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One-to-one correspondences are established between the following combinatorial structures: 
(i) median interval structures (or median segments, introduced by Sholander); (ii) maximal 
Helly hypergraphs such that with each edge also its complement is in the hypergraph; and (iii) 
median graphs (connected graphs such that for any three vertices u, v, w there is exactly one 
vertex x such that d(u, v) = d(u, x) + d(x, v ), d(v, w) = d(v, x)+ d(x, w) and d( w, u) = d( w, x) + 
d(x, u), where dis the distance function of the graph). 

Introduction 

In this paper one-to-one correspondences will be established between three at 
first sight fairly distinct concepts. These concepts are: 

(i) median interval structures introduced by M. Scholander [7, 8] under the 
name of median segments (see Section 1. 1.); 

(ii) maximal Helly copair hypergraphs (i.e. simple Helly hypergraphs, the 
edge-set of which contains with edge its complement, and which are maximal 
with respect to this property; see Section 1.2); and 

(iii) median graphs, introduced in Section 1.3. 
The one-to-one correspondences are established in Section 2. 

In Section 3 we elaborate how to construct a maximal Helly copair hypergraph 
from a median graph, using results of Sholander [9]. 

With minor adaptations we adopt the terminology of Berge [l] on hypergraphs, 
of Wilson [IO] on graphs and of Birkhoff [2] on lattice theory. 

1. Definitions and preliminaries 

Throughout this paper V denotes a fixed finite set. 

I. I. Interval structures 

A function I: V x V .- !?P( V) is called an interval structure on V if 

(Il) x, y E I(u, v) iff I(x, y)c I(u, v), (x, y, u, v EV); 

(12) I(u,v)nI(v,w)nI(w,u)~0. (u,v,wEV). 
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Each set l(u, v) is called an interval. A subset U of V is [-convex if, for all 
u, v EU the interval [(u, v) is contained in U. The notion of interval structure was 
introduced in [3]. Examples of interval structures on V can be obtained from 
trees with vertex-set V (then take [( u, v) = { w EV I w lies on the shortest u, 
v-path}), and from lattices (V,==-;:) (in this case I(u,v)={wEV\uAv==-;: 
w~uvv}). 

If I satisfies condition (Il) and the following condition 

(I2') \I(u, v)nl(v, w)nl(w, u)I= 1, (u, V, WE V), 

then I is called a median interval structure on V. Interval structures obtained from 
trees as indicated above are median interval structures. An interval structure 
obtained from a lattice is a median interval structure iff the lattice is distributive 
(see [2]). Sholander [8] has given the following characterization of median interval 
structures (he used the term median segments). 

Theorem 1 (Sholander [8]). A function I: V x V .-el'( V) is a median interval 
structure on V if! 

if wEl(u,v), then l(u,w)cl(u,v)nl(v,u) (u,vEV), 

\I(u,v)nl(v,w)nl(w,u)\=l (u,v,wEV), 

[(v,v)={v} (vEV). 

1.2. Hypergraphs 

In this paper a hypergraph H = ( V, 'iR) consists of a vertex-set V and a family 
CJ; c el'( V) of nonvoid subsets of V, the members of which arc called edges. 
Occasionally we shall write 'if; instead of (V, 'jg), 

A hypergraph is a Helly hypergraph if it satisfies the Helly property, i.e. every 
subfamily of 'iE, any two members of which meet, has a non-empty intersection. 
For vertices u and v of the hypergraph (V, 'iS), we define 

I'.:(u, v) = n{B E 'it;[ u, v EB}. 

A theorem of Gilmore (see [5], or [1, p. 396]) can be formulated as follows. 

Theorem 2 ( Gilmore). A hypergraph ( V, ~) satisNes tl1e Helly property iff l;,; is an 
interval structure on V. 

As a consequence of Gilmore's theorem we have: let I be an interval structure on 
V; any family ~ of nonvoid I-convex subsets of V satisfies the Helly property. 

A hypergraph (V, ~) with the property that V\ BE 'lt for all BE~ will be 
called a copair hypergraph. We call the set {B, V\ B} a copair of V and {0, V} the 
trivial copair. A Helly copair hypergraph of course is a copair hypergraph that 
satisfies the Helly property. Finally a maximal Helly copair hypergraph ( V, ~) is a 
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Helly copair hypergraph such that: if {A V\ A} is a non-trivial copair and 
~ U {A, V\ A} satisfies the Helly property, then A E ~-

A hypergraph ( V, ~) is said to separate vertices if for any two distinct vertices 
u, v E V there exists an edge A E ~ such that u EA and v ¢ A. 

Lemma 3. Let ( V, ~) be a Helly copair hypergraph. Then ( V, 'if;) is maximal iff 
( V, ~) separates vertices. 

Proof. Nate that ( V, ~) separates vertices iff I\£ ( v, v) = { v} for all v E V. 
Assume that ~ does not separate vertices. That is there exists a vertex v E V 

such that I.,(v, v) contains, besides v, another vertex. Using Gilmore's theorem it 
can be verified that in this case ~ U {{ v }, V\ { v}} satisfies the Helly property. 
Therefore 'if; is not maximal. 

To prove sufficiency of vertex separation let {A, V\A} be a non-trivial copair of 
V not in ~- Take a vertex u EA and a vertex v E V\A such that II\£(u, v)I is as 
small as possible. We assert that I.,(u, v)nA ={u} and l'<l:(u, v)\A ={v}. 

For suppose I'€(u,v)nA¥-{u} and let wEI\£(u,v)nA with w-/:-u. Since~ 
separates vertices, there exists an edge CE~ such that w EC and u ¢ C. Then we 
have that v EC. So u¢ I\£ (w, v) c I\£(u, v ), contradicting the minimality of I,; (u, v ). 
In the same way we prove l,g(u, v)\A ={v}. Hence I\£(u, v)={u, v}. 

Let BE~ be an edge such that vEB and u¢B. Then AnB¥-0 or 
(V\A)n(V\B)-/:-0, since A¢{B, V\B}c~. Say AnB-/:-0. Now the set of 
edges that contain both u and v, together with A and B, forms a family of subsets 
of V, any two members of which meet. The intersection of this family equals 

I,:(u, v) nA n B = {u, v}nA nB, 

which clearly is empty. Thus ~ U {A, V\ A} does not satisfy the Helly 
property. D 

From this lemma a lower bound can be obtained for the number of edges in a 
maximal Helly copair hypergraph. That this lower bound is best possible follows 
from the results of Section 3.3. 

Corollary 4. Let ( V, ~) be a maximal Helly copair hypergraph. Then 

Proof. Fix x E V. For each v EV let ~u ={EE~ Iv, x EE}. Since (V, ~) separates 
vertices, ~v ~ ~w if v-/:- w. Therefore, I VI.,,; 2'\£.[ = 2'''l!IJ2 • D 

1.3. Median graphs 

Let G be a simple loopless graph with vertex-set V and distance function d. G 
will be called a median graph if it is connected and satisfies the graph median 
property, i.e. for any u, v, w E V there exists precisely one vertex x E V, called the 

I 
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Proof. We shall prove that G1 is connected and that le,, = I. Then clearly G1 is a 
median graph. 

First observe that for u, v, w E V we have 

wEI(u,v) iff I(u,w)nI(w,v)={w}. 

Thus for wEI(u,v)\{u,v} holds u¢l(w,v)cl(u,v) and v¢l(u,w)cl(u,v). 

Using this it is easily verified by induction on !Hu, v)I that l(u, v) induces a 
connected subgraph of G1 for all u, v E V. Hence G 1 is connected. 

To prove that I(u, v) = [01 (u, v) for all u, v EV we use induction on d(u, v ). 

Clearly I(u, v) = 10 Ju, v) for all u, v E V with d(u, o) ~ 1. So take vertices u, v EV 

with d(u, v)> 1. 
Let wEI0 ,(u,v)\{u,v}. Then d(u,w)<d(u,v) and d(w,v)<d(u,v), so 

lc;.(u, w) = I(u, w) and 10 ,(w, v) = l(w, v). Since clearly [01 (u, w) n l0 , (w, v) = { w}, 
we have wEI(u, v) and thus 10 ,(u, v)c[(u, v). 

Assume I(u, v) \ l01 (u, v) ¥-yl. For any vertex w E I(u, v) \ I0 .(u, v) we must have 
I(u,w)nI0 .(u,v)={u}, and similarly I(w,v)nIG.(u,v)={v}. For if w'E 
I(u, w) n I0 , (u, v), with w' ¥- u, then w EI( w', u) and by the induction hypothesis 
I( w', v) = I 0 Jw', v) c 10 ,(u, v). Hence w E l 0 Ju, v), contradicting the choice of w. 

Since l(u, v) induces a connected subgraph of G1, there exists a path P from u 
to v, all of whose internal vertices lie in I( u, v) \ la, ( u, v). Clearly the length of P 
exceeds d (u, v) so P has at least two distinct internal vertices, say x and y. 

Since d(u,v):;?e2, there exists a vertex zEl0 .(u,v)\{u,v}. By the induction 
hypothesis we have I(u,z)=l0 ,(u,z) and l(z,u)=lc;,(z,v). Now 

u E l(u, z) n I( u, X) = le;, (u, z) n l(u, X) C Io, ( u, V) n I( u, X) = {u }. 

So u E I(z, x ). Similarly v E I(z, x) and thus I( u, v) c I(z, x) c I( u, v ). In the same 
way it follows that l(u, v) = I(z, y ). But then 

x, y E I(x, y) = l(z, x) n l(x, y) n l(y, z), 

contradicting the fact that I is a median interval structure. Conclusion: I(u, v) = 
Ic,,(u, v). D 

In the proof of the preceding proposition we have seen that le;, = I holds for a 
median interval structure I. Furthermore, from Propositions 6 and 7 it follows 
immediately that, when G is a median graph, we have G10 = G. 

Proposition 8. Let ( V, ~) he a 1naximal Helly copair hypergraph. Then lie is a 
median interval structure on V. 

Proof. Assume that there exist vertices u, v, w E V such that x, y E 

I,,:( u, v) n l,;(v, w) n I,: ( w, u) for vertices x, y E V, with x ¥- y. According to Lemma 
3, there is an edge BE 'if; such that x EB and y¢ B. Then one of the edges B and 
V\ B, say B, must contain at least two of the three vertices u, v and w, say u and 
v. But then y¢ lcg(u, v). Contradiction. D 
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graph median of u, v and w, such that 

{
d(u, x)+d(x, v)=d(u, v), 

d(v, x)+d(x, w)= d(v, w), 

d(w, x)+d(x, u) = d(w, u). 

Note that trees and n-cubes are median graphs. It can be seen that each median 
graph is bipartite. 

2. The theorem 

Theorem 5. There exists a one-to-one correspondence between the median interval 
structures on V, the maximal Helly copair hypergraphs with vertex-set V, and the 
median graphs with vertex-set V, as follows: 

(i) Let I be a median interval structure on V. Then 
-(V, ~) is a maximal Helly copair hypergraph, where 'i.€ = {B c V 10-/= B-1= V, 
B and V\B are I-convex}; 
-(V, E) is a median graph, where uv EE iff u-/= v and I(u, v) ={u, v}. 

(ii) Let (V, 'IE) be a maximal Helly copair hypergraph. Then 
- I is a median interval structure on V, where I( u, v) = n { B E "t; I u, v EB}; 
-(V, E) is a median graph, where uv EE iff u-/= v and n {BE~ I u, v EB}= 
{u, v}. 

(iii) Let (V, E) be a median graph. Then 
- I is a median interval structure on V, where I( u, v) = { w E VI w lies on a 
shortest u, v-path in (V, E)}; 
-(V, ';g) is a maximal Helly copair hypergraph, where ';f; consists of the 
canonical copairs of (V, E) (see Section 3.3). 

The proof of the theorem amounts to the following propos1tlons. (The direct 
correspondence between median graphs and maximal Helly copair hypergraphs 
will be explained in Section 3.) 

For vertices u and v of the graph G = ( V, E) define 

Io(u,v)={wEVlw lies on a shortest u, v-path in G}. 

Proposition 6. Let G = ( V, E) be a median graph. Then le; is a median interval 
structure on V. 

Proof. I0 satisfies the conditions mentioned in Theorem 1. D 

Proposition 7. Let I be a median interval structure on V. Define the graph Gr with 
vertex-set V by 

uvEE(Gr) iffu-/=v and I(u,v)={u,v} (u,vEV). 

Then Gr is a median graph. 
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Proposition 9. Let I be a median interval structure on V and let 

'if:1 = {B c V 10 i- B ;i, V, B and V\ B are [-convex}. 

Then (V, 'if:1) is a maximal Helly copair hypergraph. 

Proof. Clearly (V, 'if:1 ) is a Helly copair hypergraph. By Lemma 3 it suffices to 
show that 'it;1 separates vertices. So suppose that for vertices u, v E V, with u i- v, 
there is no edge B such that u E B and vi B. Assume furthermore that u and v 
are such that [I(u, v )[ is as small as possible. 

We first prove that I(u, v) = {u, v }. Suppose w E l(u, v) \ { u, v }. Since \I(u, w)[ < 
[I(u, v)[, there exists an edge A such that u EA and w¢ A. It follows that v EA (u 
and v cannot be separated). So w E I(u, v) c A, for A is I-convex, contradicting 
w¢ A. Therefore I(u, v) = {u, v }. 

Now let B={zEVlv¢I(u,z)}. Then V\B={zEVluil(z,v)}, since 
I(u, z) n I(z, v) n{u, v} is a singleton. We assert that B and V\ B are I-convex, 
that is BE 'if:1• Since u EB and v ¢ B this contradicts our assumption that 'if:1 does 
not separate vertices. 

We only prove that B is I-convex (the I-convexity of V\ B can be treated 
similarly). Note that for each zEB we have l(u,z)cB, since vrf;I(u,z). Let 
x,yEB and suppose I(x,y),;z:B. Take wEI(x,y)\B. Since l(u,x)cI(v,x) and 
I(u,y)cI(v,y) we have that 

{z} = I(u, x) n I(x, y) n I(y, u) = I(v, x) n I(x, y) n I(y, v) 

for some z E B. Now also 

{z}cI(z, w) nI(z, v) c I(x, y) n I(x, v) n I(y, v) = {z}, 

since z,wEI(x,y) and zEI(u,x)nI(u,y)cl(v,x)nI(v,y). This implies zE 
I( w, v) according to the observation made at the beginning of the proof of 
Proposition 7. So I(z, v)c I(w, v). But, since w¢ B, urj:; I(w, v) and thus u¢ I(z, v), 
that is z E V\ B, contradicting the fact that z EB. □ 

From Propositions 8 and 9 we deduce: let I be a median interval structure on 
V, then I'€, =I; and let ( V, ~) be a maximal Hclly copair hypergraph, then 
'if:r., = 'it:. 

3. Median graphs and belly hypergraphs 

In this section the direct correspondence between median graphs and maximal 
Helly copair hypergraphs with vertex-set V, mentioned in the theorem, is further 
elaborated. 

3.1. Median semilattices 

Let (V, ,e;;;) be a partially ordered set (poset). v is said to cover u(u, v EV), if 
u < v and there is no w E V such that u < w < v. A semilattice ( V, ,;;;; ) is a poset, in 
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which any two elements u, v have a greatest lower bound u A v. For u, v E V set 
[u,v]={weVlu=:;;;w=:;;;v}. The semilattice (V,=:;;;) is called distributive if 
([u, v ], =:;;;) is a distributive lattice for all u, v E V. The semilattice is said to satisfy 
the coronation property if for any three elements u, v, w E V, such that the three 
least upper bounds u v v, v v w, w v u exist, there exists a least upper bound 
UV V V W. 

A median semilattice is a distributive semilattice, which satisfies the coronation 
property. This concept was introduced by Sholander [9]. 

On a median semilattice (V, =:;;;) the ternary operation (u,v,w)=(uAv)v 
(v Aw) v (w A u)E V can be defined, called the median of u, v and w (Sholander 
[9] also characterized medians). 

We review some results of Sholander [9] reformulating them in our 
terminology: 

(A) Each median semilattice ( V, =:;;;) yields a median interval structure I,.. on V, 
where 

I.,,(u, v) = { w I w is the median of u, v, w} (u, v EV). 

(B) Let I be a median interval structure on V and u EV. Define an ordering =:;;;1, .. 

on Vby 
v=:;;; 1,,.w iff vEI(u,w) (v,wEV). 

Then (V, =:;;; 1,..) is a median semilattice. Furthermore the correspondences given in 
(A) and (B) commute. 

( C) Let ( V, =:;;;) be a median semilattice. Then ( V, =:;;;) can be embedded in a 
Boolean algebra by an order preserving mapping, which also preserves the covering 
relation in ( V, ,;;;; ). 

3.2. Cutset colourings 

A cutset colouring of a connected graph is a colouring of the edges in such a 
way that the edges of any colour form a matching as well as a cutset (i.e. a 
minimal disconnecting edge-set). If we want to establish a cutset colouring of a 
graph we are forced to colour non-adjacent edges in each circuit of length four 
with the same colour. So the n-cube admits a cutset colouring with n colours, 
which is uniquely determined up to the labelling of the colours. Deleting the 
edges with a given colour from the n-cube breaks the graph up into two 
components, which both are (n - 1)-cubes. 

Note that not all connected graphs admit a cutset colouring. Necessary condi­
tions for the existence of a cutset colouring of the edges of a connected graph are 
for instance that the graph is simple, loopless and bipartite and that it does not 
contain K2 _3 as a subgraph. 

3.3. Median graphs and maximal Helly copair hypergraphs 

The diagraph of a poset (V, =:;;;) is the graph with vertex-set V, in which two 
vertices are joined by an edge iff one of the two covers the other in the poset. 
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Clearly, the diagraph of the Boolean algebra on 2" elements is the n -cube. As a 
consequence of (A) and (B) and Propositions 6 and 7 we have 

Proposition 10. Let G be a graph. Then G is a median graph iff G is the diagraph 

of a median semilattice. 

Proposition 11. Let G be a graph. Then G is a median graph iff G is a connected 
induced subgraph of an n-cube such that with any three vertices of G their graph 

median in the n-cube also is a vertex of G. 

Proof. The only if part follows from Proposition 10 and ( C). 
The if part follows as soon as we have proved that the distance in G between 

two vertices equals their distance in the n-cube. Let d be the distance function of 
G and e that of the n-cube. Assume that there are vertices u, v of G with 
d(u,v);i:e(u,v) and let k := d(u,v) be as small as possible. Note that k>2. 

Let w be a vertex of G with d(u, w) = 2 and d(w, v) = k -2. Then e(u, w) = 2 
and e(w, v) = k-2. Let z be the graph median of u, v and win then-cube. Thus 
z is a vertex of G. 

If z=w, then e(u,v)=e(u,w)+e(w,v)=2+k-2. So z;=w. But then, since 
e(u, w)=2=d(u, w), z is a common neighbour of u and w. Now e(z, v)= 
e(w,v)-e(w,z)=k-2-l=k-3. Thus 

d(u, v),s;;; d(u, z) + d(z, v) = 1 + e(z, v) = k-2 < k, 

which is a contradiction. 0 

Let G be a median graph with vertex-set V. Embed G in an 11-cube K with n 

as small as possible. Since G is connected, G has at least one edge of each colour 
from the cutset colouring of K. 

The cutset colouring of K induces an edge colouring of G. According to 
Proposition 11 with any two vertices u and v of G a shortest u, v-path of K lies 
entirely in G. So the induced edge colouring of G in fact is a cutset colouring. 
Any cutset from this colouring induces a copair of V: after deleting the cutset 
from G the graph breaks up into two components, the vertex-sets of which form 
the complementary subsets of the copair. In this way the cutset colouring of 
G induces a copair hypergraph (V, ~a). Since G is an induced subgraph of Kit 
follows that 'tJ0 consists of I0 -convex subsets of V. Besides it follows that 'tJ0 

separates vertices. And thus, according to Lemma 3, ( V, ~0 ) is a maximal Helly 
copair hypergraph. Furthermore UV is an edge in G iff u ;= 1) and n 
{BE 'tJ0 Ju, v EB}={u, v}. That is G1., 0 = G. 

Starting with a maximal Helly copair hypergraph ( V, c;g) then G,: = 0 1., is a 
median graph with vertex-set V. Moreover 't; consists of I 0 ,-convex subsets of V. 
But also Cjg 0 ., is a Helly copair hypergraph consisting of I 0 ,-convex subsets of V. 
Since both 'iS' and 'tJ 0 ~ are maximal, we have that 'iS' = Cjf; 0 ,. 



Median graphs and Helly ltypergraplis 49 

The preceding observations imply that a median graph G, with vertex-set V, 
admits only one cutset colouring which induces a maximal Hclly copair hyper­
graph. Let us call the copairs of V induced by this cutsct colouring of G the 
canonical copairs of G. (In fact it can be proved that up to the labelling of the 
colours a median graph admits exactly one cutset colouring of its edges, see 
[6].) 

Recapitulating we have proved: 

Proposition 12. The hypergraph ( V, ~ J is a maximal Helly copair hypergraph iff cg 
consists of tile canonical copairs of a median graplz with vertex-set V. 

3.4. Concluding remarks 

Let G be a connected graph with n vertices. which admits a cutset colouring. 
Since each cutset contains edges of a spanning tree, the number of colours in the 
cutset colouring is at most n - I. 

Lemma 13. Let G be a connected graph \vith n vertices admitting a cutset colouring. 

Then the number of colours in the cutset colouring is n - 1 iff G is ci tree. 

Proof. The if part of this lemma is trivial. To prove the only if part let T be a 
spanning tree of G. Then T has n - 1 edges, so the edges of T all have different 
colours. Thereby every edge of T determines exactly one cutset of the colouring. 
Assume that there is an edge joining u and v in G, which is not in T. The u, 

v-path in T must contain at least two edges, say ft, f2 , •.• . But then the edge iw 
is in the cutset determined by f I and in the cutset determined by f 2 , which is a 
contradiction. 0 

The term maximum will be used m the sense of: with a maximal number of 
edges. 

Proposition 14. The hypergraph ( V, ~) is a maximum Helly co pair hypergraph iff 

~ consists of the canonical copairs of a tree with vertex-set V. 

Corollary 15. Let ( V, ~) be a Helly copair hypergraph. then 

Corollary 16 ( E.C. Milner, see [ 4]). Let ( V, ~) be a Helly liypergraph. Then 

1~1,;;;21V1 L+IVl-1. 
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