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Abstract. In focused XML retrieval, information retrieval systems have
to find out which are the most appropriate retrieval units and return only
these to the user, avoiding overlapping elements in the result lists. This
paper studies structural relationships between elements and explains how
they can be used to produce a better ranking for a focused task. We
analise relevance judgements to find the most useful links between ele-
ments and show how a retrieval model can be adapted to incorporate this
information. Experiments on the INEX 2005 test collection show that the
structural relationships improve retrieval effectiveness considerably.

1 Introduction

Structured document retrieval systems use conventional information retrieval
techniques to determine the order in which to best present results to the user,
but, as opposed to traditional IR systems, they also choose the retrieval unit.
Given an XML document collection, a structured document retrieval system
could present to the user any of the marked up elements. The possible retrieval
units vary widely in size and type; from small elements like italics and section
titles, to large elements like document bodies, articles or even complete journals.
It is the task of the system to decide which units are the most sensible to retrieve.

In focused XML retrieval (introduced at INEX 2005, see Section 2), this prob-
lem is even more apparent. The goal is to avoid returning overlapping elements
in the result set, to make sure the user does not get to see the same information
twice. For example, when both a paragraph and its containing section contain
relevant information, a system is not allowed to return both elements. Instead,
it should decide which of the two candidate results is the more useful. Thus, it
should reason that when the section contains only one relevant paragraph, this
paragraph may be more useful on its own than the section, while the user may
prefer the full section if it contains multiple relevant paragraphs.

The typical approach to focused XML retrieval produces an initial ranking
of all elements using an XML retrieval model, and then applies an algorithm to
remove overlapping elements from the result set. Two main types of strategies
have been proposed for overlap removal. The ones that use a simple method such
as keeping the highest ranked element of each path and the ones that apply clever
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algorithms that take into account the relations in the tree hierarchy between the
highly ranked elements.

This paper studies the effect of adapting the initial ranking before using the
simple overlap removing technique. After introducing our laboratory setting,
INEX (Section 2), and the overlap removal problem (Section 3), we analise rel-
evance judgements to find useful dependencies (links) between elements in the
XML tree and adapt the retrieval model to incorporate this information (Sec-
tion 4). Section 5 demonstrates experimentally that this leads to better retrieval
effectiveness. Finally, Section 6 summarises and discusses the main findings.

2 INEX and the focused retrieval task

The Initiative for the Evaluation of XML retrieval (INEX) [2] is a benchmark
for the evaluation of XML retrieval. The collection provided to the participants
is a subset of IEEE Computer Society publications, consisting of 16.819 scientific
articles from 24 different journals.

Topics and relevance judgements. The participants are responsible for cre-
ating a set of topics (queries) and for assessing the relevant XML elements for
each of these topics. The relevance judgements are given by two different dimen-
sions: exhaustivity (E) and specificity (S). The exhaustivity dimension reflects
the degree to which an element covers a topic and the specificity dimension re-
flects how focused the element is on that topic. Thus, to assess an XML element,
participants are asked to highlight the relevant parts of that elements (specificity)
and to use a three-level scale [0, 1, 2] to define how much of the topic that element
covers (exhaustivity). For later usage in the evaluation metrics, the specificity
dimension is automatically translated to a value in a continuous scale [0 . . . 1],
by calculating the fraction of highlighted (relevant) information contained by
that element. The combination of the two dimensions is used to quantify the
relevance of the XML elements. Thus, a highly relevant element is one that is
both, highly exhaustive and highly specific to the topic of request.

The focused task. INEX has defined various XML retrieval scenarios, each
corresponding to a specific task. This paper addresses the focused task, where
the goal is to find the most exhaustive and specific elements on a path. Once the
element is identified and returned, none of the remaining elements in the path
should be returned. In other words, the result list should not contain overlapping
elements. We choose to evaluate our results for content-oriented XML retrieval
using content-only conditions (CO). Content-only requests are free text queries
that contain only content conditions (without structural constraints). The re-
trieval system may retrieve relevant XML elements of varying granularity.

The evaluation metrics. INEX 2005 has evaluated retrieval results using the
Extended Cumulated Gain (XCG) metrics. We realise that these measures are



not yet widely spread in the general IR community, but we prefer to report
our results using these measures for comparison to other groups participating
at INEX. Here, we briefly outline their main characteristics, and refer to [3] for
a more detailed description. The XCG metrics are an extension of the cumu-
lated gain (CG) metrics [5] that consider dependency between XML elements
(e.g., overlap and near-misses). The XCG metrics include a user-oriented mea-
sure called normalised extended cumulated gain (nxCG) and a system-oriented
measure called effort-precision/gain-recall (ep/gr). In comparison to the com-
mon IR evaluation measures, nxCG corresponds to a precision measure at a
fixed cut-off, and ep/gr provides a summary measure related to mean average
precision (MAP). To model different user preferences, two different quantisation
functions are used. The strict one models a user who only wants to see highly
relevant elements (E = 2, S = 1) and the generalised one allows different degrees
of relevance.

3 Removing Overlap
In an XML retrieval setting, to identify the most appropriate elements to return
to the user is not an easy problem. IR systems have the difficult task to find out
which are the most exhaustive and specific elements in the tree, and return only
these to the user, producing result lists without overlapping elements. Current
retrieval systems produce an initial ranking of all elements with their ‘standard’
XML retrieval model, and then remove overlapping elements from the result set.
A fairly trivial approach keeps just the highest ranked element, and removes the
other elements from the result list (e.g. [10]). More advanced techniques (e.g.,
[1], [7], [8]) exploit the XML tree structure to decide which elements should be
removed or pushed down the ranked list.

In the first approach, the information retrieval systems rely completely on the
underlying retrieval models to produce the best ranking. Thus, the assumption
is that the most appropriate element in a path has been assigned a higher score
than the rest. This could indeed be the case, if the retrieval model would consider,
when ranking, not only the estimated relevance of the XML element itself but
also its usefulness compared to other elements in the same path. However, since
most retrieval models rank elements independently, the highest scored element
may not be the best one for a focused retrieval task. We argue that retrieval
models should take into account the dependency between elements to produce
a good ranking for focused XML retrieval.

As an example, consider the following baseline models:
1) A retrieval model (baseLM ) based on simple statistical language models [9, 4].

The estimated probability of relevance for an XML element Ej is calculated
as follows:

PLM (Ej) =

nY
i=1

(λP (Ti|Ej) + (1 − λ)Pcf (Ti)), (1)

where:
P (Ti|Ej) =

tfi,jP
t tft,j

and Pcf (Ti) =
cfiP
t cft

,



2) The same retrieval model (LM) applying a length prior for length normali-
sation (baseLP ). The probability of relevance is then estimated as:

P (Ej) = size(Ej) PLM (Ej) (2)

3) The same retrieval model (LM) but removing all the small elements (shorter
than 30 terms) for length normalisation(baseRM ).

Using a λ = 0.5 and removing overlap with the simple algorithm of keeping
the highest scored element in a path, we obtain the results shown in Table 1 for
the three models described.

Table 1. Results for the different baselines runs in the focused task with strict (S) and
generalised (G) quantisations

nxCG[10] nxCG[25] nxCG[50] Maep

baseG
LM 0.1621 0.1507 0.1557 0.0569

baseG
RM 0.2189 0.2206 0.2100 0.0817

baseG
LP 0.2128 0.1855 0.1855 0.0717

baseS
LM 0.1016 0.0855 0.1207 0.0536

baseS
RM 0.0610 0.0974 0.1176 0.0197

baseS
LP 0.0940 0.0910 0.1075 0.0503

In the generalised case, the length normalisation approaches help to improve
the effectiveness of the system. This is because the original ranking contains
many small elements that are ranked high but are not appropriate retrieval units.
When applying length normalisation, other more lengthy units are pushed up
the ranked list. These units tend to be more appropriate than the small ones,
not only because longer elements contain more information but also due to the
cumulative nature of the exhaustivity dimension. Since exhaustivity propagates
up the tree, ancestors of a relevant element have an exhaustivity equal or greater
than their descendants. These ancestors are relevant to some degree, even though
their specificity may be low, i.e., even if they contain only a marginal portion
of relevant text. Because far less large elements exist in a collection than small
elements, researchers have found that it is worthwhile to return larger elements
first [6], especially for INEX’s thorough retrieval task (where systems are asked to
identify all relevant elements, regardless their overlap). In the language modelling
framework, this is achieved by introducing a length prior that rewards elements
for their size.

In the focused task however, Table 1 shows that re-ranking the elements based
on a length prior never results in the best retrieval results. This is explained
by the contribution of the specificity dimension to the final relevance, which
is captured best by the original language models. The elements pushed up the
list by the length prior tend to be less specific, as they often cover more than
one topic. In the generalised setting, where near-misses are allowed, removing
the smallest elements is beneficial for retrieval effectiveness. In the strict case



however, where near misses are not considered in the evaluation, the original
ranking (without removing small elements) is the one that performs best. None
of the three baseline models is satisfactory in all settings. Moreover, each of these
models treat XML elements independently. We argue that in an XML retrieval
setting, retrieval models should be aware of the structural relationships between
elements in the tree structure. This is even more important when elements that
are related through the tree hierarchy cannot all be presented to the user, as is the
case in focused XML retrieval. In such a setting, the element’s expected relevance
of an element should depend on the expected relevance of its structurally related
elements. If this structural information is already in the model, presenting a non-
overlapping result list to the user becomes a presentation issue, performed by
a simple post-filtering algorithm (which would work for any retrieval model).
To achieve this goal, we analyse which are the relationships between retrieved
elements and the most appropriate (highly relevant) elements and use this extra
information to improve the initial ranking towards the task of focused retrieval.

4 Using structural relationships to improve focused
retrieval

For the reasons described in previous section, we want to extend the retrieval
model in a way that the appropriate units are rewarded and therefore they get
a higher score than the rest. For that, we analyse the INEX 2005 relevance as-
sessments (version 7.0) to find out which are the relationships between retrieved
elements and the most appropriate (highly relevant) elements. Once these re-
lationships (links) are created, we use this extra information to reinforce the
estimated relevance of (hopefully) the most appropriate units.

4.1 Discovering links

To help the retrieval system to produce a proper ranking for the focused task,
we need to learn what are the relationships between the retrieved XML elements
in a baseline run and the elements identified in the INEX assessments as highly
relevant for that topic. We consider that the most appropriate units to return
to the user are those that are highly exhaustive (E = 2) and highly specific
(S >= 0.75).

Our analysis is based on the top 1000 retrieved elements in a basic content-
only run that uses a simple language modelling approach, which treats each
element as a separate ‘document’ (described as baseLM in Section 3). We study
the occurrence of highly relevant elements in the direct vicinity of each retrieved
element in the XML document. Since elements of different types (i.e., different
tag names) are likely to show different patterns, we differentiate according to
element type. In addition, we expect to observe different behaviour in front
matter, body, and back matter. Figure 1 and 2 show results of an analysis of
the ancestors of retrieved elements. The figure shows the probability for each
level of finding the first highly relevant element when going up the tree from
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Fig. 1. Probability of finding the first highly relevant ancestor N levels up for the
elements retrieved in the body

a retrieved element.1 These graphs show for example that in the body part,
retrieved st elements (section titles) are rarely relevant themselves, but their
containing element, one level up, often is. The same holds for fig (figures)
or b (bold) elements (not shown in the graph), while retrieved sections and
subsections (sec and ss1) are mostly relevant themselves. For the retrieved
elements in front and back matter (see Figure 2) it is generally needed to go
more levels up to find the highly relevant elements, although elements such as
abs (abstracts) and p (paragraphs) are mostly relevant themselves.

4.2 Using links

To use the possible relationships between retrieved and highly relevant elements,
we need to define a propagation method that uses this link information to reward
highly relevant elements from the information of the retrieved ones. We propose
the following approach:

For each of the element types, we create a link from that element type to the
two levels where the probability of finding a highly relevant element is higher (the
two highest peaks for each type in the graphs in Figure 1 and 2). For instance,
in the body part of an article, a st (section title) will point to the containing
element (level 1) but also to the parent of this element (level 2). In a similar way,
a ss1 (subsection) element will have a link to the element located two levels up
in the tree structure and another one to itself (level 0).

1 To avoid very dense graphs, we only show the most frequently retrieved element
types; also the lines with very low probabilities are left out.
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Fig. 2. Probability of finding the first highly relevant ancestor N levels up for elements
retrieved in front matter and back matter

Since to use the two highest peaks of a distribution does not mean that the
probability they represent is high, we define two types of links: the strong ones,
where the probability that the element pointed at is highly relevant exceeds a
threshold, and the weak ones, where this probability (even being the highest for
that element) is lower than the threshold. For the analysis and experiments of
this first paper, we set this threshold to 0.015 (shown in all figures of Section 4.1).
As an example, a subset of the INEX collection with the discovered relations is
shown in Figure 3.

Once the links and their types are defined, we need to define a model where
the link information is used to propagate elements scores with the aim to rein-
force the relevance of the most appropriate ones. We believe that the new score
for any element in the XML document should be determined by a combination
of the original score (estimated by the retrieval model) and the scores of the
elements that point to it. Formally, we estimate the probability of relevance for
an element in the following way:

P (Ej) = α PLM (Ej) + β aggri∈sl(Ej)(PLM (i)) + γ aggri∈wl(Ej)(PLM (i)), (3)

where PLM (·) is the score given to an element by the (baseline) language model;
sl(Ej) and wl(Ej) are the sets of strong and weak links pointing to Ej ; and aggr
is an aggregation function that combines the scores of all the elements that point
to Ej . Note that some of the links discovered are self references (e.g., Section
to Section). This means that for these nodes, the original retrieval model score
contributes to the final score in two ways, once as the original score, with weight
α and once in an aggregate of strong or weak links with weight β or γ.



Fig. 3. Subset of article’s structure with added links

5 Experiments

To evaluate the performance of our approach, we experimented with: (1) The
values for the parameters of our new model (Equation 3), (2) the usage of two
different aggregation functions (average and max), and (3) the individual and
combined contribution of the different divisions of an article: front matter (FM),
back matter(BM) and body (BDY). For each of the experiments, we report
results with the official INEX metrics: nxCG at three different cut-off points
(10, 25 and 50) and MAep, the uninterpolated mean average effort-precision.
Our baseline model is the one described in Section 3 as baseLM .

5.1 Parametrisation values

The results of using different values for α, β, and γ in Equation 3 are shown in
Table 2. For these experiments we use the link information from all the divisions
of the article (FM, BM and BDY) and use the average as aggregation function.

Although we experimented with many more parameter combinations, only
the most promising ones are shown. Performance tends to go down with higher
α values. That means our model performs best when ranking the XML elements
using only the link information. Combining this information with the original
scores of the elements hurts the performance in both quantisations. The results
show that most of the parameter combinations outperform the baseline run. The
run that performs better is the one that uses only the strong links information
(run2). Note that this run already outperforms all the models described in Sec-
tion 3. The most surprising result of these experiments is the big improvement
obtained under the strict quantisation for nxCG at 25 and 50. That indicates
that the use of the link information helps indeed in finding the most highly
relevant elements.



Table 2. Parametrisation values. Use of all link information (FM, BM and BDY) and
average as aggregation function. Results for strict (S) and generalised (G) quantisations

α β γ nxCG[10] nxCG[25] nxCG[50] Maep

baseG
LM 1 0 0 0.1621 0.1507 0.1557 0.0569

run1G 0 0 1 0.1760 0.1370 0.1224 0.0375
run2G 0 1 0 0.2206 0.2213 0.2235 0.0798
run3G 0 0.9 0.1 0.2117 0.2170 0.2244 0.0783
run4G 0 0.8 0.2 0.2106 0.2182 0.2275 0.0765
run5G 0 0.7 0.3 0.2192 0.2182 0.2198 0.0746
run6G 0 0.6 0.4 0.2100 0.1950 0.1998 0.0701
run7G 0 0.5 0.5 0.2108 0.1926 0.2001 0.0690
run8G 0.1 0.8 0.1 0.1980 0.1955 0.2055 0.0719
run9G 0.1 0.7 0.2 0.2029 0.1909 0.1989 0.0700
run10G 0.1 0.6 0.3 0.1999 0.1756 0.1837 0.0670

baseS
LM 1 0 0 0.1016 0.0885 0.1207 0.0536

run1S 0 0 1 0.0577 0.0723 0.0796 0.0428
run2S 0 1 0 0.1154 0.1561 0.1696 0.0670
run3S 0 0.9 0.1 0.1077 0.1577 0.1585 0.0662
run4S 0 0.8 0.2 0.0923 0.1500 0.1523 0.0563
run5S 0 0.7 0.3 0.0962 0.1500 0.1515 0.0556
run6S 0 0.6 0.4 0.0885 0.1207 0.1381 0.0544
run7S 0 0.5 0.5 0.0846 0.1191 0.1396 0.0531
run8S 0.1 0.8 0.1 0.1055 0.1570 0.1650 0.0597
run9S 0.1 0.7 0.2 0.1093 0.1570 0.1650 0.0590
run10S 0.1 0.6 0.3 0.1093 0.1292 0.1474 0.0582

5.2 Aggregation functions

We experimented with two different aggregation functions: the average and the
max. The average rewards the elements that have all of their inlinks relevant
and punishes the ones that are pointed to also by irrelevant elements, while
the max rewards the elements if they contain at least, one relevant element
pointing to them, regardless of the other inlinks. We would expect that the
average works well for links such as a paragraph to section, since, intuitively, a
section is relevant if most of its paragraphs are. The max would work better for
other types of links such as section title to section, where having only one of the
inlinks relevant might already be a good indicator that the element is relevant.
For these experiments we use the link information from the body part of the
article (BDY) and several parametrization values. Results are shown in Table 3.

For most cases under the generalised quantisation the max operator outper-
forms the average. This means that the links pointing to an element are good
indicators of relevance, regardless the number or relevance of other links pointing
to that element. However, we can see that for nxCG at 25 and 50 under the strict
quantisation, the average performs much better than the max. Which might in-
dicate that the highly relevant elements are those that have many relevant links
pointing to them.



Table 3. Aggregation functions. Use of link information in the body part of the articles
and MAX or AVG as aggregation functions. Evaluation with strict (S) and generalised
(G) quantisations

α β γ nxCG[10] nxCG[25] nxCG[50] Maep

MAX AVG MAX AVG MAX AVG MAX AVG

run2G 0 1 0 0.2301 0.2247 0.2219 0.2247 0.2213 0.2248 0.0805 0.0825
run4G 0 0.8 0.2 0.2350 0.2180 0.2246 0.2218 0.2235 0.2216 0.0801 0.0780
run6G 0 0.6 0.4 0.2404 0.2059 0.2267 0.2076 0.2206 0.2093 0.0802 0.0746
run9G 0.1 0.7 0.2 0.2138 0.2013 0.1964 0.1856 0.2078 0.1960 0.0720 0.0700

run2S 0 1 0 0.1173 0.1288 0.1531 0.1854 0.1718 0.1993 0.0761 0.0712
run4S 0 0.8 0.2 0.1000 0.0923 0.1469 0.1732 0.1676 0.1901 0.0680 0.0592
run6S 0 0.6 0.4 0.0962 0.0846 0.1469 0.1716 0.1555 0.1884 0.0648 0.0587
run9S 0.1 0.7 0.2 0.1170 0.1055 0.1616 0.1555 0.1735 0.1666 0.0694 0.0600

5.3 Article’s divisions contribution

We also analysed which of the divisions of an article contributes more to the gain
of performance obtained by our approach. For that, we use the link information
from each of the divisions independently and also combined. We use the max
as aggregation function and two of the parametrisation value combinations. The
results of these runs are shown in Table 4.

As expected, the only division that performs well on its own is the body part
of the articles. To use only the links of the front and back matter hurts consid-
erably the performance of the model. That is because with the parametrisation
used, the original scores of the elements are cancelled out. Effectively, this means
that elements without inlinks are removed from the result lists. When using a
higher α the scores would be much better but probably not reaching the baseline
model ones. For both runs and in both quantisations, the best combination is
to use the front matter and the body divisions. This means that, while on its
own body is the only effective document part, the links contained in the front
matter are valuable. Either they point to relevant elements in the front matter
itself (such as abstracts) or they help the retrieval model to give higher scores to
the relevant articles. The back matter information hurts the performance of the
system. A possible cause for this is that the information contained in the back
matter should not be propagated up the tree but to the elements that refer to
it. Further experimentation needs to be done to test this hypothesis.

6 Discussion

We presented an analysis of links between retrieved and relevant elements and
used the findings to improve retrieval effectiveness in the focused retrieval task
of INEX 2005. Our approach outperforms the baselines presented in all settings.
Under the strict quantisation, this improvement is considerably big, indicating
that the links discovered are very good pointers to highly relevant information.
Perhaps our most striking finding is that the original score of an element is not



Table 4. Main article divisions: FM (front matter), BM (back matter) and BDY
(body). Results using MAX as aggregation function. Evaluation with strict (S) and
generalised (G) quantisations

Divisions used α β γ nxCG[10] nxCG[25] nxCG[50] Maep

baseG
LM 1 0 0 0.1621 0.1507 0.1557 0.0569

run2G BM 0 1 0 0.0881 0.0662 0.0619 0.0150
run2G FM 0 1 0 0.1124 0.0826 0.0653 0.0197
run2G BDY 0 1 0 0.2301 0.2219 0.2213 0.0805
run2G BM+BDY 0 1 0 0.2123 0.1950 0.2018 0.0722
run2G FM+BDY 0 1 0 0.2498 0.2413 0.2406 0.0898
run2G BM+FM+BDY 0 1 0 0.2123 0.2003 0.2145 0.0745

run4G BM 0 0.8 0.2 0.1068 0.0760 0.0701 0.0177
run4G FM 1 0.8 0.2 0.0882 0.0713 0.0527 0.0144
run4G BDY 1 0.8 0.2 0.2350 0.2246 0.2235 0.0801
run4G BM+BDY 0 0.8 0.2 0.2229 0.1966 0.2003 0.0709
run4G FM+BDY 0 0.8 0.2 0.2421 0.2366 0.2321 0.0835
run4G BM+FM+BDY 0 0.8 0.2 0.2286 0.1981 0.2076 0.0724

baseS
LM 1 0 0 0.1016 0.0885 0.1207 0.0536

run2S BM 0 1 0 0.0000 0.0015 0.0010 0.0002
run2S FM 0 1 0 0.0170 0.0147 0.0303 0.0113
run2S BDY 0 1 0 0.1173 0.1531 0.1718 0.0761
run2S BM+BDY 0 1 0 0.1000 0.1268 0.1363 0.0649
run2S FM+BDY 0 1 0 0.1327 0.1902 0.2134 0.0810
run2S BM+FM+BDY 0 1 0 0.1077 0.1378 0.1566 0.0688

run4S BM 0 0.8 0.2 0.0077 0.0031 0.0026 0.0010
run4S FM 0 0.8 0.2 0.0115 0.0146 0.0180 0.0086
run4S BDY 0 0.8 0.2 0.1000 0.1469 0.1676 0.0680
run4S BM+BDY 0 0.8 0.2 0.0962 0.1191 0.1178 0.0613
run4S FM+BDY 0 0.8 0.2 0.1038 0.1563 0.1743 0.0674
run4S BM+FM+BDY 0 0.8 0.2 0.0962 0.1246 0.1271 0.0609

a good indicator for the element’s relevance. Ignoring that score and replacing
it with a score based on the retrieval model scores of the elements that link to
the element improves results significantly. Note that some of these links may be
self links, which means that for some element types the original score is taken
into account. We also showed that using the maximum score of all linked ele-
ments gives better results than taking an average. This indicates that a single
good linked element can already indicates the merit of the element at hand.
Furthermore, links from the document body turned out to be most valuable,
but also front matter links contribute to the results. Back matter links are less
valuable. Perhaps information from the back matter should be propagated to the
elements that refer to it rather than up the tree, but this is subject to further
study. Since, in the current paper, we performed the analysis and experiments in
the same collection and topic set (INEX 2005), there is a big risk of overfitting.
Still, we believe most of the links discovered are intuitive (e.g., section title to



section or abstract to article) and therefore likely to be topic independent and
recurring in other collections. If relevance assessments are not available, the dis-
covered relationship information could be obtained from a person familiar with
the XML structure of the collection (e.g. publisher) or probably by analysing
clickthrough data. In any case, we showed that the structure in an XML tree can
contain valuable information and therefore XML elements should not be treated
independently.
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