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VERTEX-CRITICAL SUBGRAPHS OF KNESER GRAPHS 

A. SCHRIJVER 

ABSTRACT 

We show that if the stable (independent) n-subsets of a circuit 

with 2n+k vertices are split into k+l classes, one of the classes con

tains two disjoint n-subsets; this yields a (k+2)-vertex-critical sub

graph of Lovasz's Kneser-graph KG 
n,k 

1. INTRODUCTION 

Let n and k be natural numbers and let X be a set with 2n+k ele

ments. Call a collection of subsets of X a clan if it does not contain 

two disjoint sets. The following question arises naturally: What is 

' the minimal number of clans into which the collection of all n-subsets 

of X can be split? 

[Ann-subset is a subset with n elements.] 

In 1955 KNESER [5] raised the conjecture that the following split

ting has the minimal number of clans, where we lose no generality by 

assuming that X = {1, ... ,2n+k}. For i = 1, ... ,2n+k, let K. contain all 
J_ 

n-subsets of X whose smallest element is i. Then 

Kl' ... '~+1 '~+2 u ••• u ~+n+l 

divides then-subsets of X into k+2 clans. So Kneser conjectured that 

no splitting of then-subsets into k+l clans is possible. 

In 1977 LOVASZ [6] was able to prove this conjecture. His inter

esting proof uses homotopy theory and the following theorem of BORSUK 
k k+l 

[2] (cf. DUGUNDJI [3]) from 1933, where S ( c JR ) denotes the k-
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dimensional sphere: 

BORSUK'S THr:OREM (closed form): If Sk = Fl U ••• U Fk+l' where 

F1, ... ,Fk+l are closed subsets of Sk, then one of the sets Fi contains 

two antipodal points. 

In 1977 as well, BARANY [1] demonstrated that the truth of 

Kneser's conjecture immediately follows from the following form of 

Borsuk's theorem: 

k 
BORSUK Is THEOREM (open form) : If s = ul u .•. u uk+l' where ul, ... 'uk+l 

are open subsets of Sk, then one of the sets U. contains two antipodal 
J. 

points 

(by using simple topological arguments the two forms of Borsuk's theo

rem can be deduced from each other), together with a theorem of GALE 

[4] from 1956: 

GALE'S THEOREM: One can select 2n+k points on Sk such that each open 

hemisphere of Sk contains at least n of these points. 

(In the present paper we give explicitly a possible choice of 

these 2n+k points, found earlier by PETTY [7]). Barany's method runs 

as follows. Suppose we could divide all n-subsets of X into k+l clans, 

say c 1, ..• ,ck+l. In this case we may suppose, without loss of general

ity, that the 2n+k elements of X are situated on skin a way as formu-

lated in Gale's theorem. For i 1, •.. ,k+l, let ui be the (open) set 

of the centers of those open hemispheres which enclose an element of Ci 

(this element being a subset of X and hence of Sk). Since, by Gale's 

theorem, each open hemisphere includes at least one n-subset of X, we 
k 

know that s = u 1 u .•• u uk+l. Hence Borsuk' s theorem assures the exist-

ence of two antipodal points in, say, Ui. But antipodal points are the 

centers of disjoint open hemispheres, and these hemispheres include 

necessarily disjoint n-subsets in Ci' contradicting the fact that Ci 

is a clan. 

One may translate Kneser's conjecture in the language of graphs, 

by defining the Kneser-graph KG k as follows. The vertices of KG k n, n, 
are then-subsets of X, two vertices being adjacent iff they are, as 
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n-subsets, disjoint. So clans induce independent sets of vertices of 

KGn,k" KG211 is the well-known Petersen-graph. 

Now dividing n-subsets of X into l clans coincides with colouring 

the vertices of KG k with l colours such that adjacent vertices have 
n, 

different colours; the vertices coloured with some fixed colour to-

gether form a clan. So Kneser's conjecture, i.e. Lovasz's result, can 

be formulated as: the colouring number of KG k equals k+2. n, 
Do we always need the graph KG k completely to conclude that 

n, 
this graph is not (k+l)-colourable? Evidently not, since if k = 1, 

the existence of an odd circuit in KG 1 is already enough for known, 
ing that KG 1 is not 2-colourable. Therefore one may ask for minimal 

n, 
not-(k+l)-colourable induced subgraphs of KG k' i.e. for induced subn, 
graphs of KG k which are not-(k+l)-colourable, but if we delete any 

n, 
vertex of these subgraphs they will be (k+l)-colourable. Otherwise 

stated, find collections, consisting of n-subsets of X, which cannot 

be split into k+l clans, but whose proper subcollections all are par

titionable into k+l (or less) clans. 

A graph whose proper induced subgraphs all have a lower colouring 

number than the colouring number c of the graph itself is called c

vertex-critical. So we are looking for (k+2)-vertex-critical subgraphs 

of KG k; in this note we present such subgraphs. 
n, 
To this end, define an n-subset X' of X = {1, ... ,2n+k} to be 

stable if for no i = 1, ... ,2n+k-1 both i EX' and i+l EX', nor both 

2n+k EX' and 1 EX'; i.e. a subset is stable if it does not contain 

two neighbours in the cyclic ordering of {l, .•• ,2n+k}. 

By giving an explicit embedding of 2n+k points on sk satisfying 

the claim of Gale's theorem we prove the non-(k+l)-colourability of 

the subgraph of KG k induced by those vertices of KG k representing n, n, 
stable n-subsets of X = {1, ... ,2n+k}. That is, the collection of sta-

ble n-subsets of X cannot be divided into k+l clans. We also show 

that this last indeed is possible for each of its proper subcollec

tions. 

Note that in case k = 1 the stable n-subsets of {1, ..• ,2n+l} in

duce an odd circuit in KG 1 . 
n, 
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2. VERI'EX-CRITICAL SUBGRAPHS 

We first give an explicit embedding of 2n+k points on the k

dimensional sphere Sk such that each open hemisphere contains at least 

n of these points (cf. PETTY (7]). For this we need the following ob

servation about the values of polynomials. 

OBSERVATION. Let p(x) be a non-zero polynomial of degree at rwst k, 

with real coefficients. Then there is a stable n-subset X' of 

{1, .•• ,2n+k} such that (-1)ip(i) > 0 whenever i e X'. 

PROOF. Let p(x) be such a polynomial. Define inductively the sequence 

i 0 ,i 1,i2,i3 •.• of integers by 

(1) 

(2) 

(3) 

i 0 is the largest nonpositive integer such that 

io 
(-1) p(i0) > O; 

i 1 is the smallest positive integer such that 

il 
(-1) p(i1) > O; 

il is the smallest integer such that il ~ il-l + 2 and 

il . 
( -1) p ( 1 l) > 0, for l "' 2, 3, 4. . • . 

Clearly, this sequence is infinite. Now take X' = {i1 , •.• ,in}. We are 

ready once we have proved that ins 2n+k and in-il ~ 2n+k-2. 

To this end let, for real numbers rands, Z(r,s) be the number 

of zeros of p(x) contained in the open interval (r,s), counting f-fold 

zeros f times (fern). We prove that 

(4) for l = 1 , 2, 3, • • • . 

Appropriately adding some of these inequalities yields the inequalities 

we need, since Z(-00 ,in) s k. 

First remark that if all integers in the open interval (c,d) are 

zeros of p(x), where c and dare integers, then Z(c,d) ~ d-c-1. If 

furthermore (-l)cp(c) (-l)dp(d) > 0 then Z(c,d) = d-c (mod 2), whence 
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z (c,d) :::: d-c. 

Now to show (4), for l 

between i 1_1 and it. Let 

1,2,3, •.. , look at the behaviour of p(x) 

be those integers in the closed interval [i1_1 ,il] which are not a 

zero of p(x), and consider the sequence of numbers 

By (3) above these numbers are negative except the first and last one 

and possibly the. second one. Hence at most two of the products of two 

consecutive terms in this sequence are negative, the remaining pro

ducts being positive. 

So, by our remark, we have Z(j 1 ,j ) ~ j - j 1 , for s 1, ... ,m 
s- s s s-

with at most two exceptions; but in all cases Z (js-l 'js) 2: js - js-l - 1. 

Therefore, by adding inequalities we get 

il-1 - 2, 

thus proving (4). 0 

Next define, for each natural number i, the vector vi E lRk+l by 

( 1 } i ( l . . 2 . k) 
- ,i,i , ••• ,1 • 

By projecting the vectors v1 , ..• ,v2n+k onto the sphere Sk we obtain 

2n+k points 

vl 
~ , •.. ,w2n+k 

situated on Sk and satisfying a stronger form of Gale's claim, as 

stated in the following theorem (cf. PETTY [7]). 

THEOREM 1. Each open hemisphere of Sk encloses an n-subset of 

{ w. I 1 ~ i ~ 2n+k} whose indices form a stable subset of { 1, ... , 2n+k}. 
l. 
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PROOF. Choose a hemisphere with center, say, a= (a , ••• ,a). This 
-- 0 k 
hemisphere contains the point wi if and only if the inner product of 

a and wi is positive, that is, if and only if 

Since p(x) = a 0 + a 1x + a 2x2 + '1cxk is a non-zero polynomial of de

gree at most k, the observation gives us that a stable n-subset X' of 

{l, ••• ,2n+k} exists such that (-l)ip(i) > 0 whenever i EX'. Hence 

the vectors wi with index i in X' have the required properties. D 

Now we are able to prove, in a manner analogous to Barany's man

ner of proving Kneser's conjecture, the following sharpening of 

Kneser's conjecture. 

THEOREM 2. It is not possible to divide the stable n-subsets of 

{1, •.• ,2n+k} into k+l clans. 

PROOF. Suppose c 1, •.• ,ck+l are clans such that each stable n-subset 

of {1, ... ,2n+k} is in at least one of them. Let U. consist of all cen
l. 

ters of those open hemispheres which enclose any n-subset {w. Ii EX'} 
k l. . 

with X' E Ci (i=l, ••• ,k+l). By theorem 1, S = ul u ••• u uk+l. Si.nee 

each Ui is open, the open form of Borsuk's theorem implies the exist

ence of two antipodal points in some ui. Since antipodal points are· 

the centers of disjoint open hemispheres, there are disjoint n-subsets 

in C .• This contradicts the fact that c. is a clan. D 
l. l. 

Let, by definition, the reduced Kneser-graph KG' k have as ver
n, 

tices all stable n-subsets of {1, .•. ,2n+k}, two of them being adjacent 

if they are disjoint. So KG' k is an induced subgraph of KG k" Theo-n, n, 
rem 2 in fact asserts that the colouring number of KG' equals k+2. 

n,k 

We conclude with showing that the collection of stable n-subsets is 

minimal (under inclusion) with these properties, in other words 

THEOREM 3. The reduced Kneser-graph KG' k is (k+2)-vertex-critical. 
n, 

PROOF. By theorem 2 it is enough to show that if Sis a stable n-subset 
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of {1, ••• ,2n+k} then the collection 

{X' IX' is a stable n-subset of {l, ... ,2n+k}, and X' ~ s} 

can be split into k+l clans. So choose S. 

Consider the circuit with vertices 1, .•. ,2n+k, two vertices i and 

j being adjacent iff i = j + 1 or i = j - 1 (mod 2n+k). Let the set S' 

consist of all elements of S together with all points adjacent in C 

to any element of S. We may split the set S' uniquely into disjoint 

classes T1, ••• ,Tm' such that each of them induces on Ca path with 

both end points in S'\S, and such that no class contains two adjacent 

points of S'\S (except in the trivial case k = 1). So S' has 2n+m 

points, and there remain k-m points which are in {1, ••• ,2n+k}\S'. Each 

of these remaining points determines a clan consisting of all stable 

n-subsets containing the point; this provides us with the first k-m 

clans H1, ••• ,¾-m· 

Let a and b be the two end points of the path determined by T1; 

clans H. 1 and Hk 2, respectively, have as elements all stable n-
k-m+ -m+ 

subsets containing a and b, respectively. 

The clans H1, •.. ,Hk-m+2 together contain all stable n-subsets of 

{1, •.. ,2n+k} except those completely contained in S'\{a,b}. Now ob

serve that 

( 1) 

and 

(2) 

each stable n-subset contained in S'\{a,b} either encloses 

T1 n Sor encloses, for some j = 2, ••. ,m, Tj\S, 

each stable n-subset contained in S'\{a,b} and different 

from S meets some Tj\S (j = 2, ... ,m). 

(1) and (2) imply that the collections 

a = {X' IX' is a stable n-subset of S'\{a,b} such k-m+j+l 

that Tj\S C X' or both Tl n s C X' and X' n (Tj\S) ~ ~} 
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(j = 2, •.. ,m) together contain all stable n-subsets of S'\{a,b} dif

ferent from S. Since T1 n Sand Tj\S are nonempty, the collections 

l\-m+3 , ... ,Hk+l are clans. Hence H1 , .•. ,Hk+l partition all stable n-

subsets of {1, •.. ,2n+k} different from S into k+1 clans. D 

REFERENCES 

[1] BARANY, I., A short proof of Kneser's conjecture, J. Combinatorial 

Theory (B), to appear. 

[2] BORSUK, K., Drei Satze uber die n-dimensionale euklidische Sphare, 

Fund. Math. 20 (1933) 177-190. 

[3] DUGUNDJI, J., Topology, Allyn & Bacon, Boston, 1966. 

[4] GALE, D., Neighboring vertices on a convex polyhedron, in: Linear 

inequalities and related systems (H.W. Kuhn & A.W. Tucker, 

eds.), Annals of Math. Studies 38, Princeton University 

Press, Princeton, N.J., 1956, pp. 255-263. 

[SJ KNESER, M., Aufgabe 360, Jber. Deutsch. Math.-Verein. 58 (1955/56) 

2.Abt. p.27. 

[6] LOVASZ, L., Kneser's conjecture, chromatic number and homotopy, 

J. Combinatorial Theory (B), to appear. 

[7] PETTY, C.M., Equivalent Point Arrangements in Space and on a 

Sphere, Arch. d. Math. 27 (1976) 645-648. 

(Received, April 17, 1978; in revised form July 17, 1978) 


