
X-Device Query Processing by Bitwise Distribution

Holger Pirk Thibault Sellam Stefan Manegold Martin Kersten
CWI, Amsterdam CWI, Amsterdam CWI, Amsterdam CWI, Amsterdam

The Netherlands The Netherlands The Netherlands The Netherlands

holger@cwi.nl sellam@cwi.nl manegold@cwi.nl mk@cwi.nl

ABSTRACT
The diversity of hardware components within a single system calls
for strategies for efficient cross-device data processing. For exam-
ple, existing approaches to CPU/GPU co-processing distribute indi-
vidual relational operators to the “most appropriate” device. While
pleasantly simple, this strategy has a number of problems: it may
leave the “inappropriate” devices idle while overloading the “ap-
propriate” device and putting a high pressure on the PCI bus. To
address these issues we distribute data among the devices by par-
tially decomposing relations at the granularity of individual bits.
Each of the resulting bit-partitions is stored and processed on one
of the available devices. Using this strategy, we implemented a pro-
cessor for spatial range queries that makes efficient use of all avail-
able devices. The performance gains achieved indicate that bitwise
distribution makes a good cross-device processing strategy.

1. INTRODUCTION
Computer systems have ceased to be centralized systems in which
a CPU controls dumb storage devices. Special purpose extension
cards that can support the CPU, in particular General Purpose Graph-
ics Processing Units (GPGPUs), are available at low prices. The
design and use of these cards, however, is fundamentally different
from the one of the CPU. Fast sequential execution based on be-
havior prediction (pipelining, prefetching, branch prediction, ...) is
replaced by simple, yet massively parallel, execution. The inter-
nal memory of these devices is usually orders of magnitude faster
but offers much smaller storage capacity than traditional memory
and lacks the benefits of virtual addressing. While this can make
their use difficult, it can also provide opportunities for significant
gains in application performance. The high bandwidth and com-
pute power of have aroused interest of data management researchers
[2, 6, 14, 5, 15, 13, 6]. While computation-intensive applications
are a natural fit for the massively parallelized architecture of GPG-
PUs, the, rarely computation intensive, processing of relational que-
ries can not benefit from the available compute resources to the ex-
tend possible. However, data intensive applications like relational
query processing can still benefit from the fast memory of GPUs if
implemented appropriately.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Eighth International Workshop on Data Management on
New Hardware (DaMoN 2012), May 21, 2012, Scottsdale, AZ, USA.
Copyright 2012 ACM 978-1-4503-1445-9 ...$10.00

I/O
Hub

Memory

Core 1 Core 2 Core 4

Memory Controller

Memory Memory

8.5 GB/s

GPU

Graphics
Memory

QPI
(25.6 GB/s)

8.5 GB/s

...

177.4 GB/s
PCI-E x 16

 (8 GB/s)

Figure 1: The Architecture of a typical GPU/CPU System

Unfortunately, the relatively small memory capacity and the lack
of virtual memory management complicate the efficient manage-
ment of large database on GPGPUs. The current state-of-the-art is
to ship (parts of the) data to the GPU, process individual relational
operations and transfer the results back to the main CPU [14]. As
illustrated in Figure 1, the PCI-Bus has more than an order of mag-
nitude lower throughput than the internal device memory. Contin-
uous transfer of data through this bus can become a major bottle-
neck for CPU/GPU co-processing [11]. While the expensive cross-
device transfer can be avoided in some cases, the costs for the nec-
essary streaming of large datasets can negate the cost improvement
achieved by the GPU processing. To mitigate this problem to some
extend, data compression can help to reduce the data volume in the
limited GPU memory [7]. However, lossless data compression may
fail to achieve the necessary savings or hurt the performance due to
the decompression costs. In particular the massively parallelized
architecture of GPUs limits the arsenal of efficient compression
methods. An alternative to reduce the data volume is the use of
sampling techniques [19]. While samples are a good means to re-
duce the data size, they are merely useful to gain a rough overview
of the available dataset. To gain precise results, sampling is not a
suitable technique.

To efficiently exploit the superior bandwidth of the GPU’s inter-
nal memory we propose to re-evaluate the techniques that helped
reducing the footprint of main memory resident databases: the De-
composed Storage Model (DSM) [4] reduced the footprint to the
columns that are actively used for query evaluation, i.e., the hot
columns. On top of that, lightweight compression of the values
within a column proved effective [20]. However, to achieve the
necessary compression, decomposing tuples into columns of scalar
values may not be enough. To limit the data volume to the capac-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) Traffic in Western Berlin (b) Drill-Down to Dreieck Funkturm (A Traffic Hot Zone)

Figure 2: Spatial Drill-Down

ity of the respective device memory we propose to take data de-
composition to the next level: Bitwise Decomposition. Each of the
resulting bit-partitions is stored (non-redundantly) and processed
on the most appropriate device. The data volume on each device
can be controlled by varying the number of bits that are stored in
the device memory. Combined with lightweight compression this
promises GPU-supported data processing without the need for ex-
pensive cross device data transfers.

To this end, we make the following contributions:

• We introduce the idea of Bitwise Distribution of relational
data across processing devices.

• We develop a model to determine the optimal distribution
strategy.

• We evaluate Bitwise Distribution in combination with Frame
Of Reference/Delta compression for range queries on real-
life spatial trajectory data.

The remainder of this paper is organized as follows. In Section 2
we present our use case, and provide an overview of the benefits
and challenges that come with GPGPU programming. In Section 3
we describe the data distribution strategy, its implementation and
the calculation of the necessary tuning parameters. The query pro-
cessing on top of the distributed data is described in Section 4. In
Section 5, we evaluate our approach and conclude in Section 6.

2. BACKGROUND
To introduce the problem, we provide a brief overview of estab-
lished spatial data indexing techniques, and how our work differs
from these. Following that, the boundary conditions of GPGPU
processing as well as the resulting opportunities and challenges will
be discussed.

2.1 Spatial Data Management
The use case that motivates this work is the need for quick retrieval
of historical GPS data in a traffic analysis context. A database
stores several years of vehicle movements on the European road
network to support applications such as traffic forecast or infras-
tructure monitoring. Figure 2 illustrates the monitoring of traffic

in the city of Berlin. Reporting is generally focused on certain hot
zones of traffic. This results in spatial window (i.e., 2 dimensional
range) selection queries. The results of these queries can either be
displayed directly or post-processed by more sophisticated applica-
tions. These include data mining or decision support applications.
Since the data as well as the queries are two-dimensional, classical
index-structures do not support the application well.

There has been substantial work on spatial data management, espe-
cially on spatial indexing methods. The general idea is to cluster
the data according to their geographical proximity in order to im-
prove I/O performance. Many data structures have been proposed.
Among those, the R-Tree [12] is ubiquitous. It encloses spatial
objects in bounding boxes. More precisely, a node represents the
smallest possible bounding box that can cover its child nodes. The
major drawback of this data structure is that the entries might over-
lap and contain empty space, which degrades worse case lookups
performance. Many improvements were proposed. For instance,
R+ trees [12] follow similar principles, but do not allow bounding
boxes to overlap. This allows faster traversals, at the cost of higher
construction and maintenance costs. Another family of methods
relies on spatial grids to index the data. For instance, a uniform
grid is proposed in [8]. However, such a grid is not well-suited to
non uniform distributions. The quad-tree is a popular alternative.
Each node represent one of four quadrants of its parent node [18].
This allows adaptive data storage. Finally, the data may be adapted
to traditional single dimension data structures by applying dimen-
sionality reduction techniques such as space filling curves. For in-
stance, Z-ordering [9] relies on bit interleaving, which preserves
some spatial locality.

Our aim is to support a large volume of simultaneous queries: we
target bandwidth rather than latency. Therefore, our approach to re-
trieving spatial data is orthogonal. It relates mainly to work carried
out on bulk data processing, illustrated by systems such as Mon-
etDB [3]. There are two main differences with the previously pre-
sented data structures. First, we assume that current hardware pro-
vides sufficient throughput to scan a complete dataset efficiently,
while the branches induced by traditional index structures are ill-
suited for massively parallel processing. Second, we rely on a bit-
level decomposition of the data. There is to our knowledge little to
no work using it for multidimensional data storage and retrieval.

2.2 GPGPU Programming
The programming of a GPU is very different from the program-
ming of a CPU. This is largely due to the fundamentally different
architecture. To achieve high compute power at low costs, GPUs
rely on a parallelism paradigm called Single Instruction Multiple
Threads (SIMT).

Single Instruction Multiple Threads
The notion of SIMT is a peculiarity of GPU hardware and the
source of a common misconception of GPU programming. Even
though a GPU supports many parallel threads, these are not inde-
pendent as they are on a CPU. All cores of a processor execute the
same instruction at any given cycle. An ATI Evergreen-class GPU,
e.g, has 16 SIMT-cores which execute every instruction for at least
4 cycles. Thus, every scheduled instruction is executed at least 64
times. Each core does, however, have its own registers and usu-
ally operates on different data items than the other cores. A set of
threads coupled like that is called a Work Group. A work group of
less than 64 items underutilizes the GPU’s computation units. This
also has a severe impact on branching: if one branch in a Work
Group diverges from the others the branches are serialized and ex-
ecuted on all cores. The cores that execute a branch involuntarily
simply do not write the results of their operations.

The Programming Model
Programming the high number of SIMT-cores of a GPU in an im-
perative language with explicit multithreading is a challenging task.
To simplify GPU programming, a number of competing technolo-
gies based on the kernel programming model have been introduced.
The most prominent ones are: DirectCompute, CUDA [17] and
OpenCL [16]. While the earlier two are proprietary technologies,
the later is an open standard that is supported by many hardware
vendors on all major software platforms. The supported hardware
does not just include GPUs, but CPUs as well: Intel and AMD pro-
vide implementations for their CPUs, AMD and NVidia for GPUs.
Apple, one of the driving forces behind OpenCL, ships their current
OS version with an OpenCL implementation for both GPUs and
CPUs. The portability does, however, come at a price: to support a
variety of devices, OpenCL resorts to the least common denomina-
tor, which radically limits the programming model.

The most important concept in OpenCL is the Kernel: a function
that is defined by its (OpenCL) C-code, compiled at runtime on
the Host, transferred in binary representation and executed on the
device. The Kernel is then scheduled with a specified problem size
(essentially the number of times the kernel is run) to operate on a
number of data buffers.

A Priory Fixed Problem Size
This is done by dispatching the kernel (the compiled processing
function) for execution on the device with the problem size as a
parameter (e.g., n). The kernel is then executed exactly n times.
Each invocation has access to an id that can be used to determine
which piece of the work to do. If the problem size is not known a-
priori, a workaround is to use a single complex thread to do all the
work. Naturally, reducing the degree of parallelism on a GPU has
a negative impact on performance. Another solution is to specify
an upper bound on the problem size and abandon the execution
of some of the kernels at runtime. Since no new kernel can be
scheduled to a core until the work group has finished, this may also
lead to underuse of the available compute power.

00000000 00111010 01101110 01011101
Prefix Key Suffix Residual

Figure 3: Bitwise Decomposition of Spatial Values

000000000011101001101...
000000000001001101111...
000000000001001111011...
...
000000000001111111011...

Prefix List
1100
0100
0001
1000
1111
0011
1100
0101
...
1111
0000

Suffix List
1011101
0110100
0110110
0000110
1000111
0100011
1001110
0000111
...
0110110
0011010

Residual List

...

GPU CPU

Figure 4: Bitwise Distribution of Spatial Values

Static Memory Allocation
The OpenCL programming model does not allow dynamic (re)allo-
cation of memory. Similar to the problem size, input and output
memory sizes have to be specified up front. While this is a prob-
lem for operations with a large upper bound on the output size (e.g.,
joins), for selection queries an overallocation of output and an over-
flow check at runtime mitigates this problem. Even though the lack
of memory reallocation is a problem it also has a significant per-
formance advantage. Memory can be addressed using physical ad-
dresses, which eliminates the need for costly translation from vir-
tual to physical addresses and speeds up memory access.

3. DATA LOADING
In this section we introduce how the GIS data is prepared for pro-
cessing. We introduce two splits at the bit level in order to spread
data between the devices. However, determining where to split is
non trivial. A model of GPGPU memory consumption is presented,
as well as our clustering algorithm.

3.1 Bitwise distribution
Thanks to their high bandwidth, GPUs can evaluate queries very
efficiently. However, their limited memory capacity complicates
their effective use on large datasets. To resolve this problem, the
GPU can be used to generate an (over)approximate answer to the
query. The CPU can be used, subsequently, for result set refinement
and tuple reconstruction. Figure 3 illustrates a data partitioning
scheme to support such GPU/CPU co-processing. The GPU holds
the most selective components of the data while the main memory
holds the bits necessary to restore the original values (residuals). In
our use case, we choose the most significant bits of the coordinates
in each dimension. The data in the GPU memory is essentially a
reduced-resolution representation of the original data.

To minimize the number of false positives, the query dependent se-
lectivity of the GPU resident data has to be maximized under the
given GPU memory limitations. This is achieved through a simple
form of prefix compression: the GPU-resident bits are split into a
prefix and a suffix. The suffixes of all values with a common pre-
fix are physically clustered and stored in a suffix list. The prefixes,
together with the respective offset into the suffix list are stored in
a prefix list (Figure 4). We expect that in most spatial datasets,

Denotation Description
p Prefix size (bits)
s Suffix size (bits)

i ∈ {X ,Y} Dimension
Di Size of coordinate i (bits)

Dm Smallest value of Di (bits)
O Size of a pointer to a cluster (bits)

Hi,Li Highest, lowest value on i
MAX Shared memory of the GPU

N Number of items
Pi(p) Clusters in dimension i

S(p,s) Space required for (p,s)

Figure 5: Parameters and variables of the space usage model

the prefix bits of coordinates offer less variations than the suffixes.
This allows efficient physical clustering and subsequent compres-
sion. For instance, the integer representation of a standard positive
latitude with five decimals (up to 90x105, the comma is implicit)
always contains a null byte prefix.

3.2 Bitwise Decomposition
Finding a good split between prefixes, suffixes and residuals given
a GPU memory capacity is a non-trivial problem. This section
presents a model of the memory consumption for a given decom-
position. We apply bounded search over the candidate solutions
yielded my the model in order to find an optimal decomposition.

We apply our model to the two dimensions (longitude, latitude) of
our use case, represented by i ∈ {X ,Y}. Generalizing it to higher
dimensionality is straight forward. p is the size in bits of the pre-
fixes, s the size of the suffixes, Di the number of bits necessary to
represent one coordinate (Di = 32 bits for an integer). For each di-
mension, Hi and Li represent respectively the highest and the lowest
values in the dataset. N is the total number of items. The memory
capacity of the GPU is MAX . These parameters are summarized in
Figure 5.

Figure 6 shows the maximal value of the objective function that
can be achieved varying p with our use-case dataset and hardware.
Increasing the prefix size allows better compression. Then, more
bits can be stored on GPU, and less on the CPU. However, any
value of p greater than 25 yields clusters that are too large to fit in
GPU memory. This point is precisely what is targeted.

The range of values that can be covered by a prefix p in one dimen-
sion is 2Di−p. Therefore, the total number of prefixes necessary to
represent all the values in a dimension is:

Pi(p) = b Hi

2Di−p c−b
Li

2Di−p c+1

As a result, the total number of clusters in two dimensions given the
size of the prefixes is PX (p)PY (p). For each cluster, the GPU stores
the prefix p and a pointer to the suffix list. The size (in bits) of the
pointer is O. Inside the clusters, each of the N points is represented
with s bits for each dimension. Therefore, with two dimensions,
the total storage footprint associated with a partition scheme (p,s)
can be expressed as:

S(p,s) = 2(p+O)KX (p)KY (p)+2Ns

The objective is to store as much information about the data as
possible on the GPU. Under these assumptions, the partitioning

0

4

8

12

16

20

24

28

32

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

M
ax

 O
bj

ec
tiv

e
Fu

nc
tio

n
(p

+s
)

Prefix Size in Bytes (p)

Optimum
Fast Approximation

Figure 6: Optimal splits for varying k

strategy research may be expressed as a constrained optimization
problem:

Max
p,s

p+ s (o)

s.t. S(p,s)≤MAX (c1)
0≤ p+ s≤ LX (c2)
0≤ p+ s≤ LY (c3)
p,s ∈ N (c4)

A bounded search in the solution space is a simple and efficient
way to reach an optimal solution. The algorithm in Figure 7 illus-
trates the procedure. The worse case complexity of the algorithm
(i.e., size of the search space) is O(

Dm(Dm−1)
2) with Dm = min

i∈{X ,Y}
Di.

However, it seems reasonable to assume low minimum values (Li)
for most data sets. Also, during the exploration, if a candidate so-
lution (p,s) violates (c1) then any subsequent improvement of p or
s can be discarded. This allows pruning of the search space.

An acceptable approximation of the optimum may quickly be ob-
tained by assuming that constraint (c1) is always met. This is ap-
plicable to any dataset wider than the GPU capacity. In this case,
the optimization problem becomes:

Max
p,s

p+ s (o′)

s.t. (p+O)KX (p)KY (p)+Ns = MAX/2 (c1′)

0≤ p+ s≤ min
i∈{X ,Y}

Di (c2′)

p ∈ N,s ∈ R (c3′)

Equation (c1′) yields an approximation of the optimal suffix size
given a prefix:

s̃(p) = bMAX
2N
− p+O

N
KX (k)KY (k)c

Thereby, the whole optimization system may be approximated as
follows:

Max
p∈N

p+ s̃(p)

s.t. p+ s̃(p)≤ min
i∈{X ,Y}

Di

Such result can be obtained in O(min
i∈{X ,Y}

Di) by enumerating the

possible values of p.

pmax← 0
smax← 0
for p = 1→ Dm do

for s = 1→ Dm− k do
size← S(p,s)
if size > MAX then

break
end if
if p+ s > pmax + smax then

pmax← p
smax← s

end if
end for

end for

Figure 7: Optimal split lookup algorithm

3.3 Implementation
Once the optimal parameters are determined, the data can be de-
composed accordingly. This is done in two phases. In the first
phase, the data is scanned to build the prefix list (see Figure 3)
according the number of prefix bits k. This step is similar to the
determination of the size of the clusters of a radix clustering. The
offsets into the suffix list are generated by prefix-summing the clus-
ter sizes in the prefix list.

In the second phase, the data is scanned again to fill the suffix and
residual list. This is equivalent to the clustering step of a radix
clustering. After this phase, the data is in bitwise decomposed rep-
resentation. The cluster and delta lists are transferred to the GPU
memory and freed in the system’s main memory, while the resid-
ual list is kept in the main memory. Therefore the data is distributed
over the available devices.

4. QUERY PROCESSING
The decomposed distribution of the stored tuples largely determines
the query processing strategy. The query is evaluated in phases with
every device being responsible for one phase of the query evalua-
tion. In each phase, the device does the best with the data it has
available: narrowing down to the final result as much as possible
and (partially) reconstructing the tuple values. In a (quite com-
mon) CPU/GPU co-processing setup, the processing is done in two
phases: GPU Preselection and CPU Refinement. Since the result
of each phase is a (potentially inaccurate) representation of tuples
in the database, the two steps can be implemented like operators
in a relational DBMS. Due to the high overhead when transferring
data across devices, the Volcano-model [10] is not well suited to
connect these operators. We, thus, implement them in the bulk pro-
cessing model: in each phase the intermediates are materialized
into the device’s memory and copied once the processing phase
has completed. When handling continuous query streams, the two
evaluation phases of different queries can be interleaved, keeping
all devices busy.

4.1 Phase 1: GPU Preselection
In the first phase, the GPU performs what can be considered a pre-
filtering of the dataset. Since the GPU memory only contains an
approximate representation of the data (it misses the residuals), it
cannot give an exact answer to the query. Instead it does a best-
effort filtering of the tuples and returns partial results (see Figure 8).
The partial result set is a superset of the exact answer to the query,
but contains all the information for the CPU to narrow it down to

t y p e d e f s t r u c t {
s h o r t queryID ;
i n t p a r t i a l X , p a r t i a l Y ;
i n t t u p l e I D ;

} P a r t i a l R e s u l t ;

Figure 8: Partially Reconstructed Tuple

00000000 00111010 01101000 00000000

 110 0
00000000 00111010 01101110 00000000

1011101

00000000 00111010 01101110 01011101

Prefix

+ Suffix

+ Residual

= Full Tuple

= Partial Tuple

00000000 00111010 01101110 00000000Partial Tuple

GPU
CPU

Figure 9: Cross-Device Tuple Reconstruction

the exact result set.

Parallelization
The high degree of processing parallelism in GPUs calls for an
equally high degree of parallelism in the query processor imple-
mentation. To achieve this, we parallelize the query evaluation in
two dimensions: the queries and the data clusters. Every combi-
nation of query and cluster is assigned to one thread. While the
number of queries is moderate (hundreds), the number of clusters
(as determined by k) is usually high (in the range of tens of thou-
sands). This results in a high degree of parallelism that can be used
for efficient GPU data processing. However, the work items are
grouped into work groups without optimization. Due to the SIMT
processing model, the processing time spent on a cluster is deter-
mined by the size of the largest cluster in the work group. To some-
what mitigate this problem for highly skewed data, we split unusu-
ally large clusters into smaller chunks. Clustering work items into
groups with similar cluster size is an optimization that we consider
future work.

Runtime Pruning
When evaluating a relatively low number of queries (thousands) on
the high number of clusters, it frequently happens that a cluster is
hit by no query. Since the overlap of the cluster with the query can
be checked by looking at it’s prefix, skipping cluster scans is an
easy optimization. This is a case of the workaround we discussed
in Section 2.2: bounding the problem size and abandoning kernel
execution at runtime.

4.2 Phase 2: CPU Refinement
In the second phase, the CPU copies the partial results from the
GPU’s device memory and joins them with the main memory res-
ident residual list. Since this is an invisible/positional join [1] on
the tupleID, it is cheap. The partial results are combined with the
residuals to produce the final tuple values (see Figure 9). The query
conditionals are evaluated again on the reconstructed values and the
results, in case of a hit, copied to the output buffer.

5. EVALUATION
To evaluate the performance impact of our approach, we compare
it to existing CPU-only and GPU-only approaches. As benchmark
we use a set of range queries on a spatial trajectory database.

5.1 Setup
The experiments where run on a machine with two Intel(R) Xeon(R)
CPU X5650 @ 2.67 GHz with 48 GB of main memory. The used
GPU is a GeForce GTX 480 with 1.5 GB device memory.

The data is a real-life dataset consisting of around 240 Million 2D
spatial datapoints. The data was collected by an industry partner by
tracking Navigation Devices in North-Western Europe. The queries
are generated by randomly selecting a point from the dataset and
constructing a rectangle around it. The size of the rectangle is ran-
dom but within a maximum. The generation of the queries is ac-
cording to a workload description that we received from mentioned
industry partner.

5.2 Loading
The data is stored on disk in binary format. Before the query eval-
uation is started it is loaded into main memory and decomposed/-
compressed as necessary for the presented query evaluation tech-
nique. As discussed in Section 3.3, decomposition and compres-
sion involves radix clustering the data. This is likely to increase the
loading costs. To give an impression of the decomposition costs,
Figure 10 shows the base costs for loading and the added costs for
the clustering step. As expected, the clustering doubles the costs
since it involves a second pass through the data.

5.3 Query Processing
To evaluate the query processing techniques, we varied three dif-
ferent parameters: 1. The number of queries evaluated, 2. the pro-
cessing device (GPU vs. CPU), 3. the data representation (bitwise
decomposed (BWD) vs. attribute-wise decomposed).

Since we parallelize query processing with the number of queries
on the GPU, we effectively turned the evaluation of many queries
into a single, parallelized nested loop (theta) join. For reference, we
also report the results of a similar evaluation technique on the CPU.
All processing models that evaluate multiple queries in a single run
through the queries are marked with QJ=QueryJoin.

Figure 11a shows the results of our main experiment. CPU is the
processing of the queries in a query-at-a-time manner on the plain
data. This is the baseline for our evaluation. The state of the art for
GPU processing relies on streaming the plain data to the GPU and
evaluating the queries in parallel. While the performance compared
to CPU-based processing is worse for a single query, the GPU ben-
efits from larger query sets.

The QueryJoin optimization on the CPU shows worse performance
than the baseline: The more complex loops seem to hurt CPU ef-
ficiency. The same holds when combining bitwise decomposition
with the QueryJoin optimization. The evaluation of 2048 queries
was not complete within 30 minutes at which point we aborted the
query evaluation.

Bitwise decomposed storage and processing on the CPU is the best
evaluated solution when evaluating a single query. For larger query
sets, GPU/CPU co-processing outperforms all other approaches sig-
nificantly. For 2048 parallel queries, GPU/CPU co-processing is

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21

Ti
m

e
in

 s

Number of Cluster Bits k

Loading Clustering

Figure 10: Data Loading+Clustering Time

about 6 times faster than bitwise decomposition on the CPU and
more than two orders of magnitude faster than GPU processing on
plain data. CPU processing on plain data is outperformed by more
than three orders of magnitude.

In addition to the query evaluation performance, bitwise decompo-
sition promises good load balancing over the available devices. To
illustrate this, Figure 11b shows the time that is spent processing
data on each device. It shows that single queries induce most of
their load on the GPU, the load is almost perfectly distributed for
larger query sets.

6. CONCLUSION AND FUTURE WORK
Efficient CPU/GPU processing is still an open research challenge.
We presented a viable solution to this problem, tackling it by de-
composing data into individual bits. Our approach outperforms cur-
rent CPU/GPU co-processing strategies by more than two orders of
magnitude for a spatial selection benchmark on real life data. This
makes it a very attractive paradigm for relational cross device query
processing.

However, we believe that there is still room for further research. Fo-
cusing on the general strategy, we deliberately abstained from rig-
orous optimization to the available hardware (GPU and CPU alike).
We believe that with more sophisticated optimization, focusing on,
e.g., GPU memory access, we may improve the performance of our
implementation even further. We also believe that co-processing
setups other than GPU/CPU could benefit from the approach. SS-
D/HDD as well as physically distributed (Client-Server) architec-
tures are likely candidates. In addition, we also believe that a study
of the approach for other applications (joins, grouping, data min-
ing, ...) is of value.

Acknowledgments
The work reported here has partly been funded by the EU- FP7-ICT
project TELEIOS. This publication was supported by the Dutch
national program COMMIT.

.1
1

10
100
1K

10K
100K

1M

CPU GPU
(QJ)

CPU
(QJ)

 CPU
(QJ/BWD)

CPU
(BWD)

GPU/CPU
(QJ/BWD)

Ev
al

ua
tio

n
Ti

m
e

in
 m

s
1 Query 256 Queries 2048 Queries

(a) Processing Time by Evaluation Technique

0%

25%

50%

75%

100%

1 256 2048

Pe
rc

en
ta

ge
 o

f T
im

e
Sp

en
d

Number Of Queries

GPU Phase CPU Phase

(b) Load Distribution for GPU/CPU

Figure 11: Query Evaluation Performance

7. REFERENCES
[1] D. Abadi, S. Madden, and N. Hachem. Column-stores vs.

row-stores: How different are they really? In Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, pages 967–980. ACM, 2008.

[2] P. Bakkum and K. Skadron. Accelerating SQL database
operations on a GPU with CUDA. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics
Processing Units, pages 94–103. ACM, 2010.

[3] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the
memory wall in monetdb. Commun. ACM, 51(12):77–85,
2008.

[4] G. P. Copeland and S. N. Khoshafian. A decomposition
storage model. In Proceedings of the 1985 ACM SIGMOD
international conference on Management of data, SIGMOD
’85, pages 268–279, New York, NY, USA, 1985. ACM.

[5] S. Ding, J. He, H. Yan, and T. Suel. Using graphics
processors for high performance IR query processing. In
Proceedings of the 18th international conference on World
wide web, pages 421–430. ACM, 2009.

[6] R. Fang, B. He, M. Lu, K. Yang, N. Govindaraju, Q. Luo,
and P. Sander. GPUQP: query co-processing using graphics
processors. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages
1061–1063. ACM, 2007.

[7] W. Fang, B. He, and Q. Luo. Database compression on
graphics processors. Proceedings of the VLDB Endowment,
3(1-2):670–680, 2010.

[8] W. R. Franklin. Adaptive grids for geometric operations. In
Sixth International Symposium on Automated Cartography
(Auto-Carto Six), pages 230–239, 1983.

[9] M. G.M. A computer oriented geodetic data base; and a new
technique in file sequencing. Technical report, Ottawa,
Canada: IBM Ltd., 1966.

[10] G. Graefe. Volcano-an extensible and parallel query
evaluation system. Knowledge and Data Engineering, IEEE
Transactions on, 6(1):120–135, 1994.

[11] C. Gregg and K. Hazelwood. Where is the data? why you
cannot debate cpu vs. gpu performance without the answer.
In Performance Analysis of Systems and Software (ISPASS),
2011 IEEE International Symposium on, pages 134–144.
IEEE, 2011.

[12] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In B. Yormark, editor, SIGMOD’84, Proceedings
of Annual Meeting, Boston, Massachusetts, June 18-21,
1984, pages 47–57. ACM Press, 1984.

[13] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang. Mars:
a MapReduce framework on graphics processors. In
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 260–269.
ACM, 2008.

[14] B. He, M. Lu, K. Yang, R. Fang, N. Govindaraju, Q. Luo,
and P. Sander. Relational query coprocessing on graphics
processors. ACM Transactions on Database Systems
(TODS), 34(4):21, 2009.

[15] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
and P. Sander. Relational joins on graphics processors. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 511–524. ACM,
2008.

[16] A. Munshi. OpenCL specification 1.1. Khronos OpenCL
Working Group, 2010.

[17] C. Nvidia. Compute Unified Device Architecture
Programming Guide. NVIDIA: Santa Clara, CA, 83:129,
2007.

[18] H. Samet and R. E. Webber. Storing a collection of polygons
using quadtrees. ACM Trans. Graph., 4(3):182–222, 1985.

[19] L. Sidirourgos, M. Kersten, and P. Boncz. Sciborq: Scientific
data management with bounds on runtime and quality. In
Proc. of the Int’l Conf. on Innovative Data Systems Research
(CIDR), pages 296–301, 2011.

[20] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
ram-cpu cache compression. In Data Engineering, 2006.
ICDE’06. Proceedings of the 22nd International Conference
on, pages 59–59. IEEE, 2006.

	Introduction
	Background
	Spatial Data Management
	GPGPU Programming

	Data Loading
	Bitwise distribution
	Bitwise Decomposition
	Implementation

	Query Processing
	Phase 1: GPU Preselection
	Phase 2: CPU Refinement

	Evaluation
	Setup
	Loading
	Query Processing

	Conclusion and Future Work
	References

