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Abstract. A high order fluid model for streamer discharges is developed
and used to investigate propagation of negative streamer fronts in Ny. Mo-
mentum transfer theory is employed to evaluate the collision terms and
close the system of moment/balance equations. The results of simulations
are compared with those obtained by a PIC/MC method and by the classical
first order fluid model based on the drift-diffusion and local field approxi-
mations. The comparison clearly validates the theoretical basis of the high
order fluid model, while the first order fluid model underestimates many
aspects of streamer dynamics.

1. INTRODUCTION

When a strong electric field is applied to non-ionized or lowly ionized
matter, filaments of weakly ionized non-equilibrium plasma, called stream-
ers can grow. They can be observed in different kinds of high-pressure
discharges, for example in corona discharges, but they also appear in the
form of plasma bullets observed in plasma jets [1]. Streamers have applica-
tions in diverse areas of science and technology ranging from their role in
creating lightning and transient luminous events in the upper atmosphere
[2] to industrial applications such as the treatment of polluted gases and
water [3].

During the last three decades, the prevalent opinion has been that
streamer dynamics could be described adequately by the so-called first order
fluid model based on the drift-diffusion and local field approximations for
all species in the plasma-including the electrons. However, recent modeling
[5] suggests that we should revise this opinion. In typical situations (e.g., in
the pure gases and little explicit effects of photo-ionization) the local field
approximation is generally insufficient to represent the electron dynamics
as the electron energy depends upon the electric field in a wider spatial
range. One way to deal with this issue has been recently demonstrated
by Li et al. [6] through the development of the so-called extended fluid


https://core.ac.uk/display/301644141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

models. These models involve a density gradient expansion of the source
term to approximate the spatial non-locality of the ionization processes at
the streamer front. The alternative way to incorporate the complex electron
dynamics in the streamer front is to consider the energy balance equation.
In this work we illustrate that this is not a straightforward process and we
show how to derive a consistent set of fluid equations beyond the equation
of continuity and the momentum balance equation.

2. THEORY

The starting point of our formalism is a set of moment/balance
equations which is found by multiplying the Boltzmann equation by an
arbitrary function ®(¢) of the charged particle velocity, and integrating
over all velocities

gt[ncp( )] V- [n<cq>(c)>] —n%(E aaccp( ) = /cp(cJ(f))dc, (1)

where () represents the average over particle velocity ¢, ¢ and m are the
charge and mass of the charge particle, FE is the electric field vector and J
is the collision operator accounting for elastic and inelastic collisions. If one
takes ®(c) equal to 1, me, ;mc and chzc etc., one generates an infinite
series of equation, a full solution of which would be equivalent to calculating
the phase space distribution function f(r,¢,t). In practice, however, one
must truncate the chain, and in this work we propose that the energy flux

equation is crucial for the success of the fluid model of streamer discharge:

on
a‘i’v nv = Co, (2)

nmv} +V. {nm(ccﬁ

al e, (3)

CL smc2CH (5)

8
O () V(1) —nma v = Oy, ()

gt(né') +V- [ < nme cc> - nma< 60 (;mc%) >

where v = (c¢), a is the acceleration due to the electric field force, ¢ is the
mean energy and £ is the energy flux.

The fluid equations (2)-(5), obtained as velocity moments of the
Boltzmann equation are closed in the local mean energy approximation and
coupled to the Poisson equation for the space charge electric field. The
high order tensors appearing in the energy flux equation are specified in
terms of lower order moments. The collision terms are evaluated using the
momentum transfer theory, and are given by:

Co=—n(va—vr), (6)
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where v, and v, are the average collision frequencies for momentum and
energy transfer, v4 and v; are the attachment and ionization rates, while ¢
is given by ) . )
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Likewise, v; and v;® are inelastic and superelastic collision frequencies for
inelastic channel i while ¢; and Ae; are the thresholds for inelastic and
ionization processes, respectively.

3. RESULTS AND DISCUSSION

The finite volume method is used to spatially discretize the system
(2)-(5) on a uniform grid with 1000 points. To approximate the spatial
derivative we use the second-order central difference discretization while the
time derivatives are approximated with the Runge-Kutta 4 method. The
continuity equation for the electron and ion densities has a second order
spatial derivative, and therefore requires two boundary conditions for each
direction in space. For x = 0 we use Neumann boundary condition, so that
electrons that arrive at those boundaries may flow out of the system. For
x = L we employ Dirichlet boundary condition to ensure that there is no
outflow of electrons from the system. In all calculations we set L = 1.2 mm.

The average collision frequencies for momentum and energy transfer
in elastic and inelastic collisions required as an input in the fluid equations
are calculated using a multi term Boltzmann equation solution [7]. The
cross sections for the electron scattering in Ny detailed by Stojanovié¢ and
Petrovié¢ [8] are used in this work. The results of simulations are compared
with those obtained by a PIC/MC method [5, 6] and by the classical first
order fluid model based on the drift-diffusion and local field approximations.

In figure 1 we show the electron density and mean energy for elec-
trons after 1 ns. Our results and those obtained by a PIC/MC method agree
very well. High-order fluid profiles are slightly faster than those obtained
by the PIC/MC method but the agreement is much better than between
the PIC/MC results and those obtained by the first order fluid model based
on the drift-diffusion approximation, particularly for the ionization level
behind the front.

Perhaps one of the most striking properties is the behavior of the
mean energy in the streamer channel. Although the electric field is entirely
screened inside of the channel, the mean energy significantly exceeds thermal
energy. This is a typical non-local effect as the mean energy does not have
enough time to be fully thermalized in the streamer interior on the time
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Figure 1. Electron density (a) and mean energy (b) after 1 ns. The simula-
tion is started with the same initial Gaussian distribution for electrons and
ions with a maximum density of 2 x 10'® m™3 at the position z = 8 x 10™*
m from the left boundary.

scale relevant for streamer formation under conditions considered in this
work. The lower ionization density behind the front in the classical fluid
model is also the effect of too low electron energies, this time in the streamer
head.
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