, \ldots, i+k-t\}$ and for \mathbf{b}_{k} the word with support $\{i+1-t, \ldots, i+j-t\}$ where the first k nonzero entries are 2 and the other nonzero entries are 1 .

Now suppose that $\mathcal{A}_{q, n}$ is not contained in $\mathcal{T}_{q, n}$, and let $M_{i, j}^{t, p}$ be a matrix not in $\mathcal{T}_{q, n}$ with t maximal and (secondly) p maximal. If we write

$$
\begin{equation*}
A_{i, j}^{t, p}=\sum_{t^{\prime}, p^{\prime}} x_{i, j}^{t^{\prime}, p^{\prime}} M_{i, j}^{t^{\prime}, p^{\prime}} \tag{15}
\end{equation*}
$$

then by (13) $x_{i, j}^{t^{\prime}, p^{\prime}}=0$ if $t^{\prime}+p^{\prime}<t+p$ or $t^{\prime}<t$ implying that $A_{i, j}^{t, p}-x_{i, j}^{t, p} M_{i, j}^{t, p} \in \mathcal{T}_{q, n}$ by the maximality assumption. Therefore since $x_{i, j}^{t, p}>0$ by (14), also $M_{i, j}^{t, p}$ belongs to $\mathcal{T}_{q, n}$, a contradiction.

2 Block-diagonalisation of the Terwilliger algebra

In this section we give an explicit block-diagonalisation of the algebra $\mathcal{A}_{q, n}$. The blockdiagonalisation can be seen as an extension of the block-diagonalisation in the binary case as given in [6]. In fact, we will use some results of this paper, summarized in Proposition 4 below.

For a finite set V of cardinality m and nonnegative integers i, j, define the $2^{V} \times 2^{V}$ matrix $C_{i, j}^{V}$ by

$$
\left(C_{i, j}^{V}\right)_{I, J}:= \begin{cases}1 & \text { if }|I|=i,|J|=j, I \subseteq J \text { or } J \subseteq I \tag{16}\\ 0 & \text { otherwise }\end{cases}
$$

For $k=0, \ldots,\left\lfloor\frac{m}{2}\right\rfloor$ define the linear space L_{k}^{V} by

$$
\begin{equation*}
L_{k}^{V}:=\left\{x \in \mathbf{R}^{2^{V}} \mid C_{k-1, k}^{V} x=0, x_{I}=0 \text { if }|I| \neq k\right\} \tag{17}
\end{equation*}
$$

and let B_{k}^{V} be an orthonormal base of L_{k}^{V}.
Proposition 4. Let i, j, k, t, m be nonnegative integers satisfying $k, t \leq i, j, i+j \leq m+2 t$ and $k \leq\left\lfloor\frac{m}{2}\right\rfloor$. Let V be a set of cardinality m and let $b \in L_{k}^{V}$.
i. We have

$$
\begin{equation*}
\operatorname{dim} L_{k}^{V}=\binom{m}{k}-\binom{m}{k-1} \tag{18}
\end{equation*}
$$

ii. For any nonnegative integer $k^{\prime} \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $b^{\prime} \in L_{k^{\prime}}^{V}$

$$
\left(C_{i, k}^{V} b\right)^{\top} C_{i, k^{\prime}}^{V} b^{\prime}= \begin{cases}\binom{m-2 k}{i-k} b^{\top} b^{\prime} & \text { if } k=k^{\prime} \tag{19}\\ 0 & \text { otherwise }\end{cases}
$$

iii. For any set $Y \subseteq V$ of cardinality j

$$
\begin{equation*}
\sum_{\substack{U \subseteq V \\|U|=i \\|U \cap Y|=t}}\left(C_{i, k}^{V} b\right)_{U}=\beta_{i, j, k}^{m, t}\binom{m-2 k}{j-k}^{-1}\left(C_{j, k}^{V} b\right)_{Y} \tag{20}
\end{equation*}
$$

where $\beta_{i, j, k}^{m, t}:=\sum_{u=0}^{m}(-1)^{t-u}\binom{u}{t}\binom{m-2 k}{m-k-u}\binom{m-k-u}{i-u}\binom{m-k-u}{j-u}$.
Proof. See [6] for a proof. Although part iii is not explicitly stated there, it can be derived from equations (36) and (39) in [6].

We will now describe the block-diagonalisation of $\mathcal{A}_{q, n}$. Let $\phi:=e^{\frac{2 \pi i}{q-1}}$ be a primitive ($q-1$)-th root of unity. Let

$$
\begin{align*}
\mathcal{V}:=\{ & (a, k, i, \mathbf{a}, b) \mid \tag{21}\\
& a, k, i \text { are integers satisfying } 0 \leq a \leq k \leq i \leq n+a-k, \\
& \mathbf{a} \in \mathbf{q}^{n} \text { satisfies }|S(\mathbf{a})|=a, \mathbf{a}_{v} \neq q-1 \text { for } v=1, \ldots, n, \\
& \left.b \in B_{k-a}^{S(\mathbf{a})}\right\},
\end{align*}
$$

where $\bar{U}:=\{1,2, \ldots, n\} \backslash U$ for any set $U \subseteq\{1,2, \ldots, n\}$. For each tuple (a, k, i, \mathbf{a}, b) in \mathcal{V}, define the vector $\Psi_{\mathrm{a}, b}^{a, k, i} \in \mathbb{C}^{\mathbf{q}^{n}}$ by

$$
\Psi_{\mathbf{a}, b}^{a, k, i}(\mathbf{x}):= \begin{cases}(q-1)^{-\frac{1}{2} i}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}} \phi^{(\mathbf{a}, \mathbf{x}\rangle}\left(C_{i-a, k-a}^{\overline{S(\mathbf{a})}} b\right)(S(\mathbf{x}) \backslash S(\mathbf{a})) & \text { if } S(\mathbf{a}) \subseteq S(\mathbf{x}) \tag{22}\\ 0 & \text { otherwise },\end{cases}
$$

for any $\mathbf{x} \in \mathbf{q}^{n}$. Here $\langle\mathbf{x}, \mathbf{y}\rangle:=\sum_{v=0}^{n} \mathbf{x}_{v} \mathbf{y}_{v} \in \mathbf{Z}_{\geq 0}$ for any $\mathbf{x}, \mathbf{y} \in \mathbf{q}^{n}$. Observe that $\Psi_{\mathbf{a}, b}^{a, k, i}(\mathbf{x})=$ 0 if $|S(\mathbf{x})| \neq i$. We have:
Proposition 5. The vectors $\Psi_{\mathbf{a}, b}^{a, k, i},(a, k, i, \mathbf{a}, b) \in \mathcal{V}$ form an orthonormal base of \mathbf{q}^{n}.
Proof. The number $|\mathcal{V}|$ of vectors $\Psi_{\mathrm{a}, b}^{a, k, i}$ equals q^{n} since:

$$
\begin{align*}
& \sum_{\substack{a, k, i \\
0 \leq a \leq k \leq i \leq n+a-k}}\binom{n}{a}(q-2)^{a}\left[\binom{n-a}{k-a}-\binom{n-a}{k-a-1}\right] \\
&= \sum_{i=0}^{n} \sum_{a=0}^{i} \sum_{k=a}^{\min (i, n+a-i)}\binom{n}{a}(q-2)^{a}\left[\binom{n-a}{k-a}-\binom{n-a}{k-a-1}\right] \\
&= \sum_{i=0}^{n} \sum_{a=0}^{i}\binom{n}{a}(q-2)^{a}\binom{n-a}{i-a} \tag{23}\\
&= \sum_{i=0}^{n}\binom{n}{i} \sum_{a=0}^{i}(q-2)^{a}\binom{i}{a} \\
&= \sum_{i=0}^{n}\binom{n}{i}(q-1)^{i}=q^{n} .
\end{align*}
$$

We calculate the inner product of $\Psi_{\mathbf{a}, b}^{a, k, i}$ and $\Psi_{\mathbf{a}^{\prime}, b^{\prime}}^{a^{\prime}, k^{\prime}, i^{\prime}}$. If $i \neq i^{\prime}$ then the inner product is zero since the two vectors have disjoint support. So we may assume that $i^{\prime}=i$. We obtain:

$$
\begin{align*}
\left\langle\Psi_{\mathbf{a}, b}^{a, k, i}, \Psi_{\mathbf{a}^{\prime}, b^{\prime}}^{a^{\prime}, k^{\prime}, i}\right\rangle= & (q-1)^{-i}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}}\binom{n+a^{\prime}-2 k^{\prime}}{i-k^{\prime}}^{-\frac{1}{2}} \\
& \sum_{\mathbf{x}} \phi^{\langle\mathbf{a}, \mathbf{x}\rangle-\left\langle\mathbf{a}^{\prime}, \mathbf{x}\right\rangle}\left(C_{i-a, k-a}^{S(\mathbf{a})} b\right)(S(\mathbf{x}) \backslash S(\mathbf{a})) \cdot\left(C_{i-a^{\prime}, k^{\prime}-a^{\prime}}^{\left.\overline{S\left(a^{\prime}\right)}\right)\left(S(\mathbf{x}) \backslash S\left(\mathbf{a}^{\prime}\right)\right)}\right. \tag{24}
\end{align*}
$$

where the sum ranges over all $\mathbf{x} \in \mathbf{q}^{n}$ with $|S(\mathbf{x})|=i$ and $S(\mathbf{x}) \supseteq S(\mathbf{a}) \cup S\left(\mathbf{a}^{\prime}\right)$. If $\mathbf{a}_{j} \neq \mathbf{a}_{j}^{\prime}$ for some j, then the inner product equals zero, since we can factor out $\sum_{x_{j}=1}^{q-1} \phi^{x_{j}\left(\mathbf{a}_{j}-\mathbf{a}_{j}^{\prime}\right)}=0$. So we may assume that $\mathbf{a}=\mathbf{a}^{\prime}$ (and hence $a=a^{\prime}$), which simplifies the righthand side of (24) to

$$
\begin{equation*}
\binom{n+a-2 k}{i-k}^{-\frac{1}{2}}\binom{n+a-2 k^{\prime}}{i-k^{\prime}}^{-\frac{1}{2}}\left(C_{i-a, k-a}^{\overline{S(\mathbf{a})}} b\right)^{\top} C_{i-a, k^{\prime}-a}^{\overline{S(\mathbf{a})}} b^{\prime} \tag{25}
\end{equation*}
$$

Now by Proposition 4 we conclude that $\left\langle\Psi_{\mathbf{a}, b}^{a, k, i}, \Psi_{\mathbf{a}, b^{\prime}}^{a, k^{\prime}, i}\right\rangle$ is nonzero only if $b=b^{\prime}$ and $k=k^{\prime}$, in which case the inner product equals 1.

Proposition 6. For $(i, j, t, p) \in \mathcal{I}(q, n)$ and $\left(a, k, i^{\prime}, A, b\right) \in \mathcal{V}$ we have:

$$
\begin{equation*}
M_{j, i}^{t, p} \Psi_{\mathbf{a}, b}^{a, k, i^{\prime}}=\delta_{i, i^{\prime}}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}}\binom{n+a-2 k}{j-k}^{-\frac{1}{2}} \alpha(i, j, t, p, a, k) \Psi_{\mathbf{a}, b}^{a, k, j} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(i, j, t, p, a, k):=\beta_{i-a, j-a, k-a}^{n-a, t-a}(q-1)^{\frac{1}{2}(i+j)-t} \sum_{g=0}^{p}(-1)^{a-g}\binom{a}{g}\binom{t-a}{p-g}(q-2)^{t-a-p+g} \tag{27}
\end{equation*}
$$

Proof. Clearly, both sides of (26) are zero if $i \neq i^{\prime}$, hence we may assume that $i=i^{\prime}$. We calculate $\left(M_{j, i}^{t, p} \Psi_{\mathbf{a}, b}^{a, k, i}\right)(\mathbf{y})$. We may assume that $|S(\mathbf{y})|=j$, since otherwise both sides of (26) have a zero in position \mathbf{y}. We have:

$$
\begin{align*}
\left(M_{j, i}^{t, p} \Psi_{\mathbf{a}, b}^{a, k, i}\right)(\mathbf{y}) & =\sum_{\mathbf{x} \in \mathbf{q}^{n}}\left(M_{j, i}^{t, p}\right)_{\mathbf{y}, \mathbf{x}} \Psi_{\mathbf{a}, b}^{a, k, i}(\mathbf{x}) \tag{28}\\
& =(q-1)^{-\frac{1}{2} i}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}} \sum_{\mathbf{x}} \phi^{\langle\mathbf{x}, \mathbf{a}\rangle}\left(C_{i-a, k-a}^{\overline{S(\mathbf{a})}} b\right)(S(\mathbf{x}) \backslash S(\mathbf{a}))
\end{align*}
$$

where the last sum is over all $\mathbf{x} \in \mathbf{q}^{n}$ with $|S(\mathbf{x})|=i, S(\mathbf{x}) \supseteq S(\mathbf{a}),|S(\mathbf{x}) \cap S(\mathbf{y})|=t$ and $\left|\left\{v \mid \mathbf{x}_{v}=\mathbf{y}_{v} \neq 0\right\}\right|=p$. If $v \in S(\mathbf{a}) \backslash S(\mathbf{y})$ we can factor out $\sum_{l=1}^{q-1} \phi^{l \mathbf{a}_{v}}=0$, implying that both sides of (26) have a zero at position \mathbf{y}. Hence we may assume that $S(\mathbf{y}) \supseteq S(\mathbf{a})$. Now the support of each word \mathbf{x} in this sum can be split into five parts $U, U^{\prime}, V, V^{\prime}, W$, where

$$
\begin{align*}
U & =\left\{v \in S(\mathbf{a}) \mid \mathbf{x}_{v}=\mathbf{y}_{v}\right\} \tag{29}\\
U^{\prime} & =S(\mathbf{a}) \backslash U \\
V & =\left\{v \in S(\mathbf{y}) \backslash S(\mathbf{a}) \mid \mathbf{x}_{v}=\mathbf{y}_{v}\right\} \\
V^{\prime} & =((S(\mathbf{y}) \backslash S(\mathbf{a})) \cap S(\mathbf{x})) \backslash V \text { and } \\
W & =S(\mathbf{x}) \backslash S(\mathbf{y})
\end{align*}
$$

If we set $g=|U|$, then $\left|U^{\prime}\right|=a-g,|V|=p-g,\left|V^{\prime}\right|=t-a-p+g$ and $|W|=i-t$. Hence splitting the sum over g, we obtain:

$$
\begin{align*}
(q-1)^{-\frac{1}{2} i}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}} \sum_{g=0}^{p} & \sum_{U, U^{\prime}, V, V^{\prime}, W}\left(C_{i-a, k-a}^{\overline{S(\mathbf{a})}} b\right)\left(V \cup V^{\prime} \cup W\right) \\
& \prod_{v \in U} \phi^{\mathbf{a}_{v} \mathbf{y}_{v}} \prod_{v \in U^{\prime}}-\phi^{\mathbf{a}_{v} \mathbf{y}_{v}} \prod_{v \in V} 1 \prod_{v \in V^{\prime}}(q-2) \prod_{v \in W}(q-1) \tag{30}
\end{align*}
$$

where $U, U^{\prime}, V, V^{\prime}, W$ are as indicated. Substituting $T=V \cup V^{\prime} \cup W$, we can rewrite this as

$$
\begin{align*}
& (q-1)^{-\frac{1}{2} i}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}} \sum_{g=0}^{p}\binom{a}{g}\binom{t-a}{p-g}(-1)^{a-g}(q-2)^{t-a-p+g} \\
& (q-1)^{i-t} \phi^{\langle\mathbf{a}, \mathbf{y}\rangle} \sum_{T}\left(C_{i-a, k-a}^{\overline{S(\mathbf{a})}} b\right)(T), \tag{31}
\end{align*}
$$

where the sum ranges over all $T \subseteq \overline{S(\mathbf{a})}$ with $|T|=i-a$ and $|T \cap S(\mathbf{y})|=t-a$. Now by Proposition 4 this is equal to

$$
\begin{align*}
&(q-1)^{-\frac{1}{2} i}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}}(q-1)^{i-t} \sum_{g=0}^{p}\binom{a}{g}\binom{t-a}{p-g}(-1)^{a-g}(q-2)^{t-a-p+g} \\
& \phi^{\langle\mathbf{a}, \mathbf{y}\rangle}\binom{n+a-2 k}{j-k}^{-1} \beta_{i-a, j-a, k-a}^{n-a, t-a}\left(C_{j-a, k-a}^{\overline{S(\mathbf{a})}} b\right)(S(\mathbf{y}) \backslash S(\mathbf{a})), \tag{32}
\end{align*}
$$

which equals

$$
\begin{align*}
& \Psi_{\mathbf{a}, b}^{a, k, j}(\mathbf{y}) \cdot \beta_{i-a, j-a, k-a}^{n-a, t-a}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}}\binom{n+a-2 k}{j-k}^{-\frac{1}{2}}(q-1)^{\frac{1}{2}(i+j)-t} \\
& \sum_{g=0}^{p}(-1)^{a-g}\binom{a}{g}\binom{t-a}{p-g}(q-2)^{t-a-p+g} \tag{33}
\end{align*}
$$

If we define U to be the $\mathbf{q}^{n} \times \mathcal{V}$ matrix with $\Psi_{\mathbf{a}, b}^{a, k, i}$ as the (a, k, i, \mathbf{a}, b)-th column, then Proposition 6 shows that for each $(i, j, t, p) \in \mathcal{I}(q, n)$ the matrix $\tilde{M}_{i, j}^{t, p}:=U^{*} M_{i, j}^{t, p} U$ has entries

$$
\begin{align*}
& \left(\tilde{M}_{i, j}^{t, p}\right)_{(a, k, l, \mathbf{a}, b),\left(a^{\prime}, k^{\prime}, l^{\prime}, \mathbf{a}^{\prime}, b^{\prime}\right)}= \\
& \begin{cases}\binom{n+a-2 k}{i-k}^{-\frac{1}{2}}\binom{n+a-2 k}{j-k}^{-\frac{1}{2}} \alpha(i, j, t, p, a, k) & \text { if } a=a^{\prime}, k=k^{\prime}, \mathbf{a}=\mathbf{a}^{\prime}, b=b^{\prime} \text { and } \\
0 & l=i, l^{\prime}=j \\
0 & \text { otherwise }\end{cases} \tag{34}
\end{align*}
$$

This implies

Proposition 7. The matrix U gives a block-diagonalisation of $\mathcal{A}_{q, n}$.
Proof. Equation (34) implies that each matrix $\tilde{M}_{i, j}^{t, p}$ has a block-diagonal form, where for each pair (a, k) there are $\binom{n}{a}(q-2)^{a}\left[\binom{n-a}{k-a}-\binom{n-a}{n-a-1}\right]$ copies of an $(n+a+1-2 k) \times(n+a+1-2 k)$ block on the diagonal. For fixed a, k the copies are indexed by the pairs (\mathbf{a}, b) such that $\mathbf{a} \in \mathbf{q}^{n}$ satisfies $|S(\mathbf{a})|=a, \mathbf{a}_{v} \neq q-1$ for $v=1, \ldots, n$, and $b \in B_{k-a}^{\overline{S(a)}}$, and in each copy the rows and columns in the block are indexed by the integers i with $k \leq i \leq n+a-k$. Hence we need to show that all matrices of this block-diagonal form are in $U^{*} \mathcal{A}_{q, n} U$. It suffices to show that the dimension $\sum_{0 \leq a \leq k \leq n+a-k}(n+a+1-2 k)^{2}$ of the algebra consisting of the matrices in the given block-diagonal form equals the dimension of $\mathcal{A}_{q, n}$, which is $\binom{n+4}{4}$. This follows from

$$
\begin{align*}
\sum_{0 \leq a \leq k \leq n+a-k} & (n+a+1-2 k)^{2} \\
& =\sum_{a=0}^{n} \sum_{k=a}^{\left\lfloor\frac{n+a}{2}\right\rfloor}(n+a+1-2 k)^{2} \\
& =\sum_{a \equiv n(2)}\left(1^{2}+3^{2}+\cdots+(n+1-a)^{2}\right)+\sum_{a \neq n(2)}\left(2^{2}+4^{2}+\cdots+(n+1-a)^{2}\right) \\
& =\sum_{a \equiv n(2)}\binom{n+1-a+2}{3}+\sum_{a \neq n(2)}\binom{n+1-a+2}{3} \\
& =\sum_{a=0}^{n}\binom{n-a+3}{3}=\binom{n+4}{4} . \tag{35}
\end{align*}
$$

3 Application to coding

Let $C \subseteq \mathbf{q}^{n}$ be any code. For any automorphism π, denote the characteristic vector of $\pi(C)$ by $\chi^{\pi(C)}$ (taken as a columnvector). For any word $\mathbf{x} \in \mathbf{q}^{n}$, let $\sigma_{\mathbf{x}} \in \operatorname{Aut}(q, n)$ be any automorphism with $\sigma_{\mathbf{x}}(\mathbf{x})=\mathbf{0}$, and define

$$
\begin{equation*}
R_{\mathbf{x}}:=\left|\operatorname{Aut}_{\mathbf{0}}(q, n)\right|^{-1} \sum_{\pi \in \operatorname{Aut}_{\mathbf{0}}(q, n)} \chi^{\pi\left(\sigma_{\mathbf{x}}(C)\right)}\left(\chi^{\pi\left(\sigma_{\mathbf{x}}(C)\right)}\right)^{\top} \tag{36}
\end{equation*}
$$

Next define the matrices R and R^{\prime} by:

$$
\begin{align*}
R & :=|C|^{-1} \sum_{\mathbf{x} \in C} R_{\mathbf{x}} \tag{37}\\
R^{\prime} & :=\left(q^{n}-|C|\right)^{-1} \sum_{\mathbf{x} \in \mathbf{q}^{n} \backslash C} R_{\mathbf{x}}
\end{align*}
$$

As the $R_{\mathbf{x}}$, and hence also R and R^{\prime}, are convex combinations of positive semidefinite matrices, they are positive semidefinite. By construction, the matrices $R_{\mathbf{x}}$, and hence the matrices R and R^{\prime} are invariant under permutations $\pi \in \operatorname{Aut}_{\mathbf{0}}(q, n)$ of the rows and columns and hence they are elements of the algebra $\mathcal{A}_{q, n}$. Write

$$
\begin{equation*}
R=\sum_{(i, j, t, p)} x_{i, j}^{t, p} M_{i, j}^{t, p} . \tag{38}
\end{equation*}
$$

We can express the matrix R^{\prime} in terms of the coefficients $x_{i, j}^{t, p}$ as follows.
Proposition 8. The matrix R^{\prime} is given by

$$
\begin{equation*}
R^{\prime}=\frac{|C|}{q^{n}-|C|} \sum_{(i, j, t, p)}\left(x_{i+j-t-p, 0}^{0,0}-x_{i, j}^{t, p}\right) M_{i, j}^{t, p} \tag{39}
\end{equation*}
$$

Proof. The matrix

$$
\begin{equation*}
S:=|C| R+\left(q^{n}-|C|\right) R^{\prime}=\left|\operatorname{Aut}_{\mathbf{0}}(q, n)\right|^{-1} \sum_{\sigma \in \operatorname{Aut}(q, n)} \chi^{\sigma(C)}\left(\chi^{\sigma(C)}\right)^{\top} \tag{40}
\end{equation*}
$$

is invariant under permutation of the rows and columns by permutations $\sigma \in \operatorname{Aut}(q, n)$ and hence is an element of the Bose-Mesner algebra, say

$$
\begin{equation*}
S=\sum_{k} y_{k} A_{k} \tag{41}
\end{equation*}
$$

Note that for any $\mathbf{y} \in \mathbf{q}^{n}$ with $|S(\mathbf{y})|=k$, we have

$$
y_{k}=(S)_{\mathbf{y}, \mathbf{0}}=|C|(R)_{\mathbf{y}, \mathbf{0}}=|C| x_{k, 0}^{0,0},
$$

since $\left(R^{\prime}\right)_{\mathbf{y}, \mathbf{0}}=0$. Hence we have

$$
\begin{align*}
\left(q^{n}-|C|\right) R^{\prime} & =S-|C| R \tag{42}\\
& =\sum_{k}|C| x_{k, 0}^{0,0} A_{k}-|C| \sum_{(i, j, t, p)} x_{i, j}^{t, p} M_{i, j}^{t, p} \\
& =|C| \sum_{k} \sum_{i+j-t-p=k}\left(x_{k, 0}^{0,0}-x_{i, j}^{t, p}\right) M_{i, j}^{t, p} \\
& =|C| \sum_{(i, j, t, p)}\left(x_{i+j-t-p, 0}^{0,0}-x_{i, j}^{t, p}\right) M_{i, j}^{t, p},
\end{align*}
$$

which proves the proposition.
Using the block-diagonalisation of $\mathcal{A}(n, d)$, the positive semidefiniteness of R and R^{\prime} is
equivalent to:

$$
\begin{equation*}
\text { for all } a, k \text { with } 0 \leq a \leq k \leq n+a-k \text {, the matrices } \tag{43}
\end{equation*}
$$

$$
\begin{gathered}
\left(\sum_{t, p} \alpha(i, j, t, p, a, k) x_{i, j}^{t, p}\right)_{i, j=k}^{n+a-k} \\
\text { and } \\
\left(\sum_{t, p} \alpha(i, j, t, p, a, k)\left(x_{i+j-t-p, 0}^{0,0}-x_{i, j}^{t, p}\right)\right)_{i, j=k}^{n+a-k} \\
\text { are positive semidefinite. }
\end{gathered}
$$

Define the numbers

$$
\begin{equation*}
\lambda_{i, j}^{t, p}:=\left|(C \times C \times C) \cap X_{i, j, t, p}\right| \tag{44}
\end{equation*}
$$

for $(i, j, t, p) \in \mathcal{I}(q, n)$, and let

$$
\begin{equation*}
\gamma_{i, j}^{t, p}:=\left|\left(\{\mathbf{0}\} \times \mathbf{q}^{n} \times \mathbf{q}^{n}\right) \cap X_{i, j, t, p}\right| \tag{45}
\end{equation*}
$$

be the number of nonzero entries of $M_{i, j}^{t, p}$. A simple calculation yields:

$$
\begin{equation*}
\gamma_{i, j}^{t, p}=(q-1)^{i+j-t}(q-2)^{t-p}\binom{n}{p, t-p, i-t, j-t} \tag{46}
\end{equation*}
$$

The numbers $x_{i, j}^{t, p}$ can be expressed in terms of the the numbers $\lambda_{i, j}^{t, p}$ as follows.
Proposition 9. $x_{i, j}^{t, p}=\left(|C| \gamma_{i, j}^{t, p}\right)^{-1} \lambda_{i, j}^{t, p}$.
Proof. Denote by $\langle M, N\rangle:=\operatorname{tr}\left(M^{*} N\right)$ the standard innerproduct on the space of complex $\mathbf{q}^{n} \times \mathbf{q}^{n}$ matrices. Observe that the matrices $M_{i, j}^{t, p}$ are pairwise orthogonal and that $\left\langle M_{i, j}^{t, p}, M_{i, j}^{t, p}\right\rangle=\gamma_{i, j}^{t, p}$ for $(i, j, t, p) \in \mathcal{I}(q, n)$. Hence

$$
\begin{align*}
\left\langle R, M_{i, j}^{t, p}\right\rangle & =\frac{1}{|C|} \sum_{\mathbf{x} \in C}\left\langle R_{\mathbf{x}}, M_{i, j}^{t, p}\right\rangle \tag{47}\\
& =\frac{1}{|C|} \sum_{\mathbf{x} \in C}\left|(\{\mathbf{x}\} \times C \times C) \cap X_{i, j, t, p}\right| \tag{48}\\
& =\frac{1}{|C|} \lambda_{i, j}^{t, p}
\end{align*}
$$

implies that

$$
\begin{equation*}
R=\frac{1}{|C|} \sum_{(i, j, t, p) \in \mathcal{I}(q, n)} \lambda_{i, j}^{t, p}\left(\gamma_{i, j}^{t, p}\right)^{-1} M_{i, j}^{t, p} \tag{49}
\end{equation*}
$$

Comparing the coefficients of the $M_{i, j}^{t, p}$ with those in (38) proves the proposition.

The $x_{i, j}^{t, p}$ satisfy the following linear constraints, where (iv) holds if C has minimum distance at least d :
(i) $\quad x_{0,0}^{0,0}=1$
(ii) $0 \leq x_{i, j}^{t, p} \leq x_{i, 0}^{0,0}$
(iii) $\quad x_{i, j}^{t, p}=x_{i^{\prime}, j^{\prime}}^{t^{\prime}, p^{\prime}}$ if $t-p=t^{\prime}-p^{\prime}$ and

$$
(i, j, i+j-t-p) \text { is a permutation of }\left(i^{\prime}, j^{\prime}, i^{\prime}+j^{\prime}-t^{\prime}-p^{\prime}\right)
$$

(iv) $\quad x_{i, j}^{t, p}=0$ if $\{i, j, i+j-t-p\} \cap\{1,2, \ldots, d-1\} \neq \emptyset$.

Here conditions (iii) and (iv) follow from Proposition 9. Condition (ii) follows from $x_{i, 0}^{0,0}=x_{i, i}^{i, i}$ and the fact that if $M=\chi^{\sigma(C)}\left(\chi^{\sigma(C)}\right)^{\top}$ then $0 \leq M_{\mathbf{x}, \mathbf{y}} \leq M_{\mathbf{x}, \mathbf{x}}$ for any $\mathbf{x}, \mathbf{y} \in \mathbf{q}^{n}$ and $\sigma \in \operatorname{Aut}(q, n)$.

Since $|C|^{2}=\sum_{i} \lambda_{i, 0}^{0,0}$, we have $|C|=\sum_{i} \gamma_{i, 0}^{0,0} x_{i, 0}^{0,0}$. Hence if we view the $x_{i, j}^{t, p}$ as variables, then maximizing $\sum_{i} \gamma_{i, 0}^{0,0} x_{i, 0}^{0,0}$ subject to conditions (50) and (43) yields an upper bound on $A_{q}(n, d)$. This is a semidefinite programming problem with $O\left(n^{4}\right)$ variables, and can be solved in time polynomial in n.

In the range $n \leq 16, n \leq 12$ and $n \leq 11$, the method gives a number of new upper bounds on $A_{3}(n, d), A_{4}(n, d)$ and $A_{5}(n, d)$ respectively, summarized in Table 1, 2 and 3 below (cf. the tables given by Brouwer, Hämäläinen, Östergård and Sloane [4], by Bogdanova, Brouwer, Kapralov and Östergård [2] and by Bogdanova and Östergård [3]).

References

[1] E. Bannai,T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin/Cumings Publishing Co., Inc., Menlo Park, CA, 1984.
[2] G.T. Bogdanova, A.E. Brouwer, S.N. Kapralov, P.R.J. Östergård, Error-Correcting Codes over an Alphabet of Four Elements, Designs, Codes and Cryptography 23 (2001) 333-342.
[3] G.T. Bogdanova, P.R.J. Östergård, Bounds on codes over an alphabet of five elements, Discrete Mathematics 240 (2001) 13-19.
[4] A.E. Brouwer, H.O. Hämäläinen, P.R.J. Östergård, N.J.A. Sloane, Bounds on Mixed Binary/Ternary Codes, IEEE Trans. Inf. Th. 44 (1998) 140-161.
[5] P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory [Philips Research Reports Supplements 1973 No. 10], Philips Research Laboratories, Eindhoven, 1973.
[6] A. Schrijver, New code upper bounds from the Terwilliger algebra, preprint 2004.
[7] P. Terwilliger, The subconstituent algebra of an association scheme (Part I), Journal of Algebraic Combinatorics 1 (1992) 363-388.

Table 1: New upper bounds on $A_{3}(n, d)$

		best lower bound	new upper bound	best upper bound previously known	Delsarte bound
12	4	4374	6839	7029	7029
13	4	8019	19270	19682	19683
14	4	24057	54774	59046	59049
15	4	72171	149585	153527	153527
16	4	216513	424001	434815	434815
12	5	729	1557	1562	1562
13	5	2187	4078	4163	4163
14	5	6561	10624	10736	10736
15	5	6561	29213	29524	29524
13	6	729	1449	1562	1562
14	6	2187	3660	3885	4163
15	6	2187	9904	10736	10736
16	6	6561	27356	29524	29524
14	7	243	805	836	836
15	7	729	2204	2268	2268
16	7	729	6235	6643	6643
13	8	42	95	103	103
15	8	243	685	711	712
16	8	297	1923	2079	2079
14	9	31	62	66	81
15	9	81	165	166	166
16	10	54	114	117	127

Table 2: New upper bounds on $A_{4}(n, d)$

		best lower bound	new npper bound	best upper bound previously known	Delsarte bound
n	d	known			
7	4	128	169	179	179
8	4	320	611	614	614
9	4	1024	2314	2340	2340
10	4	4096	8951	9360	9362
10	5	1024	2045	2048	2145
10	6	256	496	512	512
11	6	1024	1780	2048	2048
12	6	4096	5864	6241	6241
12	7	256	1167	1280	1280

Table 3: New upper bounds on $A_{5}(n, d)$

		best lower bound known	new npper bound	best upper bound previously known	Delsarte bound
n	d	4	250	545	554

[^0]: *Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands (gijswijt@science.uva.nl).
 ${ }^{\dagger}$ CWI and University of Amsterdam. Mailing adress: CWI, Kruislaan 413,1098 SJ Amsterdam, The Netherlands (lex@cwi.nl).
 ${ }^{\ddagger}$ Division of Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan (htanaka@ims.is.tohoku.ac.jp).

