
 

7   
 
 

PlanetData 
Network of Excellence 

FP7 – 257641 

 
 

D1.2 Benchmarking RDF Storage 
Engines 

Coordinator: Ying Zhang (CWI) 
With contributions from: Pham Minh Duc(CWI), Fabian 
Groffen(CWI), Erietta Liarou (CWI), Peter Boncz (CWI), 

Martin Kersten (CWI), Jean Paul Calbimonte (UPM), Oscar 
Corcho (UPM) 

1st Quality reviewer: Irini Fundulaki (FORTH) 
2nd Quality reviewer: Andreea Gagiu (STI) 

 

 

Deliverable nature: Report (R)  

Dissemination level: 
(Confidentiality) 

Public (PU) 

Contractual delivery date: M18 (March 31, 2012) 

Actual delivery date: March 30, 2012 

Version: 1.0 

Total number of pages: 58 

Keywords: SRBench, Streaming RDF, benchmark, Linked Stream Data, SPARQLStream 
 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301643948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PlanetData Deliverable D 1.2 

 Page 2 of (58)   
  

Abstract 

In this deliverable, we present version V1.0 of SRBench, the first benchmark for Streaming RDF engines, 
designed in the context of Task 1.4 of PlanetData, completely based on real-world datasets. With the 
increasing problem of too much streaming data but not enough knowledge, researchers have set out for 
solutions in which Semantic Web technologies are adapted and extended for the publishing, sharing, 
analysing and understanding of such data. Various approaches are emerging. To help researchers and users to 
compare streaming RDF engines in a standardised application scenario, we propose SRBench, with which 
one can assess the abilities of a streaming RDF engine to cope with a broad range of use cases typically 
encountered in real-world scenarios. We offer a set of queries that cover the major aspects of streaming RDF 
engines, ranging from simple pattern matching queries to queries with complex reasoning tasks. To give a 
first baseline and illustrate the state of the art, we show results obtained from implementing SRBench using 
the SPARQLStream query-processing engine developed by UPM. 

 

 



Deliverable D 1.2 PlanetData 

 Page 3 of (58)  
 

Executive summary  
In this deliverable, we present version V1.0 of SRBench, the first general purpose Streaming RDF 
Benchmark, which has been designed from scratch (in the context of Task 1.4 of PlanetData) to assess the 
streaming RDF engines. 

With the increasing problem of “too much (streaming) data but not enough knowledge” (Sheth et al., 2008), 
i.e., existing techniques are not sufficient to gain and derive information from the large amount of available 
data (Balazinska et al., 2007; Della Valle et al., 2009), researchers have set out for solutions in which 
Semantic Web technologies are adapted and extended for the publishing, sharing, analysing and 
understanding of the streaming data. Various approaches are emerging, e.g., C-SPARQL, SPARQLStream, 
StreamSPARQL and CQUEL. To help researchers and users to compare streaming RDF engines in a 
standardised application scenario, we propose SRBench, with which one can assess the abilities of a 
streaming RDF engine to cope with a broad range of use cases typically encountered in real-world scenarios. 
The design of SRBench is based on an extensive study of the state-of-the-art techniques in both the data 
stream management systems and the streaming RDF processing engines, and the existing RDF/SPARQL 
benchmarks. This ensures that we capture all important aspects of streaming RDF processing in the 
benchmark. 

Duan et al. (2011) present an extensive study of the characteristics of real-world RDF data and generated 
(i.e., synthetic) benchmark RDF data. The study shows that existing benchmarks do not accurately predict 
the behaviour of RDF stores in realistic scenarios. Motivated by this study, we have purposely chosen to not 
generate synthetic data for the benchmark, but use real-world datasets instead. Thus, SRBench uses three 
real-world datasets from the Linked Open Data cloud, i.e., the LinkedSensorData dataset, the GeoNames 
RDF dataset and the DBpedia dataset. The LinkedSensorData dataset contains streaming RDF data collected 
from US weather stations. It is the first and largest sensor dataset in the Linked Open Data cloud and the 
CKAN portal. The locations of the stations are linked to the locations described by the GeoNames dataset. 
The GeoNames locations are, in turn, linked to objects described by the DBpedia dataset (one of the largest 
and most popularly used dataset in the LOD cloud) through the owl:sameAs property. 

The goal of SRBench V1.0 is to evaluate the functional completeness of a streaming RDF engine. The 
benchmark contains a concise, yet comprehensive set of queries which covers the major aspects of streaming 
SPARQL query processing, ranging from simple pattern matching queries to queries with complex reasoning 
tasks. The main advantages of applying Semantic Web technologies on streaming data include providing 
better search facilities by adding semantics to the data, reasoning through ontologies, and integration with 
other data sets. The ability of a streaming RDF engine to process these distinctive features is accessed by the 
benchmark with queries that apply reasoning not only over the streaming sensor data, but also over the 
metadata and even other data sets in the Linked Open Data (LOD) cloud. 

Finally, we have complemented our work on SRBench with a functional evaluation of the benchmark on the 
SPARQLStream query-processing engine developed by the PlanetData partner UPM. The engine supports the 
streaming RDF query language, also called SPARQLStream, proposed by UPM. The evaluation shows that the 
functionality supported by SPARQLStream is fairly complete. At the language level, it is able to express all 
benchmark queries easily and concisely. At the query processing level, some missing features have been 
discovered, for all of which preliminary code has been added for further development. 

This deliverable is a continuation of the previous deliverable D1.1, in the sense that D1.1 has studied, among 
others, the characterisation mechanisms of the Linked Stream Data. In this deliverable, we continue working 
on Linked Stream Data and study the ways to assess Linked Stream Data processing engines. This 
deliverable uses the result of the work on Linked Stream Data and evaluates the SPARQLStream, both 
approaches were presented in the previous deliverable D1.1. The evaluation of SRBench on SPARQLStream 
has triggered the collaboration between UPM and CWI to integrate SPARQLStream with MonetDB/DataCell, 
which pertain to the topic of the following deliverable 1.7. 



PlanetData Deliverable D 1.2 

 Page 4 of (58)   
  

Document Information 
IST Project 
Number 

FP7 - 257641 Acronym PlanetData 

Full Title PlanetData 
Project URL http://www.planet-data.eu/ 
Document URL http://planet-data.eu/sites/default/files/pr-

material/deliverables/D1.2_Benchmarking_RDF_storage_engines.pdf 
EU Project Officer Leonhard Maqua 
	  
Deliverable Number D1.2 Title Benchmarking RDF storage engines 
Work Package  Number WP1 Title Data Streams and Dynamicity 
	  
Date of Delivery Contractual M18 Actual M18 
Status version 1.0 final ■ 
Nature prototype □ report ■  dissemination □ 
Dissemination level public ■ consortium □ 
	  
Authors (Partner) 	  

Responsible Author Name	   Ying	  Zhang	   E-mail Ying.Zhang@cwi.nl 
Partner	   CWI	   Phone +31(0)20 592 4134 

	  
Abstract  
(for dissemination) 

 

Keywords SRBench, Streaming RDF, benchmark, Linked Sensor Data 
	  
Version Log 
Issue Date Rev. No. Author Change 
2011-07-05 0.1 Ying Zhang, Oscar Corcho, 

Zoltán Miklós 
Initial draft of TOC 

2011-09-15 0.2 Ying Zhang, Pham Minh 
Duc, Peter Boncz 

TOC revised 

2011-09-20 0.3 Ying Zhang Deliverable synopsis 
2012-03-01 0.9 Ying Zhang, Pham Minh 

Duc, Fabian Groffen, 
Erietta Liarou, Peter Boncz, 
Martin Kersten, Jean Paul 
Calbimonte 

Initial draft version for internal 
review 

2012-03-22 0.95 Ying Zhang, Oscar Corcho, 
Pham Minh Duc 

Revised version (for final 
assessment) 

2012-03-30 1.0 Ying Zhang Final version 
    
    
    
    
 

 

 

 



Deliverable D 1.2 PlanetData 

 Page 5 of (58)  
 

Table of Contents 

Executive	  summary	  .....................................................................................................................	  3	  

Document	  Information	  ................................................................................................................	  4	  

Table	  of	  Contents	  ........................................................................................................................	  5	  

List	  of	  Figures	  and	  Tables	  .............................................................................................................	  7	  

Abbreviations	  ..............................................................................................................................	  8	  

1	   Introduction	  ..........................................................................................................................	  9	  
1.1	   Background	  ..................................................................................................................................	  9	  
1.2	   RDF/SPARQL	  ..............................................................................................................................	  10	  
1.3	   SRBench	  .....................................................................................................................................	  11	  
1.4	   Outline	  .......................................................................................................................................	  12	  

2	   Related	  Work	  ......................................................................................................................	  13	  
2.1	   Data	  Stream	  Management	  Systems	  ...........................................................................................	  13	  

2.1.1	   Aurora	  .........................................................................................................................................	  13	  
2.1.2	   STREAM	  ......................................................................................................................................	  14	  
2.1.3	   Telegraph-‐CQ	  ..............................................................................................................................	  15	  
2.1.4	   Other	  DSMSs	  ...............................................................................................................................	  16	  
2.1.5	   A	  New	  Processing	  Paradigm:	  Persistent	  and	  Stream	  Data	  Under	  the	  Same	  Roof	  ......................	  17	  
2.1.6	   Data	  Stream	  Query	  Languages	  ...................................................................................................	  17	  
2.1.7	   Discussion	  ...................................................................................................................................	  18	  

2.2	   Linear	  Road	  Benchmark	  .............................................................................................................	  18	  
2.3	   Streaming	  RDF	  Engines	  ...............................................................................................................	  19	  

2.3.1	   StreamSPARQL	  ............................................................................................................................	  19	  
2.3.2	   C-‐SPARQL	  ....................................................................................................................................	  19	  
2.3.3	   SPARQLStream	  ................................................................................................................................	  20	  
2.3.4	   CQELS	  ..........................................................................................................................................	  21	  
2.3.5	   Streaming	  Knowledge	  Bases	  .......................................................................................................	  22	  
2.3.6	   Other	  Streaming	  RDF	  Techniques	  ...............................................................................................	  22	  
2.3.7	   Discussion	  ...................................................................................................................................	  23	  

2.4	   RDF/SPARQL	  Benchmarks	  ..........................................................................................................	  24	  
2.4.1	   LUBM	  ..........................................................................................................................................	  24	  
2.4.2	   SP2Bench	  .....................................................................................................................................	  24	  
2.4.3	   BSBM	  ..........................................................................................................................................	  24	  
2.4.4	   Discussion	  ...................................................................................................................................	  25	  

3	   Data	  Sources	  .......................................................................................................................	  26	  
3.1	   The	  LinkedSensorData	  Dataset	  ...................................................................................................	  26	  
3.2	   The	  GeoNames	  RDF	  Dataset	  .......................................................................................................	  27	  
3.3	   The	  DBpedia	  Dataset	  ..................................................................................................................	  28	  

4	   SRBench	  Dataset	  Specification	  .............................................................................................	  29	  
4.1	   Namespaces	  ...............................................................................................................................	  29	  
4.2	   Classes	  and	  Properties	  ...............................................................................................................	  29	  
4.3	   Data	  dictionaries	  ........................................................................................................................	  34	  

5	   SRBench	  Query	  Definitions	  ..................................................................................................	  35	  
5.1	   Basic	  Pattern	  Matching	  ..............................................................................................................	  35	  
5.2	   Optional	  Pattern	  Matching	  .........................................................................................................	  35	  
5.3	   ASK	  Query	  Form	  ........................................................................................................................	  35	  
5.4	   Overlapping	  Sliding	  Window	  ......................................................................................................	  35	  



PlanetData Deliverable D 1.2 

 Page 6 of (58)   
  

5.5	   CONSTRUCT	  Derived	  Knowledge	  ...............................................................................................	  36	  
5.6	   Union	  .........................................................................................................................................	  36	  
5.7	   Window-‐to-‐Stream	  operation	  ....................................................................................................	  36	  
5.8	   Aggregates	  .................................................................................................................................	  36	  
5.9	   Expression	  in	  SELECT	  Clause	  ....................................................................................................	  36	  
5.10	   Join	  ..........................................................................................................................................	  37	  
5.11	   Subquery	  .................................................................................................................................	  37	  
5.12	   Property	  Path	  Expressions	  .......................................................................................................	  37	  
5.13	   Ontology-‐based	  Reasoning	  ......................................................................................................	  38	  
5.14	   Evaluation	  ................................................................................................................................	  38	  

6	   SRBench	  Queries	  Implementation	  Using	  SPARQLStream	  .........................................................	  40	  
6.1	   Q1	  –	  Get	  all	  rainfall	  observed	  in	  the	  last	  hour.	  ............................................................................	  40	  
6.2	   Q2	  –	  Get	  all	  precipitation	  observed	  in	  the	  last	  hour.	  ...................................................................	  40	  
6.3	   Q3	  –	  Detect	  if	  a	  station	  is	  observing	  a	  hurricane.	  ........................................................................	  41	  
6.4	   Q4	  –	  Get	  the	  average	  wind	  speed	  at	  the	  stations	  where	  the	  air	  temperature	  is	  >32	  degrees	  in	  the	  
last	  hour,	  every	  10	  minutes.	  ................................................................................................................	  41	  
6.5	   Q5	  –	  Detect	  if	  a	  station	  is	  observing	  a	  blizzard.	  ...........................................................................	  42	  
6.6	   Q6	  –	  Get	  the	  stations	  that	  have	  observed	  extremely	  low	  visibility	  in	  the	  last	  hour.	  ....................	  43	  
6.7	   Q7	  –	  Detect	  stations	  that	  are	  recently	  broken.	  ...........................................................................	  43	  
6.8	   Q8	  –	  Get	  the	  daily	  minimal	  and	  maximal	  air	  temperature	  observed	  by	  the	  sensor	  at	  a	  given	  
location.	  ..............................................................................................................................................	  43	  
6.9	   Q9	  –	  Get	  the	  daily	  average	  wind	  force	  and	  wind	  direction	  observed	  by	  the	  sensor	  at	  a	  given	  
location.	  ..............................................................................................................................................	  44	  
6.10	   Q10	  –	  Get	  the	  locations	  where	  a	  heavy	  snowfall	  has	  been	  observed	  in	  the	  last	  day.	  ................	  45	  
6.11	   Q11	  –	  Detecting	  if	  a	  station	  has	  produced	  significantly	  different	  measurements	  than	  its	  
neighbouring	  stations	  ..........................................................................................................................	  45	  
6.12	   Q12	  –	  Get	  the	  hourly	  average	  air	  temperature	  and	  humidity	  of	  large	  cities.	  .............................	  46	  
6.13	   Q13	  –	  Get	  the	  shores	  in	  Florida,	  US	  where	  a	  strong	  wind,	  i.e.,	  the	  wind	  force	  is	  between	  6	  and	  
9,	  has	  been	  observed	  in	  the	  last	  hour.	  .................................................................................................	  47	  
6.14	   Q14	  –	  Get	  the	  airport(s)	  located	  in	  the	  same	  city	  as	  the	  sensor	  that	  has	  observed	  extremely	  low	  
visibility	  in	  the	  last	  hour.	  .....................................................................................................................	  48	  
6.15	   Q15	  –	  Get	  the	  locations	  where	  the	  wind	  speed	  in	  the	  last	  hour	  is	  higher	  than	  a	  known	  
hurricane.	  ............................................................................................................................................	  48	  
6.16	   Q16	  –	  Get	  the	  heritage	  sites	  that	  are	  threatened	  by	  a	  hurricane.	  .............................................	  49	  
6.17	   Q17	  –	  Estimate	  the	  damage	  where	  a	  hurricane	  has	  been	  observed.	  .........................................	  50	  
6.18	   Discussion	  ................................................................................................................................	  50	  

7	   Conclusion	  and	  Future	  Work	  ................................................................................................	  52	  

References	  ................................................................................................................................	  53	  

Annex	  A	   The	  SPARQLStream	  Streaming	  RDF	  Query	  Language	  ....................................................	  57	  
A.1	   SPARQLStream	  Syntax	  ...................................................................................................................	  57	  
A.2	   SPARQLStream	  Semantics	  ..............................................................................................................	  57	  

 

 

 



Deliverable D 1.2 PlanetData 

 Page 7 of (58)  
 

List of Figures and Tables  
Figure	  1:	  Aurora	  System	  Architecture	  (Carney	  et	  al.,	  2002)	  ......................................................................................	  14	  
Figure	  2:	  TelegraphCQ	  System	  Architecture	  (Chandrasekaran	  et	  al.,	  2003)	  ...............................................................	  16	  
Figure	  3:	  C-‐SPARQL	  Architecture	  Overview	  (Barbieri	  et	  al.,	  2010b)	  ...........................................................................	  20	  
Figure	  4:	  Ontology-‐based	  streaming	  data	  access	  service	  (Calbimonte	  et	  al.,	  2010)	  ...................................................	  21	  
Figure	  5:	  An	  overview	  of	  the	  datasets	  used	  in	  SRBench,	  and	  their	  relationships.	  (Note	  that	  the	  sizes	  of	  the	  circles	  do	  

not	  reflect	  the	  actual	  sizes	  of	  the	  datasets.)	  ....................................................................................................	  26	  
Figure	  6:	  An	  overview	  of	  all	  ontology	  classes	  and	  their	  relationships.	  ......................................................................	  30	  
 

Table	  1:	  Statistics	  of	  the	  Sensor	  Observation	  Datasets	  Used	  by	  SRBench	  .................................................................	  27	  
Table	  2:	  An	  overview	  of	  RDF/SPARQL	  features	  used	  by	  each	  query	  .........................................................................	  51	  
Table	  3:	  An	  example	  SPARQLStream	  query	  which	  every	  minute	  computes	  the	  average	  wind	  speed	  measurement	  for	  

each	  sensor	  over	  the	  last	  10	  minutes	  if	  it	  is	  higher	  than	  the	  average	  of	  the	  last	  2	  to	  3	  hours.	  ...........................	  58	  
 



PlanetData Deliverable D 1.2 

 Page 8 of (58)   
  

Abbreviations 
DBMS Database Management System 

DSMS Data Stream Management System 

FOAF Friend Of A Friend 

LOD Linked Open Data 

LSD Linked Stream Data 

OWL Web Ontology Language 

QoS Quality of Service 

RDBMS Relational Database Management System 

RDF Resource Description Framework 

SSW Semantic Sensor Web 

 

 



Deliverable D 1.2 PlanetData 

 Page 9 of (58)  
 

1 Introduction 

1.1 Background 

Generally speaking, data streams are streams of data continuously generated at some regular or irregular 
time intervals. A data stream contains an infinite sequence S of <vi, ti> pairs, where vi is the data value and ti 
is the timestamp at which vi is valid. The values of ti in the sequence S are monotonically non-decreasing, 
i.e., i < j è ti ≤ tj. Theoretically, vi can be any value. Thus in case of streaming RDF data, we define an RDF 
data stream to be an infinite sequence Srdf of <spoi, ti> pairs, where spoi is an RDF triple <si, pi, oi> and ti is 
the valid timestamp of the RDF spoi. 

The data that are dealt with by the data management systems (DBMS) and the most Semantic Web 
technologies are static data, which are characterised by the facts that the complete datasets are usually 
available beforehand and changes that will be made to the data are either in small amounts or at low 
frequencies, e.g., once in a day. The streaming data, on the contrary, are highly dynamic. There is no pre-
collected dataset; instead, streaming data arrive on the fly, continuously at a high rate, e.g., once per second 
or even higher. Additionally, some data streams have only a limited lifetime. These characteristics of 
streaming data impose the real-time or near real-time requirement on the systems that handle this type of 
data, that is, such systems must carry out all work on a data item before the next data item arrives and within 
the lifetime of the data item.  

Recent development in mobile technologies and wireless communication has resulted in an avalanche of 
streaming data. In just about a decade, streaming data has become ubiquitous in our daily life. Among 
others1, sensor data is a major class of streaming data with the longest history. So, in the work presented in 
this document, we focus on this type of streaming data. Nowadays, sensors2 have been adopted by a broad 
scope of applications, such as weather forecasting3, traffic management4, satellite imaging for earth 
observation5, elderly care (Ruyter and Pelgrim, 2007) and seismic events detection6. Millions of sensors 
bring us not only a vast amount of data, but also data sources of various content, formats, modality and 
quality. This gives plenty of opportunities for new kinds of applications that utilise many data sources 
simultaneously, thus achieving functions not possible by using any single sensor network. Such applications 
require the use of heterogeneous and rapidly changing data sources in an integrated manner. 

The data stream management systems (DSMSs) have focused on efficient managing and processing of 
streaming data (Chen et al., 2000; Carney et al., 2002; Abadi et al., 2003a; Abadi et al., 2003b; Babcock et 
al., 2004; Balakrishnan et al., 2004; Madden et al., 2002; Chandrasekaran and Franklin, 2002; Cranor et al., 
2003; Aberer et al., 2006a; Aberer et al., 2006b; Ali et al., 2009; Gedik et al., 2008; Liarou et al., 2009; 
Franklin et al., 2009; Franklin et al., 2009; Chen and Hsu, 2010). These issues are mainly addressed in the 
context of individual sensor networks. The existing DSMSs do not provide tools to publish and share the 
streaming data; neither do they try to derive knowledge from the streaming data. As a result, applications 
dealing with streaming data are tied closely to one or a few sensor networks and are mostly only available 
within the same organisation. Semantic Web technologies, on the other hand, have focused on how to 
publish and interlink data on the World Wide Web, and how to perform complex reasoning tasks on the data. 
However, these technologies do not take into account rapidly changes of the data. 

The lack of integration and communication between different sensor networks often isolates important data 
streams and intensifies the existing problem of “too much (streaming) data but not enough knowledge” 
(Sheth et al., 2008). The amount of streaming data has been growing extremely fast in the past several years 
and is expected to grow even faster in the coming decades. However, existing techniques are not able to gain 

                                                        
1 Next to sensor data streams, there are also video streams and text streams. 
2 Throughout this document, we will use the word “sensors” to refer to both sensors and sensors networks. 
3 See: http://www.aemet.es 
4 See: http://www.tomtom.com/livetraffic/ 
5 See: http://www.earthobservatory.eu/ 
6 See: http://www.orfeus-eu.org/ 



PlanetData Deliverable D 1.2 

 Page 10 of (58)   
 

all information from the available streaming data, letting alone interlinking streaming data with other (static) 
dataset to derive implicit information from the streaming data (Balazinska et al., 2007; Della Valle et al., 
2009). To tackle this problem, researchers have set out for solutions in which Semantic Web technologies are 
adapted and extended for the publishing, sharing, analysing and understanding of the streaming data. Various 
proposals have emerged that address open issues such as how to apply reasoning on streaming data (Anicic 
et al., 2011; Della Valle et al., 2009; Sheth et al., 2008; Walavalkar et al., 2008; Whitehouse et al., 2006); 
how to publish raw streaming data in Semantic Web and connect them to the existing datasets on the 
Semantic Web (Bouillet et al., 2007; Corcho and García-Castro 2010; Le-Phuoc et al., 2009; Sequeda and 
Corcho 2009; Sheth et al., 2008); and how to apply the query language of semantic data on streaming data 
(Barbieri et al., 2009; Barbieri et al., 2010a; Barbieri et al., 2010b; Bolles et al., 2008; Calbimonte et al., 
2010; Groppe et al., 2007; Groppe 2011; Hoeksema 2011; Le-Phuoc et al., 2010; Le-Phuoc et al., 2011a; Le-
Phuoc et al., 2011b). 

Among others, Sheth et al. (2008) first envision a Semantic Sensor Web (SSW), in which sensor data is 
annotated with semantic metadata to increase interoperability as well as provide contextual information 
essential for situational knowledge7. Subsequently, Corcho and García-Castro (2010) identify the five most 
relevant challenges of the current Semantic Sensor Web. Della Valle et al. (2009) propose a novel approach, 
called Stream reasoning, that can provide the abstractions, foundations, methods and tools required to 
integrate data stream, the Semantic Web and reasoning systems. Sequeda and Corcho (2009) introduce the 
concept of Linked Stream Data (LSD), a way in which the Linked Data principles can be applied to stream 
data so that stream data can be published as part of the Web of Linked Data. These visions are answered by a 
number of streaming RDF processing engines that, in general, extend the RDF data model with a notion of 
time and the W3C standard RDF query language, SPARQL, with features to express continues queries 
(Groppe et al., 2007; Groppe 2011; Bolles et al., 2008; Barbieri et al., 2009; Barbieri et al., 2010a; Barbieri et 
al., 2010b; Le-Phuoc et al., 2009; Le-Phuoc et al., 2010; Le-Phuoc et al., 2011a; Le-Phuoc et al., 2011b; 
Calbimonte et al., 2010; Anicic et al., 2011; Hoeksema, 2011). The increasing interest in streaming RDF 
processing engines calls for a standard way to compare the different systems. 

1.2 RDF/SPARQL 

The Resource Description Framework (RDF) is a family of World Wide Web Consortium (W3C) 8 
specifications originally designed as a metadata data model. It has come to be used as a general method for 
conceptual description or modeling of information that is implemented in web resources using a variety of 
syntax formats9. RDF extends the linking structure of the Web to use URIs for naming relationships between 
things as well as the resources that are related (usually referred to as a “triple”). Using this simple model 
allows structured and semi-structured data to be mixed, exposed and shared across different applications. 
This linking structure forms a directed, labeled graph where the edges represent the named link between two 
resources represented by the graph nodes. This graph view is the easiest possible mental model for RDF and 
is often used in easy-to-understand visual explanations10. 

The SPARQL Protocol and RDF Query Language (SPARQL) is an RDF query language, i.e., a query 
language for databases that is able to retrieve and manipulate data stored in RDF format (Rapoza, 2006; 
Segaran et al., 2009). It was made a standard by the RDF Data Access Working Group (DAWG)11 of the 
World Wide Web Consortium, and considered as one of the key technologies of semantic web (Rapoza, 
2006). On 15 January 2008, SPARQL 1.0 became an official W3C Recommendation12. SPARQL13 allows 

                                                        
7 Situational knowledge is the knowledge specific to a particular situation. 
8 http://www.w3.org/ 
9 http://en.wikipedia.org/wiki/Resource_Description_Framework 
10 http://www.w3.org/RDF/ 
11 http://www.w3.org/2009/sparql/wiki/Main_Page  
12 http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_recommendation/ 
13 http://www.w3.org/TR/rdf-sparql-query/ 



Deliverable D 1.2 PlanetData 

 Page 11 of (58)  
 

for a query to consist of triple patterns, conjunctions, disjunctions, and optional patterns. The syntax of 
SPARQL is similar to the SQL language for querying RDF graphs14. 

1.3 SRBench 

Following a long tradition in database research, in this deliverable we present a benchmark, called SRBench, 
to assess the abilities of a streaming RDF engine to cope with a broad range of different query types typically 
encountered in real-world scenarios. This benchmark can help both researchers and users to compare 
streaming RDF engines in a standardized application scenario. 

To the best of our knowledge, SRBench is the first general purpose benchmark that has been primarily 
designed to assess the streaming RDF storage engines. In general, little work has been done on benchmarks 
for streaming data management systems. The Linear Road Benchmark (Arasu et al., 2004) is the only 
publicly available streaming benchmark, but unfortunately, it is not ideal to assess streaming RDF engines. 
Since the benchmark was primarily designed to assess traditional data stream management systems, which 
are based on the relational data model, it does not capture the properties of RDF data, which use the graph 
data model. Moreover, the benchmark does not take into account interlinking the benchmark data with other 
datasets; neither does it consider reasoning in its queries. Although several RDF/SPARQL benchmark exist 
(Guo et al., 2005; Bizer and Schultz 2009; Schmidt et al., 2009), they do not capture the properties of 
streaming data. In Le-Phuoc et al. (2011b) and Hoeksema (2011), some micro benchmark queries are created 
for preliminary evaluation of the proposed systems. However, the queries were designed with a particular 
system in mind and they only cover a small subset of the features of RDF/SPARQL. Moreover, simply 
streaming parts of the data of an existing benchmark does not create a realistic scenario (Hoeksema, 2011). 
Hence, they cannot serve as general-purpose benchmarks. 

Since streaming RDF processing is still a developing research area, the first goal of SRBench is to evaluate 
the functional completeness of a streaming RDF engine. To this end, we offer a set of queries where each 
query is intended to challenge a particular aspect of the query processor. The benchmark contains a concise, 
yet comprehensive set of queries which covers the major aspects of streaming SPARQL query processing, 
ranging from simple pattern matching queries to queries with complex reasoning tasks. The main advantages 
of applying Semantic Web technologies on streaming data include providing better search facilities by 
adding semantics to the data, reasoning through ontologies, and integration with other data sets. The ability 
of a streaming RDF engine to process these distinctive features is accessed by the benchmark with queries 
that apply reasoning not only over the streaming sensor data, but also over the metadata and even other data 
sets in the Linked Open Data (LOD) cloud, currently including the RDF version of the GeoNames dataset15 
and the DBpedia dataset16. 

Duan et al. (2011) present an extensive study of the characteristics of real-world RDF data and generated 
(i.e., synthetic) benchmark RDF data. The study shows that existing benchmarks do not accurately predict 
the behaviour of RDF stores in realistic scenarios. For this reason, all datasets used in SRBench are real-
world datasets, including the LinkedSensorData dataset17, the RDF version of the GeoNames dataset15 and 
the DBpedia dataset16. The choices for the three datasets were made on purpose. The LinkedSensorData 
dataset publishes real-world sensor metadata and sensor observation data according to the Linked Stream 
Data principle, which was studied in the previous PlanetData deliverable D1.1 (Corcho et al., 2011). 
Moreover, LinkedSensorData is the largest sensor dataset in both the Linked Open Data18 cloud and the 
CKAN19 data portal. The LinkedSensorData dataset links the sensor locations to nearby geographic places 
defined by the GeoNames dataset, so this naturally determines our choice of the GeoNames dataset. The 
choice for the DBpedia dataset is also a matter of course, since DBpedia is the largest and the most popularly 

                                                        
14 http://www.thefigtrees.net/lee/sw/sparql-faq#what-is 
15 See: http://www.geonames.org/ontology/documentation.html 
16 See: http://wiki.dbpedia.org/Downloads37 
17 See: http://wiki.knoesis.org/index.php/LinkedSensorData 
18 See: http://richard.cyganiak.de/2007/10/lod/ 
19 See: http://thedatahub.org/dataset/knoesis-linked-sensor-data 



PlanetData Deliverable D 1.2 

 Page 12 of (58)   
 

used dataset in the Linked Open Data cloud. Moreover, the PlanetData partner FUB is one of the originators 
of DBpedia. 

Streaming RDF processing is an evolving topic. As a result of this, the proposed systems are in their earlier 
stages of development. At this moment, one of the most important issues is to assess the functionality of the 
proposed systems. Do they provide a sufficient set of functions that are needed by the streaming 
applications? Do they miss any crucial functionalities? Do they provide any additional functionalities that 
can be beneficial for streaming applications, which thus distinguish themselves from other systems in the 
same area. Therefore, we complement our work on SRBench with a functional evaluation of the benchmark 
on the SPARQLStream query language and processing engine20 developed by the PlanetData partner UPM 
(Calbimonte et al., 2010). These results are intended to give a first baseline and illustrate the state of the art. 
Although the works proposed by (Barbieri et al., 2010a; Barbieri et al., 2010b) and by (Le-Phuoc et al., 
2011a; Le-Phuoc et al., 2011b) are competitive with SPARQLStream, we find SPARQLStream the best starting 
point for the evaluation of the benchmark for several reasons. Among all streaming SPARQL extensions, the 
syntax of the SPARQLStream extension is the cleanest, because it only extends the FROM clause to also allow 
streaming resources. SPARQLStream is the only extension that is based on both the newest W3C standard 
SPARQL 1.1 language (Harris and Seaborne, 2012) and CQL (Arasu et al., 2003b), the best-defined 
continuous query language for DSMSs. Moreover, the SPARQLStream engine is implemented in extensible 
modules, which makes it easy to be integrated with MonetDB/DataCell, a continuous query processor being 
developed by the PlanetData partner CWI, which will be part of the main objective of the following 
deliverable D1.7 of PlanetData. 

1.4 Outline 

This document is further organised as follows. In Section 2, we give an extensive study of the state-of-the-art 
techniques in the related research areas, which include Data Streams Management Systems (DSMSs), 
streaming benchmarks, streaming RDF processing engines, SPARQL language extensions for continues 
queries, and RDF/SPARQL benchmarks. In Section 3, we give some brief background information about the 
datasets which are used in the SRBench benchmark. In Section 4, we specify the data model of SRBench. In 
Section 5, we define the benchmark queries. In Section 6, we give a functional evaluation of the benchmark 
using the SPARQLStream query processing engine developed by the PlanetData partner UPM. Finally, in 
Section 7, we conclude and discuss future work. 

 

                                                        
20 See: http://code.google.com/p/semanticstreams/source/checkout 



Deliverable D 1.2 PlanetData 

 Page 13 of (58)  
 

2 Related Work 
Before starting with designing a new benchmark for streaming RDF engines, we have first carried out an 
extensive study of the state-of-the-art of the related techniques in the relational world as well as the 
RDF/SPARQL world. In this section, we highlight several notable existing work in the areas of Data Streams 
Management Systems (DSMSs), streaming benchmarks, streaming RDF processing engines, SPARQL 
language extensions for continues queries, and RDF/SPARQL benchmarks. 

2.1 Data Stream Management Systems 

Modern applications coming from various fields (e.g., finance, telecommunications, networking, sensor and 
web applications) require fast data analysis over data that are continuously updated. In this new type of 
applications, called data stream applications, we first of all need mechanisms to support long-
standing/continuous queries over data that is continuously, and at high rate, updated by the environment. To 
achieve good processing performance, i.e., handling input data within strict time bounds, a system should 
provide incremental processing where query results are frequently and instantly updated as new data arrives. 
Systems should scale to handle numerous co-existing queries at a time and exploit potential similarities 
between the large number of standing queries. Furthermore, environment and workload changes may call for 
adaptive processing strategies to achieve the best query response time. Even if conventional DBMSs are 
powerful data management systems, the hooks for building a continuous streaming application are not 
commonly available in such systems. 

Given these differences, and the unique characteristics and needs of continuous query processing, the 
pioneering Data Stream Management Systems (DSMS) architects naturally considered that the existing 
DBMS architectures were inadequate to achieve the desired performance. Another aspect is that the initial 
stream applications had quite simple requirements in terms of query processing. This made the existing 
DBMS systems look overloaded with functionalities. These factors led researchers to design and build new 
architectures from scratch. Several DSMS solutions have been proposed over the last years giving birth to 
very interesting ideas and system architectures. In this section, we discuss several characteristic DSMSs 
research prototypes. 

2.1.1 Aurora 

Aurora (Carney et al., 2002; Abadi et al., 2003a; Abadi et al., 2003b; Babcock et al., 2004; Balakrishnan et 
al., 2004) is a data stream management system that was developed between 2001 and 2004, as a result from 
the collaboration of three research groups from MIT, Brown University and Brandeis University. 

Aurora uses the boxes and arrows paradigm, followed in most workflow systems. Each box represents a 
query operator and each arc represents a data flow or a queue between the operators. Each query is built out 
of a set of operators and all submitted queries constitute the Aurora query network. SQuAl is Aurora’s query 
algebra that provides nine stream-oriented primitive operators, i.e., Filter, Map, Union, Aggregate, 
Join, BSort, Resample, Read, and Update. The users can construct their queries out of these 
operators. Each operator may have multiple input streams (e.g., union), and could give its output to 
multiple boxes (e.g., split). Tuples flow through an acyclic, directed graph of processing operators. At the 
end, each query concludes to a single output stream, presented to the corresponding application. Aurora can 
also maintain historical storage, to support ad hoc queries. 

The query network is divided into a collection of n sub-networks. The application administrator makes the 
decision where to insert the connection points. Connection points indicate the network modification points 
and specify the query optimization limits. New boxes can only be added to or deleted from the connection 
network points over time. Instead of trying to optimize the whole query graph at once, the Aurora optimizer 
optimises it piece-by-piece. It isolates each sub-network, surrounded by connection points, individually from 
the rest of the network and optimises it in a periodic manner. 

Figure 1 illustrates the high-level system model of the Aurora system, as presented by the authors in their 
original publications (Carney et al., 2002). The router connects the system to the outside world. It receives 
input data streams from the external data sources, e.g., sensors, and from inside boxes. If the query 
processing is completed, the router forwards the tuples to external waiting sources; otherwise it re-feeds 
them to the storage manager for further processing. The storage manager stores and retrieves the data 



PlanetData Deliverable D 1.2 

 Page 14 of (58)   
 

streams on in-memory buffers between query operators. Also, it maintains historical storage, to serve 
potential ad-hoc queries. A persistence specification indicates exactly for how long the data is kept. 

The scheduler is the core Aurora component (Babcock et al., 2004). It decides when an operator should be 
executed, and feeds it with the appropriate number of queued tuples. In Aurora, there is one box processor 
per operator type; this part is responsible for executing a particular operator when the scheduler calls it. 
Then, the box operator forwards the output tuples to the router. The scheduler continuously monitors the 
state of the operators and the buffers and repeats this procedure periodically. 

The designers of Aurora dedicated a big part of their research on addressing methods that guarantee Quality 
of Service (QoS) requirements when the system becomes overloaded (Tatbul, 2007). They proposed load-
shedding techniques that attach to the query network a type of system-level operators that selectively drop 
tuples. Aurora applies such operators when the rate on incoming streams overwhelm the stream engine, 
trying to balance between the expected side-effect on result accuracy, while meeting QoS application 
requirements. Later on, Medusa (Sbz et al., 2003) and Borealis (Abadi et al., 2005) extended the single-site 
Aurora architecture to a distributed setting. In 2003, the original research prototype was commercialized into 
a start-up company named StreamBase Systems21. 

2.1.2 STREAM 

The STanford stREam datA Management (STREAM) system (Motwani et al., 2002; Arasu et al., 2003a) is 
another data stream processing research prototype that was designed and developed at Stanford University 
from 2001 to 2006. 

STREAM provides a declarative query language, called CQL (Arasu et al., 2003b), which allows queries to 
handle data from continuous data streams as well as conventional relations. CQL extends SQL by allowing 
stream and relational expressions, and introducing window operators. In CQL there are three classes of 

                                                        
21 StreamBase Systems, Inc (2003). See: http://www.streambase.com/ 

20 CHAPTER 1. BACKGROUND AND RELATED WORK

8

Figure 2.1: Aurora system architecture

Otherwise, the router forwards the tuple to the storage manager to be placed on proper queues for

further processing.

The storage manager is responsible for e⇥cient storage and retrieval of data queues on arcs

between query operators. It manages the in-memory bu�er pool that stores stream tuples for

immediate use by box processors as well as the persistent store that keeps history for processing

potential ad hoc queries.

The scheduler is the core component that makes decisions about operator execution order. It

selects an operator with waiting tuples in its queues and executes that operator on one or more

of the input tuples [25]. There is one processor per box type that implements the functionality

for the corresponding query operator. When invoked by the scheduler, the box processor executes

the appropriate operation and then forwards the output tuples to the router. The scheduler then

ascertains the next processing step and the cycle repeats.

The QoS monitor continually monitors system performance and triggers the load shedder if it

detects a decrease in QoS. The load shedder is responsible for handling overload due to high input

rates [93]. It reads in system statistics and query network description from the catalogs, and makes

certain modifications on the running query plans to bring the demand on CPU down to the available

capacity level.

2.1.2 Data Model

Aurora models a stream as an append-only sequence of tuples with a uniform schema. In addition

to application-specific data fields, each tuple in a stream also carries a header with system-assigned

fields. These fields are hidden from the application and are used internally by the system for QoS

Figure 1.1: Aurora System Architecture (Carney et al., 2002)

The designers of Aurora dedicated a big part of their research on addressing
methods that guarantee Quality of Service (QoS) requirements when the system
becomes overloaded (Tatbul, 2007). They proposed load shedding techniques
that attach to the query network a kind of system-level operators that selectively
drop tuples. Aurora applies such operators when the rate on incoming streams
overwhelm the stream engine, trying to balance between the expected side-e�ect
on result accuracy meeting QoS application requirements. Later Medusa (Sbz
et al., 2003) and Borealis (Abadi et al., 2005) extended the single-site Aurora ar-
chitecture to a distributed setting. In 2003, the original research prototype was
commercialized into a start-up company named StreamBase Systems (Stream-
Base Systems, Inc, 2003).

Figure 1: Aurora System Architecture (Carney et al., 2002) 



Deliverable D 1.2 PlanetData 

 Page 15 of (58)  
 

operators: (a) the stream-to-relation operators, which produce a relation from a stream (i.e., sliding 
windows), (b) the relation-to-relation operators, which produce a relation from one or more other relations, 
such as in relational algebra and SQL and (c) the relation-to-stream operators, i.e., Istream, Dstream, 
and Rstream, which produce a stream from a relation. There are also three classes of sliding window 
operators, i.e., time-based, tuple-based and partitioned. However, in practice it does not support sliding 
windows with a slide bigger than a single tuple. 

In STREAM, operators read from and write to a single or multiple queues. Furthermore, synopses are 
attached to operators and store their intermediate state. This is useful when a given operator needs to 
continue its evaluation over an already processed input, for instance, the content of a sliding window or the 
relation produced by a subquery. Synopses are also used to summarize a stream or a relation when 
approximate query processing is required. Scheduling in STREAM also happens at the operator level as it 
used to in stream systems. It uses either a simple scheduling strategy (Motwani et al., 2003) such as round 
robin or FIFO, or the more sophisticated Chain algorithm (Babcock et al., 2003). The scheduling methods in 
STREAM focus on providing run-time memory minimisation. STREAM also includes a monitoring and 
adaptive query processing infrastructure called StreaMon (Babu and Widom, 2004), which consists of three 
components. The Executor runs query plans and produces results. The Profiler collects statistics about 
stream and query plan characteristics. Finally, the Reoptimizer takes the appropriate actions to always ensure 
that the query plan and memory usage are optimal for the current input characteristics. Whenever not enough 
CPU or memory is available, the system proceeds with approximate query processing, trying to handle the 
query load by sacrificing accuracy. StreaMon introduces random sampling operators into all query plans, in a 
way that the relative error is the same for all queries. STREAM deals with memory-limitations also by 
discarding older tuples from the window joins operators, leaving free space for new data. The goal here is to 
maximize the size of the resulting subset. 

2.1.3 Telegraph-CQ 

TelegraphCQ (Chandrasekaran et al., 2003) is a continuous query processing system built at University of 
California, Berkeley. The main focus is on adaptive and shared continuous query processing over query and 
data streams. The team in Berkeley built TelegraphCQ based on previous experience obtained while 
developing the preliminary prototypes CACQ (Madden et al., 2002) and PSoup (Chandrasekaran and 
Franklin, 2002). 

PSoup addresses the need for treating data and queries symmetrically. Thus, it allows new queries to see old 
data and new data to see old queries. This feature is passed to the TelegraphCQ architecture as well. 
Furthermore, TelegraphCQ successfully addresses and resolves important limitations that were not addressed 
in previous prototypes, e.g., it deals with memory and resource limitations, while trying to guarantee QoS 
over acceptable levels; and it focuses on scheduling and resource management of groups of queries. 
TelegraphCQ constructs query plans with adaptive routing modules, called Eddies (Avnur and Hellerstein, 
2000). Thus, it is able to proceed to continuous run-time optimizations, dynamically adapting to the 
workload. The Eddies modules adaptively decide how to route data to appropriate query operators on a tuple-
by-tuple basis. 

TelegraphCQ tries to leverage the infrastructure of a conventional DBMS, by reusing a big part of the open 
source PostgreSQL22 code base. With minimal changes at particular components, it tries to use the front-end 
piece of code that PostgreSQL already offers, including the Postmaster, the Listener, the System Catalog, the 
Query Parser and the PostgreSQL Optimiser. However, the TelegraphCQ developers proceeded to 
significant changes on the deeper PostgreSQL parts, such as the Executor, the Buffer Manager and the 
Access Methods, to make them compatible with the unique requirements of stream processing. Figure 2 
illustrates an overview of the TelegraphCQ architecture as it is originally presented in (Chandrasekaran et al., 
2003). The rightmost oval part is the most solid contribution of PostgreSQL to the new system architecture. 
The processes included in there, are connected using a shared memory infrastructure, and the generated 
query plans are placed in a query plan queue. From there, the Executor picks them up to proceed with the 
actual processing, trying first to classify the plans into groups for sharing work. The query results are 
continuously placed in the output queues. The Wrapper mechanism allows data to be streamed into the 
system. 

                                                        
22 See: http://www.postgresql.org/ 



PlanetData Deliverable D 1.2 

 Page 16 of (58)   
 

2.1.4 Other DSMSs 

The unique requirements of monitoring applications, establish a new research field that demonstrates 
interesting results on new system architectures, query languages, specialised algorithms and optimisations. 
So far, we presented three characteristic efforts from the academic world. However the research efforts do 
not stop there. Many other interesting stream systems have been presented to related journals and 
conferences. Some of them have been matured into commercial products. 

A noteworthy result is Gigascope (Cranor et al., 2003), a lightweight stream processing system that was 
developed in AT&T to serve network applications. It emerged from requirements of the company itself, e.g., 
traffic analysis, network monitoring and debugging. 

NiagaraCQ (Chen et al., 2000) is an XML-based continuous query system that focuses on query 
optimisation to improve scalability. This system tries to exploit query similarities to group queries and 
potentially save processing cost. The grouping process happens incrementally and once new queries are 
added to the system, they find their place in the appropriate groups. 

Different language semantics are introduced in the Cayuage system, developed in Cornell University. 
Cayuage is a stateful publish/subscribe system based on a non-deterministic finite state automata (NFA) 
model. 

Big vendors like Microsoft (Ali et al., 2009), IBM (Gedik et al., 2008) and Aleri/Coral823 have also become 
active in the data stream area during the last few years, developing high performance complex event 
processing systems. Their focus is on pure stream processing, providing additional external access to 
historical data. Furthermore, they have moved their architectures in distributed settings to cope with the 
increasing data requirements. 

                                                        
23 See: http://www.coral8.com/ 

22 CHAPTER 1. BACKGROUND AND RELATED WORK

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"#$%&%'()! %$! %*$"! +*! !"!#$%&'! #,+*-! $.+$! %)-! +! #,+*! $.+$!
%*/,01()!$.(!+1+#$%2(!"#(3+$"3)!1()/3%4(1!%*!5(/$%"*!67!8.(!
#,+*)!+3(!$.(*!#,+/(1!%*!$.(!90(3:!#,+*!90(0(!;<=<0(0(>-!
%*! +! ).+3(1! &(&"3:! )(?&(*$-! @"3! $.(! (A(/0$"37! 8.(!
(A(/0$"3!/"*$%*0+,,:!#%/B)!0#!@3().!90(3%()!@3"&!$.(!).+3(1!
&(&"3:!)(?&(*$7!8.()(!#,+*)!+3(!1:*+&%/+,,:!@",1(1!%*$"!
$.(! 30**%*?! 90(3%()! %*! $.(! (A(/0$"37! <0(3:! 3()0,$)! +3(!
#,+/(1! %*! /,%(*$C)#(/%@%/! "0$#0$! 90(0()-! D.%/.! +3(! +,)"!
,"/+$(1!%*!).+3(1!&(&"3:!)(?&(*$)7!8.(!,%)$(*(3!#%/B)!0#!
3()0,$)!@3"&!$.(!"0$#0$!90(0()!!+*1!)(*1)!$.(&!$"!$.(!/,%(*$!
#3"A:!@"3!1%)$3%40$%"*!$"!$.(!/,%(*$)7!!

!"#"#$ %&'$%'(')*+,&-.$/0'1234*$$
E!B(:!/.+,,(*?(!%*!1()%?*%*?!$.(!*(D!(A(/0$"3!%)! $.(!

&+##%*?!"@!"03!).+3(1!/"*$%*0"0)!#3"/())%*?!&"1(,!"*$"!+!
$.3(+1! )$30/$03(! $.+$! D%,,! +,,"D! @"3! +1+#$%2%$:! D.%,(!
%*/033%*?! &%*%&+,! "2(3.(+17! ! ! F*! $.("3:-! +! )%*?,(! G11:!
30**%*?! %*! +! )%*?,(! $.3(+1! /"0,1! 4(! 0)(1! $"! 30*! +,,! $.(!
90(3%()!%*!$.(!):)$(&!;+)!%*!HEH<!+*1!=5"0#>-!%*/,01%*?!
$.")(! %*2",2%*?! $"$+,,:! 0*3(,+$(1! )$3(+&)7! ! 50/.! +*!
+##3"+/.!.+)!+!*0&4(3!"@!#3"4,(&)-!."D(2(3-!+)!$.(!G11:!
&(/.+*%)&!D+)!*"$!%*$(*1(1!$"!4(!+!?(*(3+,%'(1!)/.(10,(37!!
I"3! (A+&#,(-! %$! %)! *"$! $+%,"3(1! $"! (*@"3/(! #",%/%()! @"3!
3()"03/(! &+*+?(&(*$! +/3"))! 1%)J"%*$! /,+))()! "@! 90(3%()7!!
K(! (A#(/$! $"! )0##"3$! ,+3?(! *0&4(3)! "@! +/$%2(-! )$+*1%*?!
90(3%()-!)"!D(!*((1!$"!+2"%1!$.(!"2(3.(+1!+))"/%+$(1!D%$.!
&+B%*?!(+/.!90(3:!+!)(#+3+$(!$.3(+1!:($!D(!*((1!&0,$%#,(!
$.3(+1)!%*!"31(3!$"!(A#,"%$!5L=!+*1!/,0)$(3!#+3+,,(,%)&7!

E)! +! 3()0,$-! $.(! 8(,(?3+#.H<! (A(/0$"3! %)! 4(%*?!
1(2(,"#(1! 0)%*?! +! &0,$%C$.3(+1(1! +##3"+/.! %*! D.%/.! $.(!
$.3(+1)! #3"2%1(! (A(/0$%"*! /"*$(A$! @"3! &0,$%#,(! 90(3%()!
(*/"1(1! 0)%*?! +! *"*C#3((&#$%2(-! )$+$(! &+/.%*(C4+)(1!
#3"?3+&&%*?!&"1(,7!!K(!0)(!$.(!$(3&!MGA(/0$%"*!N4J(/$O!
;GN>!$"!1()/3%4(!$.(!$.3(+1)!"@!/"*$3",!%*!$.(!8(,(?3+#.H<!
(A(/0$"37! G+/.! GN! %)! &+##(1! $"! +! )%*?,(! ):)$(&! $.3(+17!!
;P"$(! $.+$! I%?03(! Q! )."D)! +! ):)$(&! D%$.! +! )%*?,(! GN!
%*)$+*$%+$(17>!E*!GN!/"*)%)$)!"@!+!)/.(10,(3-!"*(!"3!&"3(!
(2(*$!90(0()-!+*1!+!)($!"@!*"*C#3((&#$%2(!R%)#+$/.!S*%$)!
;RS)>! $.+$! /+*! 4(! (A(/0$(1! 4+)(1! "*! )"&(! )/.(10,%*?!
#",%/:7! S*,%B(! GN)-! D.%/.! +3(! 2%)%4,(! $"! $.(! "#(3+$%*?!
):)$(&-!RS)!+3(!&(3(,:!+4)$3+/$%"*)!$.+$!3(#3()(*$!(*$%$%()!
$.+$!#(3@"3&!MD"3BO!%*!$.(!):)$(&7!RS)!+3(!3()#"*)%4,(!@"3!
&+%*$+%*%*?!$.(%3!"D*!)$+$(7!!RS)!+3(!*"*C#3((&#$%2(-!40$!
$.(:! @",,"D! $.(! IJ"31)! &"1(,! 1()/3%4(1! %*! 5(/$%"*! 67T-!
D.%/.!?%2()!0)!/"*$3",!"2(3!$.(%3!)/.(10,%*?7!!

E!RS!/+*!4(!30*!%*!"*(!"@!$.(!@",,"D%*?!&"1()U!
!
V7! E! )%*?,(! M$3+1%$%"*+,O! =")$?3(5<W! 90(3:! #,+*!

D%$.!$.(!)$+*1+31!90(3:!(A(/0$"37!
67! E! )%*?,(CG11:! 90(3:! #,+*! D%$.! IJ"31C)$:,(!

"#(3+$"3)7!
T7! E!).+3(1!M/"*$%*0"0)!90(3:O!&"1(!D%$.!+*!G11:!

+*1!IJ"31C)$:,(!"#(3+$"3)7!!
!
W%B(!=")$?3(5<W-!8(,(?3+#.H<!0)()!)033"?+$(!"4J(/$)!

$"!3(#3()(*$!$0#,()!103%*?!90(3:!#3"/())%*?7!K.%,(!30**%*?!
M$3+1%$%"*+,O! #,+*)! 8(,(?3+#.H<! 0)()! $.(! =")$?3(5<W!

@"3&+$! @"3! )033"?+$()7!K.%,(! 30**%*?! %*! $.(! /"*$(A$! "@! +*!
G11:-! ."D(2(3-! 10(! $"! $.(! /"*$%*0"0),:! /.+*?%*?! J"%*!
"31(3-! $.(! %*$(3&(1%+$(! $0#,()! /+*! 4(! %*! +! &0,$%$01(! "@!
@"3&+$)7! F*! +11%$%"*-! $.(:! &0)$! /+33:! (A$3+! %*@"3&+$%"*!
)0/.! +)! 4%$&+#)! @"3!HEH<7!8.0)-! +*! (*.+*/(1! )033"?+$(!
"4J(/$!@"3&+$!%)!0)(1!$"!3(#3()(*$!%*$(3&(1%+$(!$0#,()!%*!$.(!
G11:C4+)(1!&"1()7!!!

E!B(:!1()%?*!1(/%)%"*! %*! $.(!(A(/0$"3! %)!."D!$"!&+#!
90(3%()! "*$"! $.(! &"1(,! "@! #3(C(&#$%2(,:! )/.(10,(1! GN!
):)$(&!$.3(+1)!/"*$+%*%*?!*"*C#3((&#$%2(!RS)7!!!8.(!?"+,!
%)! $"! )(#+3+$(! 90(3%()! %*$"! /,+))()! $.+$! .+2(! )%?*%@%/+*$!
#"$(*$%+,! @"3! ).+3%*?! D"3B7! ! ! 8.%)! 1($(3&%*+$%"*! %)! &+1(!
4+)(1! "*! $.(! )($! "@! )$3(+&)! +*1! $+4,()! "2(3! D.%/.! $.(!
90(3%()!+3(!1(@%*(1-!D.%/.!D(!/+,,!$.(!90(3:!())$#*%+$7! !F*!
$.(! /033(*$! %&#,(&(*$+$%"*-! D(! /3(+$(! 90(3:! /,+))()! @"3!!
1%)J"%*$! )($)! "@! @""$#3%*$)7! ! X"D(2(3-! D(! %*$(*1! $"!
%*2()$%?+$(!&"3(! )"#.%)$%/+$(1!).+3%*?!)/.(&()!+)!D(,,!+)!
$(/.*%90()! @"3! &+%*$+%*%*?! +*1! +1J0)$%*?! $.(! /,+))()! +)!
90(3%()!(*$(3!+*1!,(+2(!$.(!):)$(&7!

!"#"5$ 67)*'88$9,'*+34*8$
8.(! @%*+,!+)#(/$!"@! $.(! ):)$(&!D(!1%)/0))!.(3(! %)! $.(!

K3+##(3!&(/.+*%)&!!$.+$!+,,"D)!1+$+! $"!4(!)$3(+&(1!%*$"!
$.(!):)$(&7!Y:!D3+##%*?!)$3(+&)-!*(D,:!+33%2%*?!)$3(+&(1!
1+$+! /+*! 4(! +//())(1! 0)%*?! &(/.+*%)&)! )%&%,+3! $"! $.")(!
0)(1! @"3! #3(2%"0),:! +33%2(1! "3! (2(*! )$+$%/! 1+$+7!X"D(2(3-!
+*! "2(3+3/.%*?! #3%*/%#,(! "@! 8(,(?3+#.H<! %)! $"! +2"%1!
4,"/B%*?!"#(3+$%"*)-!)+2(!+//())()!$"!1%)B7!!I"3!$.%)!3(+)"*-!
D3+##(3)!%*!8(,(?3+#.H<!+3(!#,+/(1!%*!+!,'#!*!$'-#3"/())-!
D.(3(!$.(:!/+*!4(!+//())(1!%*!+!*"*C4,"/B%*?!&+**(3!;+!,+!
IJ"31)>7!!8D"!$:#()!"@!)"03/()!+3(!)0##"3$(1U!

!
V7! =0,,! )"03/()-! +)! @"0*1! %*! M$3+1%$%"*+,O! @(1(3+$(1!

1+$+4+)(!):)$(&)7!!

!"#"$%&'()*
+,"-./0%

1.22"%
300#

!"#"$%&'()*
4%&''"%

*3
567

8/%"&9"%7

8(&%":;9"90%<
=>2%&7/%.-/.%"
*."%<
3#&>7

?./'./
*."."7

!"#"$%&'()*
@%0>/+>:

A=7/">"%
3&%7"%
?'/=9=B"%
)&/&#0$

5=7C7

3%0,<

)#=">/7

:;)2*'$<$=$%'(')*+,&-.$>*1&;3'132*'$Figure 1.2: TelegraphCQ System Architecture (Chandrasekaran et al., 2003)

the resulting subset.

1.4.3 Telegraph-CQ

TelegraphCQ (Chandrasekaran et al., 2003) is a continuous query processing
system built at University of California, Berkeley. The main focus is on adaptive
and shared continuous query processing over query and data streams. The
team in Berkeley, built TelegraphCQ based on previous experience obtained
while developing the preliminary prototypes, CACQ (Madden et al., 2002) and
PSoup (Chandrasekaran and Franklin, 2002).

Figure 2: TelegraphCQ System Architecture (Chandrasekaran et al., 2003) 



Deliverable D 1.2 PlanetData 

 Page 17 of (58)  
 

2.1.5 A New Processing Paradigm: Persistent and Stream Data Under the Same Roof 

In the previous section, we discussed the main philosophy of the specialized stream engines that were 
developed to efficiently handle continuous query processing in bursty data arrival periods. However, the 
technological evolutions keep challenging the existing architectures with new application scenarios. In recent 
years, a new processing paradigm is born (Liarou et al., 2009; Chen and Hsu, 2010; Franklin et al., 2009) 
where incoming data needs to quickly be analysed and possibly be combined with existing data to discover 
trends and patterns. Subsequently, the new data enters the data warehouse and is stored for further analysis if 
necessary. This new paradigm requires scalable query processing that combines continuous and conventional 
processing. 

The Large Synoptic Survey Telescope (LSST)24 is a grandiose paradigm. In 2018 the astronomers will be able 
to scan the sky from a mountaintop in Chile, recording 30 Terabytes of data every night, which will 
incrementally lead a 150 Petabyte database over the operation period of ten years25. It will be capturing 
changes to the observable universe evaluating huge statistical calculations over the entire database. 

The Large Hadron Collider (LHC)26 is another characteristic data-driven example. It is a particle accelerator 
that is expected to revolutionise our understanding for the universe, generating 60 Terabytes of data every 
day (4Gb/sec). The same model stands for modern data warehouses which enrich their data on a daily basis 
creating a strong need for quick reaction and combination of scalable stream and traditional processing 
(Winter and Kostamaa, 2010). However, neither pure database technology nor pure stream technology are 
designed for this purpose. 

The Truviso Continuous Analytics system (Franklin et al., 2009), a commercial product of Truviso, is another 
recent example that follows a similar approach as TelegraphCQ. Part of the team that has worked on the 
TelegraphCQ project proceeded to the commercialised version of the original prototype. They extend the 
open source PostgreSQL22 database to enable continuous analysis of streaming data, tackling the problem of 
low latency query evaluation over massive data volumes. TruCQ integrates streaming and traditional 
relational query processing in such a way that it ends-up to a stream-relational database architecture. It is 
able to run SQL queries continuously and incrementally over data while they are still coming and before they 
are stored in active database tables. TruCQ’s query processing outperforms traditional store-first-query-later 
database technologies as the query evaluation has already started when the first tuples arrive. It allows 
evaluation of one-time and continuous queries as well as combinations of both query types. 

Another recent work, coming from the HP Labs (Chen and Hsu, 2010), confirms the strong research 
attraction for this trend. They define an extended SQL query model that unifies queries over both static 
relations and dynamic streaming data, by developing techniques to generalise the query engine. They extend 
the PostgreSQL22 database kernel, and build an engine that can process persistent and streaming data in a 
single design. First, they convert a stream into a sequence of chunks and then continuously call the query 
over each sequential chunk. The query instance never shuts down between the chunks, which thus forms a 
cycle-based transaction model. 

2.1.6 Data Stream Query Languages 

The unique monitoring application requirements determined the development of new data management 
architectures and consequently the need for new querying paradigms. In the literature we distinguish two 
classes for query languages that define the proper data streaming semantics. 

Declarative 

Many stream systems define and support languages that maintain the declarative and rich expressive power 
of SQL. A characteristic example is CQL (Continuous Query Language) (Arasu et al., 2003b), which is 
introduced and implemented in the STREAM prototype (Motwani et al., 2002; Arasu et al., 2003a). Apart 
from streams, CQL also includes relations. Thus, we can write queries from each category as well as queries 
combining both data types. In CQL, there are three types of operators: the relation-to-relation operators that 

                                                        
24 See: http://www.lsst.org/ 
25 See: http://www.lsst.org/lsst/public/tour_software 
26 See: http://lhc.web.cern.ch/lhc/ 



PlanetData Deliverable D 1.2 

 Page 18 of (58)   
 

SQL already offers; the stream-to-relation operators that reflect the sliding windows; and the relation-to-
streams operators that produce a stream from a relation. There are also three classes of sliding window 
operators in CQL: time-based, tuple-based and partitioned windows. One can denote a time-based sliding 
window of size T on a stream S, with the expression [Range T]. Additionally, one can specify a tuple-
based sliding window of size N on a stream S by following the reference to S in the query with [Rows N]. 

GSQL is another SQL-like query language, developed for Gigascope to express queries for network 
monitoring application scenarios. GSQL is a stream-only language, thus all inputs to a GSQL operator 
should be streams and the outputs are streams as well. However, relations can be created and manipulated 
using user-defined functions. Each stream should have an ordering attribute, e.g., a timestamp. Gigascope 
only supports a subset of the operators in SQL, i.e., selections, aggregations and joins of two streams. In 
addition to these operators, GSQL includes a stream merge operator that works as an order-preserving union 
of ordered streams. In GSQL, only landmark windows are supported directly, but sliding windows may be 
simulated via user-defined functions. 

StreaQuel is the declarative query language proposed and used in TelegraphCQ prototype. It supports 
continuous queries over a combination of tables and data streams. By using a for-loop construct with a 
variable t that moves over the timeline as the for-loop iterates, one can express the sequence of windows over 
which the user desires the answers to the query. Inside the loop one can include a WindowIs statement that 
specifies the type and size of the window over each stream. This way, snapshot, landmark and sliding 
window queries can be easily expressed. 

Procedural 

A different approach to the declarative SQL-like query languages is a procedural one. For instance in 
Aurora, the developers proposed SQuAl (Stream Query Algebra), a boxes-and-arrows query language. 
Through a graphical interface, a user can draw a query plan by placing boxes (i.e., operators) and arrows 
(i.e., data streams) in the appropriate order, and specifying how the data should flow through the system. 
SQuAl accepts streams as inputs and returns streams as output. However, it gives the option to the user to 
include historical data to query processing through explicitly defined connection points. 

2.1.7 Discussion 

In this section, we presented some well known data stream management systems, such as Aurora, STREAM, 
TelegraphCQ, Gigascope, NiagaraCQ and Cayuage. Each one contributed in a unique way to the broad 
research area of data streams. In general, all of them follow the same philosophy, that is, they are built from 
scratch. Although they basically all use an SQL-based language, the query processing engines dismiss the 
conventional database technology. Furthermore, the existing DSMSs have mainly concentrated on efficient 
processing of binary data streams. None of them deal with the semantic aspects of the data. 

2.2 Linear Road Benchmark 

The Linear Road Benchmark (Arasu et al., 2004) is the only benchmark developed for evaluating traditional 
data stream engines.27 It is a highly challenging and complicated benchmark due to the complexity of the 
many requirements. It stresses the system and tests various aspects of its functionality, e.g., window-based 
queries, aggregations, various kinds of complex join queries; theta joins, self-joins, etc. It also requires the 
ability to evaluate not only continuous queries on the stream data, but also historical queries on past data. 
The system should be able to store and later query intermediate results. Due to the complexity, only a 
handful of implementations of the benchmark exist so far. Most of them are based on a low level 
implementation in C that represents a specialized solution that does not clearly reflects the generic potential 
of a system. In this paper, we implemented the benchmark in a generic way using purely the DataCell model 
and SQL. We created numerous SQL queries that interact with each other via result forwarding (details are 
given below). 

                                                        
27 Although commercial companies with streaming products have their own internal benchmarks, for 
instance, STAC, the Securities Technology Analysis Center (see: http://www.stacresearch.com/node/2), they 
are open only to subscriber companies and they don't publish their reports. 



Deliverable D 1.2 PlanetData 

 Page 19 of (58)  
 

The benchmark simulates a traffic management scenario where multiple cars are moving on multiple lanes 
and on multiple different roads. The system is responsible to monitor the position of each car. It continuously 
calculates and reports to each car the tolls it needs to pay and whether there is an accident that might affect it. 
An accident is detected when two or more cars are in the same position for 4 continuous timestamps. In 
addition, the system needs to continuously monitor historical data, as it is accumulated, and report to each 
car the account balance and the daily expenditure. Furthermore, the benchmark poses strict time deadlines 
regarding the response times which must be up to X seconds, i.e., an answer must be created at most X 
seconds after all relevant input tuples have been created. X is 5 or 10 seconds depending on the query (details 
below). 

The benchmark contains a tool that creates the data and verifies the results. The data of a single run reflects 
three hours of traffic, while there are multiple scale factors that increase the amount of data created for these 
three hours, e.g., for scale factor 0.5 the system needs to process 6 ∗ 106 tuples, while for scale factor 1 we 
need to process 1.2 ∗ 107. 

2.3 Streaming RDF Engines 

Triggered by the increasing needs for gaining more knowledge from the rapidly growing amount of 
streaming data (Balazinska et al., 2007; Sheth et al., 2008; Della Valle et al., 2009), a new research direction 
has recently emerged from the Semantic Web community. Several streaming RDF engines have been 
proposed, in which the Semantic Web researchers try to combine data stream management technologies and 
RDF/SPARQL technologies for the publishing, annotating and reasoning of streaming data. In this section, 
we highlight several notable proposals in this research area. 

2.3.1 StreamSPARQL 

Bolles et al. (2008) firstly extended the SPARQL 1.0 language (Prud’hommeaux and Seaborne, 2008) with 
window-based processing of RDF streams. At the syntax level, the StreamSPARQL language allows both 
time-based and element-based windows. Further in this proposal, the authors have focused on the work at the 
algebraic level. Data streams specific new operators, such as sliding δ-window and sliding tuple window, are 
added to the SPARQL 1.0 algebra. Existing SPARQL 1.0 algebraic operators, e.g., Filter, Union and Join, 
are extended to cope with RDF data streams. As a first proposal on streaming RDF processing, several 
choices made by the authors call for reconsideration. 

First, essential ingredients for streaming data processing, such as aggregation and timestamp function, are 
omitted in (Bolles et al., 2008). With these limitations, the proposed language does not have the power to 
express many queries that are common in streaming applications. Furthermore, the authors do not follow the 
established approach in DSMSs where windows are used to transform streaming data into non-streaming 
data in order to apply standard algebraic operations. Instead, the authors have chosen to change the standard 
SPARQL operators by making them timestamp-aware, which effectively introduces new language semantics. 

In StreamSPARQL, Windows can be defined not only in the FROM part of a SPARQL query to define a 
common window for the whole data stream, but also in the graph patterns to allow a finer granularity. On the 
one hand, this makes the query syntax more intricate, as window clauses can appear in multiple places. On 
the other hand, it complicates query evaluation. Since window operations are no longer required to be at the 
leaves of the query tree, they need to be interleaved with standard SPARQL operations, possibly interfering 
with the separation of concerns between stream management and query evaluation. Unfortunately, the 
authors did not pay special attention to the impact of this flexibility at the language level on the query 
processing; neither did they provide an engine to handle the proposed language. 

2.3.2 C-SPARQL 

The Continuous SPARQL (C-SPARQL) (Barbieri et al., 2009; Barbieri et al., 2010a; Barbieri et al., 2010b) is 
another proposal to extend the SPARQL 1.0 language for continuous queries over streams of RDF data. At 
the syntax level, C-SPARQL is inspired by continuous query languages for relational data streams, such as 
CQL (Arasu et al., 2003b). C-SPARQL extends SPARQL 1.0 with features including query registration, 
stream registration, and both time and triple based windows. C-SPARQL assumes that each data stream is 
associated with a distinct IRI, which is a locator of the actual data source of the stream. Having learnt from 
the limitations of StreamSPARQL, C-SPARQL has further extended the syntax of SPARQL 1.0 by 



PlanetData Deliverable D 1.2 

 Page 20 of (58)   
 

aggregates and timestamp functions, but restrict the functionalities by allowing streams to be only at the 
leaves of the query trees and only one Window per stream.  

Barbieri et al. (2010b) propose an execution framework for C-SPARQL based on a plug-in architecture, to 
leverage existing technologies in the areas of data streams management systems (DSDM) and SPARQL 
query processing engines. Figure 3 shows the architecture of the proposed framework as it is originally 
presented in (Barbieri et al., 2010b). The architecture relies entirely on existing technologies. The SPARQL 
reasoner plug-in is used to evaluate the static part of the query. An existing relational data stream 
management system is used to evaluate both streams and aggregates. A parser parses the C-SPARQL query 
and hands it over to the orchestrator, which subsequently translates the query in a static part, i.e., a SPARQL 
query, and a dynamic part, i.e., a CQL query. The SPARQL query is used to extract the static knowledge 
from the reasoner, while the CQL query is registered in the DSMS. The combination of static RDF data with 
streaming information yields possibilities for stream reasoning, an important step enabling reasoners to 
handle rapidly changing data in addition to static knowledge. 

Among all streaming RDF engines, C-SPARQL is one of the more mature systems. Since the system has 
switched to support the SPARQL 1.1 language in a later version (Barbieri et al., 2010a), its interoperability 
and usefulness have also been largely improved. 

2.3.3 SPARQLStream 

Calbimonte et al. (2010) propose two extensions to existing work to enable ontology-based access to 
streaming data sources, e.g., sensor networks, through declarative continuous queries. In the proposed 
system, sources can link their data content to ontologies through S2O (Stream-to-Ontology) mappings. 
Subsequently, users can query the ontology using the SPARQLStream query language. 

S2O is an extension of the R2O (Relational-to-Ontology) language (Barrasa et al., 2004), which enables 
ontology-based access to relational data sources by defining a mapping from relational data sources to 
ontologies. S2O extends R2O with mappings from streaming sources to ontologies. SPARQLStream is another 
continuous query language that extends SPARQL 1.1 to process streaming RDF data. It extends the FROM 

Figure 3: C-SPARQL Architecture Overview (Barbieri et al., 2010b) 

in Figure 16. Since it is out of the scope of this paper to
present the algorithm translating queries into O-Graphs, we
refer the reader to [20] and limit the discussion to the issues
specific to C-SPARQL. In the figure, the nodes introduced
to support C-SPARQL are shaded in gray. The FROM STREAM

clause of the example query is represented in the O-Graph as
a stream operator followed by a window operator, as shown
in the lower right-hand corner of the figure. The FILTER

clause translates to a filter operator, whereas the AGGREGATE

clause is represented by an aggregation operator.

4. EXECUTION ENVIRONMENT
An important contribution of this paper is the execu-

tion framework that we propose for C-SPARQL. With more
than a decade of experience, there are highly optimized
solutions for processing continuous queries over relational
streams. Taking this into account, our approach is based
on a plug-in architecture that leverages existing technol-
ogy. Given that currently available stream sources do not
manage RDF data streams—but rather relational streams—
we investigated how the requirements of C-SPARQL can be
covered with relational technologies, such as STREAM [2],
Aurora/Borealis [1] and Stream Mill [5]. The experiments
discussed in this paper were conducted with STREAM.

Figure 2 shows the architecture of the proposed frame-
work which relies entirely on existing technologies. Whereas
the SPARQL reasoner plug-in is used to evaluate the static
part of the query, an existing relational data stream man-
agement system to evaluate both streams and aggregates.
Note that this approach is only feasible, if aggregations can
be performed by the DSMS. A parser parses the C-SPARQL
query and hands it over to the orchestrator. The orchestra-
tor is the central component of our approach and translates
the query in a static and dynamic part. The static query
is used to extract the static knowledge from the reasoner,
while the dynamic query is registered in the DSMS. Note
that this process is executed only once when a C-SPARQL
query is registered as the continuous evaluation is handled
consequently by the DSMS.7

C-SPARQL

Parser Relational-to-RDF 
Transcoder

Orchestrator

RDF-to-Relational Transcoder

STREAM
(CQL)

Sesame
(SPARQL)

Figure 2: Architecture overview

When translating C-SPARQL queries into SPARQL and
CQL, the orchestrator relies on the information captured by

6The purpose of the dashed box in the middle of the O-Graph of
Figure 1 will be explained in Section 5.
7Due to space limitations, we omit the discussion of updates to
the static knowledge base of the reasoner.

Figure 3: D-Graph of the example query

the so-called Denotational Graph or D-Graph to distinguish
static from streaming knowledge. The D-Graph is defined as
a view on the O-Graph and is constructed using the following
algorithm based on the formalism used in [26].

1. Each variable v � V , IRI i � I or literal l � L used
in operator nodes of the O-Graph is a vertex of the
D-Graph.

2. Each triple pattern (s, p, o) occurring in graph pattern
operator nodes is represented as two directed edges
(s, p) and (p, o) connecting the vertices of the graph.

3. Assuming conjunctive semantics, each filtering condi-
tion (generically referred to as R in the O-Graphs) ap-
pearing in a filter operator node is represented in the
D-Graph as annotations on the corresponding vertices.

4. Each aggregation operator node of the O-Graph is rep-
resented as a “hyper-node” in the D-Graph containing
another hyper-node for the group G that is linked to
the aggregation function f . The aggregation function
in turn is linked to the node representing the param-
eter p. Finally, the aggregation function is bound to
the variable node v.

5. Any variable names occurring in a projection operator
node of the O-Graph are represented in the D-Graph
by filling the corresponding vertices.

6. Graph and stream operator nodes in the O-Graph are
represented as dashed rectangles in the O-Graph, group-
ing the vertices that emerge from each source.

The D-Graph obtained by applying this algorithm to the
O-Graph shown in Figure 1 is given in Figure 3.
Rather than a formal definition of transformations, we

prefer to provide their description using the example given
in Section 3.4. However, the method generalizes to arbitrary
C-SPARQL queries, based on the partitioning of the graph
into static and streaming nodes. An overview of this general
query evaluation process given in Figure 4.
Referring back to the example of the previous section, the

following query corresponds to the graph operator and graph
pattern operator nodes located in the lower left branch of
the O-Graph in Figure 1:

PREFIX b: <http://brokerscentral.org/accounts#>

SELECT DISTINCT ?broker ?country
FROM <http://brokerscentral.org/brokers.rdf>
WHERE { ?broker b:is_from ?country }



Deliverable D 1.2 PlanetData 

 Page 21 of (58)  
 

clause with stream data sources and time-based windows on the streams. It allows time windows to be 
defined in the past so as to support correlation with historic data. Inspired by CQL (Arasu et al., 2003b) and 
SNEEql (Brenninkmeijer, et al., 2008), SPARQLStream also supports three window-to-stream operators, i.e., 
Istream, Dstream, and Rstream, to produce a stream from the result of a window operator. 

The overall architecture of the ontology-based streaming data access service is depicted in Figure 4. The 
service receives queries specified in terms of the classes and properties of the ontology using SPARQLStream. 
In order to transform the SPARQLStream query, expressed in terms of the ontology, into queries in terms of the 
data sources, a set of mappings must be specified. These mappings are expressed in S2O. This transformation 
process is called query translation, and the target is the continuous query language SNEEql (Brenninkmeijer, 
et al., 2008), which is expressive enough to deal with both streaming and stored sources. After the 
continuous query has been generated, the Sensor NEtwork Engine (SNEE) (Galpin et al., 2009) is used to 
evaluate the query over streaming and stored data sources. The result of the query processing is a set of 
tuples that the data translation process transforms into ontology instances. 

2.3.4 CQELS 

CQELS (Continuous Query Evaluation over Linked Streams) (Le-Phuoc et al., 2010; Le-Phuoc et al., 2011a; 
Le-Phuoc et al., 2011b) is currently the only native and adaptive query processor for unified query 
processing over both Linked Stream Data and Linked Data. Most of the current streaming RDF engines, e.g., 
C-SPARQL and SPARQLStream, use a “black box” approach, which delegates the processing to other engines, 
e.g., stream/event processing engines and/or SPARQL query processors. The continuous SPARQL queries 
supported by the streaming RDF engine are translated into the language(s) supported by the underlying 
engine(s). In contrast, CQELS uses a “white box” approach and implements the required query operators 
natively to avoid the overhead and limitation of closed system regime, and open up possibilities to add 
optimisation mechanisms to the kernel of the query processor. Therefore, CQELS has adopted many ideas 
from both the data stream and the database management systems, e.g., Eddies (Avnur and Hellerstein, 2000), 
dictionary encoding, intermediate results caching and hash indexing. 

Inspired by Eddies, CQELS provides a flexible query execution framework with the query processor 
dynamically adapting to the changes in the input data. During query execution, it continuously reorders the 
operators according to some heuristics to achieve improved query execution in terms of delay and 
complexity. Much attention has paid to reduce disk I/O and memory consumption. Dictionary encoding is 
used to encode the strings in the RDF data. This strategy not only reduces disk I/O and memory 
consumption, but also speeds up operations on strings, such as pattern matching. Based on the observation 
that the Linked Data datasets rarely change, as soon as a query is registered, the output of the sub-queries 
over the Linked Data datasets is materialised and stored in a main memory cache that is available to the 
remaining query operations. The idea of materialising sub-query results is similar to that of the recycler 

Fig. 1. Ontology-based streaming data access service

sparqlStream query, expressed in terms of the ontology, into queries in terms
of the data sources, a set of mappings must be specified. These mappings are
expressed in s2o, an extension of the r2o mapping language, which supports
streaming queries and data, most notably window and stream operators (see
Section 4.2). This transformation process is called query translation, and the
target is the continuous query language sneeql, which is expressive enough to
deal with both streaming and stored sources.

After the continuous query has been generated, the query processing phase
starts, and the evaluator uses distributed query processing techniques [14] to
extract the relevant data from the sources and perform the required query pro-
cessing, e.g. selection, projection, and joins. Note that query execution in sources
such as sensor networks may include in-network query processing, pull or push
based delivery of data between sources, and other data source specific settings.
The result of the query processing is a set of tuples that the data translation
process transforms into ontology instances.

This approach requires several contributions and extensions to the exist-
ing technologies for continuous data querying, ontology-based data access, and
sparql query processing. This paper focuses on a first stage that includes the
process of transforming the sparqlStream queries into queries over the streaming
data sources using sneeql as the target language. The following sections provide
the syntax and semantics for the querying of streaming rdf data and the map-
pings between streaming sources and an ontology. We will then provide details
of an actual implementation of this approach.

4 Query and Mapping Syntax

In this section we introduce the sparqlStream query language, an extension to
sparql for streaming rdf data, which has been inspired by previous propos-
als such as c-sparql [9] and sneeql [12]. However, significant improvements

5

Figure 4: Ontology-based streaming data access service (Calbimonte et al., 2010) 



PlanetData Deliverable D 1.2 

 Page 22 of (58)   
 

(Ivanova et al, 2009 and Ivanova et al, 2010), but with no sophisticated mechanisms to manage the cache yet. 
Hash indices are used to speed up lookup in the cache. In CQELS, when to create an index is decided as 
follows. Cache data is always indexed. For data coming from window operators, an index is maintained as 
long as it can be updated faster than the window’s stream rate. If this threshold is reached, the index is 
dropped. The relational operators that depend on this index are replaced by equivalent ones that can work 
without indexes. 

The authors have also introduced a declarative query language called the CQELS language by extending the 
SPARQL 1.1 (Harris and Seaborne, 2012) grammar under the EBNF notation. A query pattern, called 
StreamGraphPattern, is added into the GraphPatternNotTriples pattern to present window 
operators on RDF Stream. StreamGraphPattern is defined in such a way that it supports both time-
based and triple-based windows and for time-based windows, a sliding parameter can be specified. 

2.3.5 Streaming Knowledge Bases 

The Streaming Knowledge Base (Walavalkar et al., 2008) tackles RDF data streams processing from a 
different angle than the aforementioned work, namely an approach for reasoning over streaming facts. 

Reasoners built to handle static Semantic Web data, e.g., (Guo et al., 2004), perform poorly when used for 
reasoning over streaming facts. This is because those systems try to carry out the whole reasoning process, 
which involves computationally heavy inference methods like traversal of RDF graphs, at runtime. With 
streaming data, the incoming data rate is often much higher than the time taken by the reasoners for 
inference. To overcome this problem, Walavalkar et al. (2008) propose to split the reasoning process and try 
to pre-compute as mush as possible facts beforehand. Also, the authors try to leverage the work done by the 
DSMS and DBMS community by storing the pre-computed rules in database tables, using the engine to deal 
with streaming facts and using simple database queries to join the incoming stream with the rule tables to 
perform the inference. Therefore, the authors utilize the continuous query processor, TelegraphCQ 
(Chandrasekaran et al., 2003), to build a subsumption reasoner that can deal with streaming facts. 

The operation of the streaming knowledge base is divided into two major functional components - Ontology 
Pre-processor and Stream Processor. The input to the ontology pre-processor is one or more OWL or RDFS 
ontology files. To process the ontology file, the InfModel class provided by the Jena toolkit (Carroll et al., 
2004) is used to compute the five relationships: rdfs:subClassOf, rdfs:subPropertyOf, 
rdfs:range, rdfs:domain and owl:inverseOf, which are stored in tables in the TelegraphCQ 
database. 

In addition to the basic subclassing, more complex inferences are supported in the query. For example, if a 
standing query asks for instances of class “man”, and an incoming triple says that “John is the father of 
Mary”, then “John” should satisfy this query. To achieve this, an intermediate stream handler is implemented 
to peek at the data stream and insert into it some inferred triples. For instance, if there is an incoming triple 
<sub, pred, obj> and from the ontology it is know that <pred, rdfs:range, x>, then the handler will insert 
a new triple  <obj, rdfs:type, x>. Moreover, if x is the class of concern or a subclass of the class of 
concern, obj will be detected as an instance of concern, based on the relationships computed by the Ontology 
Pre-processor, even though the triple <obj, rdfs:type, x> never appeared in the incoming stream. This 
technique is also used to infer tuples based on the knowledge one can deduce from rdfs:domain, 
rdfs:subPropertyOf and owl:inverseOf. An interesting contribution of the Streaming Knowledge 
Base is the expressing of some inference rules in SQL queries. 

2.3.6 Other Streaming RDF Techniques 

Semantic Streams (Whitehouse et al., 2006) was among the first systems to propose semantic processing of 
streams. It uses Prolog-based logic rules to allow users to pose declarative queries over semantic 
interpretations of sensor data. 

Semantic System S (Bouillet et al., 2007) proposes the use of the Web Ontology Language (OWL) to 
represent sensor data streams, as well as processing elements for composing applications from input data 
streams.  



Deliverable D 1.2 PlanetData 

 Page 23 of (58)  
 

The Semantic Sensor Web project (Balazinska et al., 2007; Sheth et al., 2008) also focuses on 
interoperability between different sensor sources, as well as providing contextual information about the data. 
It does so by annotating sensor data with spatial, temporal, and thematic semantic metadata.  

Proposals, such as the one from the W3C Semantic Sensor Network Incubator Group28, aim at the integration 
of stream data with Linked Data sources by following the Linked Data principles for representing the data. In 
parallel, the concept of Linked Stream Data was introduced (Sequeda and Corcho 2009), in which URIs were 
suggested for identifying sensors and stream data. 

Groppe et al. (2007) firstly propose a streaming SPARQL engine, which evaluates SPARQL queries on 
streams of RDF data. In this work, the authors define a set of Streaming SPARQL algebraic operators, 
including Stream, MatchPats, Pat(p1, p2,p3), Join, Selexpression, Optional, Projectionv, 
Distinct, Union, and Output. In this work, static data are turned into data streams for better query 
performance, so it does not deal with real data streams (i.e., those produced by sensors and other mobile 
devices). Initially, work has only been done at the algebraic lever. An extension to the SPARQL query 
language to process data streams is added later in (Groppe, 2011). 

Hoeksema (2011) presents a distributed approach for Stream Reasoning, i.e., processing C-SPARQL queries 
using the Yahoo S4 platform29. The author shows how the computation of the RDFS closures of an RDF 
stream and the components to perform C-SPARQL processing can be implemented using networks of S4’s 
Processing Elements (PEs). 

Event Processing SPARQL (EP-SPARQL) (Anicic et al., 2011b) is a language to describe event processing 
and stream reasoning and it can be translated to ETALIS (Anicic et al., 2011a), a Prolog-based complex 
event processing framework. First, RDF-based data elements are transformed into logic facts, and then EP-
SPARQL queries are translated into Prolog rules. 

2.3.7 Discussion 

In general, the streaming RDF processing engines take a similar approach. First, a notion of time is added to 
the RDF data model, so that data streams can be represented as RDF triples according to some ontology. 
Then, the SPARQL query language is extended with new syntax and/or operators to enable continuous 
queries on RDF data streams. The extensions are typically inspired by the continuous query languages from 
the DSMSs. Finally, a query processor is provided to handle the continuous SPARQL queries. The main 
differences of the systems discussed in this section lay on the extension to the SPARQL language, which we 
will discuss in more details below, and the query processing engine(s) used. For this later issue, most 
systems rely on an existing DSMS to handle streaming data, possibly accompanied by an existing SPARQL 
engine to RDF data. CQUELS is the only native streaming RDF engine. Additionally, several systems spend 
efforts on the issue of ontology-based inference of new data from the streaming data. 

The major work on extending SPARQL for streaming data processing includes StreamSPARQL (Bolles et 
al., 2008), C-SPARQL (Barbieri et al., 2010b), SPARQLStream (Calbimonte et al., 2010) and CQUELS (Le-
Phuoc et al., 2011a). They all add RDF data stream semantics to RDF/SPARQL, and they all support sliding 
windows. They only have small, but sometimes important, differences in the exactly supported language 
features. StreamSPARQL is the only extension allowing windows in graph patterns, but does not support 
aggregations. SPARQLStream is the only extension that does not support element-based windows, but does 
support time-based windows in the past, and the window-to-stream operators originated from CQL.  C-
SPARQL is the only extension that supports stream and query registrations. C-SPARQL, SPARQLStream and 
CQUELS are based on SPARQL 1.1, while StreamSPARQL is based on SPARQL 1.0. As a result of this, 
StreamSPARQL does not have aggregations. 

In this deliverable, we have chosen to evaluate SRBench firstly on SPARQLStream, because compared with 
CQUELS, the language extension is cleaner and the architecture of the query processor is more flexible. The 
implementation of SPARQLStream is module-based, which makes it easy to extend the system with a new 

                                                        
28 See: http://www.w3.org/2005/Incubator/ssn/ 
29 See: http://incubator.apache.org/s4/ 



PlanetData Deliverable D 1.2 

 Page 24 of (58)   
 

module to use MonetDB/DataCell30 as the continuous query processor. However both C-SPARQL and 
CQUELS are good alternatives, on which one can apply SRBench for performance comparison in the future. 

2.4 RDF/SPARQL Benchmarks 

With the growth and the availability of many systems supporting RDF/SPARQL, increasing efforts have 
been made in developing benchmarks for evaluating the performance of RDF stores. The representatives of 
the RDF benchmarks that have been widely used are the Lehigh University Benchmark (LUBM) (Guo et al., 
2005), the Berlin SPARQL Benchmark (BSBM) (Bizer and Schultz 2009), and the SPARQL Performance 
Benchmark (SP2Bench) (Schmidt et al., 2009). 

2.4.1 LUBM 

The Lehigh University Benchmark (LUBM) (Guo et al., 2005) is one of the first RDF benchmarks. It is built 
over a university domain in order to mainly evaluate the reasoning capability and inference mechanism of 
OWL (Web Ontology Language) Knowledge Base Systems. However, the generated dataset is quite 
homogenous without considering skewed data distributions as well as realistic correlations. Besides, as the 
testing queries of this benchmark are plain and lacking of important SPARQL features such as FILTER and 
UNION, it, therefore, cannot be used for evaluating the performance of the tested systems in supporting 
SPARQL features. 

2.4.2 SP2Bench 

The SPARQL Performance Benchmark (SP2Bench) (Schmidt et al., 2009) uses the Digital Bibliography & 
Library Project (DBLP)31 as its domain and generates the synthetic dataset mimicking the original DBLP 
data. Observing the drawbacks of LUBM, this benchmark supports various features of SPARQL such as 
FILTER. However, as the matter of the SPARQL 1.1’s availability at that moment, features like 
Aggregation, Subqueries, and Property paths, which were added in SPARQL 1.1, do not appear in the 
benchmark queries. In this work, the authors have tried to incorporate several realistic distributions such as 
the power-law distributions for the number of publications per author as well as the number of citations per 
paper. This may generate realistic degree distributions in RDF graph; however, as some important 
characteristics of “small-world” network graph such as the clustering coefficient are not considered, the 
graph complexity of generated data is quite limited. Besides, semantics correlations of realistic data are 
hardly addressed in SP2Bench. In addition, due to its limited schema with only eight document classes, the 
SP2Bench’s generated data is lack of heterogeneity. 

2.4.3 BSBM 

The Berlin SPARQL Benchmark (BSBM) (Bizer and Schultz 2009) is probably the current most popular 
RDF/SPARQL benchmark. It is built around an e-commerce use case where products are offered by various 
vendors and get the reviews from various customers in different review sites. In this benchmark, the authors 
emulate the realistic search and navigation pattern of a customer by running the benchmark test driver over 
several query mixes (i.e., sequences of queries with different frequencies). By now, the benchmark has been 
used for evaluating a number of RDF stores32 including Virtuoso33, BigOwlim34, Jena-TDB35, 4store36, and 
BigData37. However, the main drawback of BSBM is that with the homogenous relational-like schema and 

                                                        
30 MonetDB/DataCell is the objective of the deliverable D1.7 of PlanetData (due in month 42). 
31 See: http://dblp.uni-trier.de/ 
32 BSBM results: http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/index.html 
33 See: http://virtuoso.openlinksw.com/ 
34 See: http://www.ontotext.com/owlim/ 
35 See: http://www.openjena.org/TDB/ 
36 See: http://4store.org/ 
37 See: http://www.systap.com/bigdata.htm 



Deliverable D 1.2 PlanetData 

 Page 25 of (58)  
 

workload, it can be considered as a straight transformation from such relational benchmark as TPC-H38. It, 
thus, does not give insightful evaluations on the performance of RDF stores in comparing with a relational 
DBMS. Besides, since BSBM does not consider realistic data correlations as well as RDF graph complexity, 
no advanced features of RDF representation can be taken into account in running this benchmark. 

2.4.4 Discussion 

In a nutshell, the existing benchmarks are mostly relational-like, lack heterogeneity or are limited in 
representing realistic skewed data distributions and correlations. No new features of SPARQL 1.1, such as 
property path expression have been addressed in these benchmarks. Besides, although one advantage of RDF 
is the flexibility in sharing and integrating linked open knowledge bases, existing benchmarks solely work 
with one generated dataset without exploiting the knowledge from other linked open data such as DBpedia. 

  

                                                        
38 Transaction Processing performance Council (TPC). See: http://www.tpc.org/ 



PlanetData Deliverable D 1.2 

 Page 26 of (58)   
 

3 Data Sources 

 
Figure 5: An overview of the datasets used in SRBench, and their relationships. (Note that the sizes of 

the circles do not reflect the actual sizes of the datasets.) 

SRBench uses three real world datasets, i.e., the LinkedSensorData dataset17, the RDF version of the 
GeoNames dataset15 and the DBpedia dataset16, as the basics of the data used by the benchmark. These three 
datasets were purposely chosen. The LinkedSensorData dataset publishes sensor metadata and sensor 
observation data according to the Linked Stream Data principle (Sequeda and Corcho, 2009), which was 
studied in the previous PlanetData deliverable D1.1 (Corcho et al., 2011). Moreover, LinkedSensorData is 
the largest sensor dataset in the Linked Open Data cloud18 and the CKAN data portal19. The 
LinkedSensorData dataset links the sensor locations to nearby geographic places defined by the GeoNames 
dataset, so this naturally determines our choice of the GeoNames dataset. The choice for the DBpedia dataset 
is also a matter of course, since DBpedia is the largest and the most popularly used dataset in the Linked 
Open Data cloud. Moreover, the PlanetData partner FUB is one of the originators of DBpedia. An overview 
of the datasets is shown in Figure 5. In this section, we give some brief background information of these 
datasets. 

3.1 The LinkedSensorData Dataset 

Work on producing Linked Data from data emitted by sensors was initiated in 2009, pioneered by (Sequeda 
and Corcho, 2009) and (Le-Phuoc and Hauswirth, 2009). The Linked Stream Data principle is introduced by 
(Sequeda and Corcho, 2009) as the application of the Linked Data principles to sensor generated data. 

The LinkedSensorData dataset is provided by Kno.e.sis. The LinkedSensorData are real-world dataset 
containing the US weather data collected by MesoWest39, a project within the Department of Meteorology at 
the University of Utah that has been aggregating weather data since 2002. The data were turned into Linked 
Stream Data by the Semantic Sensor Web40 and STT41 projects at Kno.e.sis42. The LinkedSensorData is the 
first sensor dataset in the Linked Open Data cloud, and so far, the largest Linked Stream Data dataset in both 
LOD18 and CKAN19 containing ~1.7 billion triples. The LinkedSensorData dataset contains two sub-datasets, 
one for sensor metadata and another for sensor observation data. 

                                                        
39 See: http://mesowest.utah.edu/index.html 
40 See: http://wiki.knoesis.org/index.php/SSW 
41 See: http://knoesis.org/research/semweb/projects/stt/ 
42 See: http://knoesis.wright.edu 

Geonames DBpedia

Linked 
Sensor Data 
(Kno.e.sis)

LinkedObservationData

LinkedSensorMetaData

om-owl:procedure

om-owl:hasLocation owl:sameAs



Deliverable D 1.2 PlanetData 

 Page 27 of (58)  
 

The LinkedSensorMetadata43 is an RDF dataset containing expressive descriptions of ~20,000 weather 
stations in the United States. The data originated at the MesoWest39 project. On average, there are about five 
sensors per weather station, so there are in total ~100,000 sensors in the dataset, described according to the 
sensor-observation ontology44. The sensors measure phenomena such as temperature, visibility, precipitation, 
pressure, wind speed, humidity, etc. In addition to location attributes such as latitude, longitude, and 
elevation, there are also links to locations in GeoNames that are near each weather station. 

The LinkedObservationData is an RDF dataset containing expressive descriptions of hurricane and blizzard 
observations in the United States. The data originated at the MesoWest39 project. The observations collected 
include measurements of phenomena such as temperature, visibility, precipitation, pressure, wind speed, 
humidity, etc. The dataset includes observations within the entire United States during the time periods that 
several major storms were active – including Hurricane Katrina, Ike, Bill, Bertha, Wilma, Charley, Gustav, 
and a major blizzard in Nevada in 2003. These observations are generated by weather stations described in 
the LinkedSensorMetadata dataset introduced above. Currently, this dataset contains almost two billion RDF 
triples, which together describe more than 159 million observations. For SRBench, we have obtained all 
linked sensor observation datasets from the original Kno.e.sis site for LinkedSensorData17.  

Table 1 shows the statistics of the LinkedObservationData datasets as presented on the original website, to 
which we have added the sizes of the datasets after they have been unpacked. 

 

Table 1: Statistics of the Sensor Observation Datasets Used by SRBench 

Name Storm Type Date #Triples #Observations Data size 

ALL   1,730,284,735 159,460,500 ~111 GB 

Bill Hurricane Aug. 17 – 22, 2009 231,021,108 231,021,108 ~15 GB 

Ike Hurricane Sep. 1 – 13, 2008 374,094,660 34,430,964 ~34 GB 

Gustav Hurricane Aug. 25 – 31, 2008 258,378,511 23,792,818 ~17 GB 

Bertha Hurricane Jul. 6 – 17, 2008 278,235,734 25,762,568 ~13 GB 

Wilma Hurricane October 17 – 23, 2005 171,854,686 15,797,852 ~10 GB 

Katrina Hurricane August 23 – 30, 2005 203,386,049 18,832,041 ~12 GB 

Charley Hurricane August 9 – 15, 2004 101,956,760 9,333,676 ~7 GB 

 Blizzard April 1 – 6, 2003 111,357,227 10,237,791 ~2 GB 

 

3.2 The GeoNames RDF Dataset 

GeoNames45 is a free geographical database covers all countries and contains over eight million place names 
that are available for download. Originally, the GeoNames dataset was only available in tab-delimited text in 
utf8 encoding. With the introduction of the GeoNames Ontology in 2006 by Bernard Vatant, the GeoNames 
dataset can be expressed in RDF for the Semantic Web. Currently, more than 6.2 million geo-names 
toponyms now have a unique URL with a corresponding RDF web service.  

For SRBench, we use version 3.01 of the GeoNames ontology46. We have obtained the dump of the complete 
GeoNames RDF dataset, which contains about 8 million geographic features with about 146 million RDF 
                                                        
43 In the original website17, both the complete dataset and the sub-dataset containing the sensor metadata are 
referred to as “linked sensor data”. To avoid confusing, in this deliverable, we refer to the sub-dataset 
containing the sensor metadata as “LinkedSensorMetadata”. 
44 http://knoesis.wright.edu/resources/library-resources/files/ontologies/sensor-ob/sensor-observation.owl 
45 See: http://www.geonames.org/ 
46 See: http://www.geonames.org/ontology/ontology_v3.01.rdf 



PlanetData Deliverable D 1.2 

 Page 28 of (58)   
 

triples. The dump has one RDF document per toponym. The complete dataset takes about 10 Gigabytes on 
disk. 

3.3 The DBpedia Dataset 

The DBpedia dataset is the largest and most popularly used dataset in the Linked Open Data cloud. It is 
developed by, among others, the PlanetData partner FUB. DBpedia extracts various kinds of structured 
information from Wikipedia editions in 97 languages and combines this information into a huge, cross-
domain knowledge base. Subsequently, this information is made available on the (Semantic) Web as RDF 
data. This way, DBpedia allows users to ask sophisticated (SPARQL) queries against Wikipedia information 
and to link other data sets on the Web to Wikipedia data. The DBpedia data set uses a large cross-domain 
ontology47, which has been manually created based on the most commonly used infoboxes of Wikipedia. The 
ontology currently covers over 320 classes which form a subsumption hierarchy and are described by 1,650 
different properties. 

As of Version 3.7 (July 2011), the DBpedia knowledge base describes more than 3.64 million “things” with 
over half a billion “facts”. Among all “things”, 1.83 million of them are classified in a consistent Ontology, 
including 416,000 persons, 526,000 places (including 360,000 populated places), 106,000 music albums, 
60,000 films, 17,500 video games, 169,000 organizations (including 40,000 companies and 38,000 
educational institutions), 183,000 species and 5,400 diseases. The DBpedia data set features labels and 
abstracts for these 3.64 million things in up to 97 different languages; 2,724,000 links to images and 
6,300,000 links to external web pages; 6,200,000 external links into other RDF datasets, 740,000 Wikipedia 
categories, and 2,900,000 YAGO categories. The dataset consists of 1 billion pieces of information (RDF 
triples) out of which 385 million were extracted from the English edition of Wikipedia and roughly 665 
million were extracted from other language editions and links to external datasets. 

Each thing in the DBpedia data set is identified by a URI reference of the form http://dbpedia.org/resource 
/Name, where Name is taken from the URL of the source Wikipedia article, which has the form 
http://en.wikipedia.org/wiki/Name. Thus, each resource is tied directly to an English-language Wikipedia 
article. Every DBpedia resource is described by a label, a short and long English abstract, a link to the 
corresponding Wikipedia page, and a link to an image depicting the thing (if available). If a thing exists in 
multiple language versions of Wikipedia, then short and long abstracts within these languages and links to 
the different language Wikipedia pages are added to the description.  

For SRBench, we have only obtained the datasets from the English language collection, which consists of 44 
RDF files in N-triple format with about 181 million triples. The total data size is about 27 Gigabytes. The 
DBpedia dataset is directly linked to the GeoNames dataset through the owl:sameAs property. DBpedia 
has in total 85,000 links to the GeoNames dataset. For instance, the DBpedia resource about Cambridge 
(http://dbpedia.org/resource/Cambridge) describes the same thing as the GeoNames feature 2653941 
(http://sws.geonames.org/2653941/). The DBpedia dataset is not directly linked to the LinkedSensorData 
dataset. 

                                                        
47 See: http://wiki.dbpedia.org/Ontology?v=181z 



Deliverable D 1.2 PlanetData 

 Page 29 of (58)  
 

4 SRBench Dataset Specification 

4.1 Namespaces 

@prefix category: <http://dbpedia.org/resource/Category:> . 

@prefix cc: <http://creativecommons.org/ns#> . 

@prefix dbp: <http://dbpedia.org/ontology/> . 

@prefix dbpprop: <http://dbpedia.org/property/> . 

@prefix dcterms: <http://purl.org/dc/terms/> . 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

@prefix gn: <http://www.geonames.org/ontology#> . 

@prefix om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix owl-time: <http://www.w3.org/2006/time#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix sens-obs: <http://knoesis.wright.edu/ssw/> . 

@prefix skos: <http://www.w3.org/2004/02/skos/core#> . 

@prefix srb:  <http://www.cwi.nl/srbench/> . 

@prefix time: <http://www.w3.org/2006/time> . 

@prefix weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> . 

@prefix wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix yago: <http://dbpedia.org/class/yago/> . 

4.2 Classes and Properties 

In this section, we describe the classes and their properties as defined by the sensor-observation ontology44, 
and the GeoNames ontology46. An overview of the ontology classes and how there are linked to each other 
are shown in Figure 6. The DBpedia ontology47 is highly complex but well documented, so we do not repeat 
its class definitions here. 

Class System 

The ontology class System describes a weather sensor station. Each weather sensor station has several 
properties, e.g., an ID, the location of the station, a geographical location to which the station is located 
nearby, the weather properties observed by this station and the original MesoWest URL of the station. 

• rdf:type (resource: om-owl:System) 

• om-owl:ID (literal: String) 

• om-owl:hasLocatedNearRel (resource: sens-obs:LocatedNearRel, nearby location) 

• om-owl:hasSourceURI (resource: MesoWest URI) 

• om-owl:parameter (resource: om-owl:PropertyType, properties observed by this sensor 
which can be any number of the weather properties defined by the weather ontology):  

• weather:_AirTemperature 

• weather:_DewPoint 

• weather:_PeakWindDirection 



PlanetData Deliverable D 1.2 

 Page 30 of (58)   
 

• weather:_PeakWindSpeed 

• weather:_PrecipitationAccumulated 

• weather:_PrecipitationSmoothed 

• weather:_RelativeHumidity 

• weather:_SnowDepth 

• weather:_SnowInterval 

• weather:_SnowSmoothed 

• weather:_SoilMoisture 

• weather:_SoilTemperature 

• weather:_Visibility 

• weather:_WindDirection 

• weather:_WindGust 

• weather:_WindSpeed 

• om-owl:processLocation (resource: wgs84_pos:Point) 

Example RDF instance: 
sens-obs:System_A24 
 a om-owl:System ; 
 om-owl:ID "A24" ; 
 om-owl:hasLocatedNearRel sens-obs:LocatedNearRelA24 ; 
 om-owl:hasSourceURI 
  <http://mesowest.utah.edu/cgi-bin/droman/meso_base.cgi?stn=A24> ; 
 om-owl:parameter weather:_WindDirection , 
          weather:_RelativeHumidity , 
          weather:_DewPoint , 
          weather:_AirTemperature , 
          weather:_WindSpeed , 
          weather:_WindGust ; 
 om-owl:processLocation sens-obs:point_A24 . 
 

Class LocatedNearRel 

System

DBpedia

om-owl:result

owl:sameAs
LocatedNearRel Feature

om-owl:hasLocation

om-owl:procedure
Observation

om-owl:processLocation

Point

ResultData

MeasureData TruthData

Instant

om-owl:samplingTime
om-owl:hasLocatedNearRel

Figure 6: An overview of all ontology classes and their relationships. 



Deliverable D 1.2 PlanetData 

 Page 31 of (58)  
 

The ontology class LocatedNearRel describes a geographic location to which a weather sensor station is 
located nearby. In this class, properties, such as the distance between the nearby location and the sensor 
station, are defined. 

• rdf:type (resource: om-owl:LocatedNearRel) 

• om-owl:hasLocation (resource: GeoNames URI, location of the nearby place defined by 
GeoNames) 

• om-owl:distance (literal: xsd:float) 

• om-owl:uom (resource: om-owl:UnitOfMeasurement, whose actual value is one of the units of 
measurement defined in the sensor observation ontology and the weather ontology): 

• om-owl:degrees 

• om-owl:percent 

• weather:centimeters 

• weather:fahrenheit 

• weather:inches 

• weather:meters 

• weather:miles 

• weather:milesPerHour 

Example RDF instance: 
sens-obs:LocatedNearRelA24 
 a om-owl:LocatedNearRel ; 
 om-owl:distance "2.1431"^^xsd:float ; 
 om-owl:hasLocation <http://sws.geonames.org/5512628/> ; 
 om-owl:uom weather:miles . 
 

Class Point 

The ontology class Point describes a geographic point location, determined by its latitude, longitude and 
altitude.  

• rdf:type (resource: wgs84_pos:Point) 

• wgs84_pos:lat (literal: xsd:float, latitude in degrees) 

• wgs84_pos:long (literal: xsd:float, longitude in degrees) 

• wgs84_pos:alt (literal: xsd:float, elevation in meters) 

Example RDF instance: 
sens-obs:point_A24 
 a wgs84_pos:Point ; 
 wgs84_pos:alt "4951"^^xsd:float ; 
 wgs84_pos:lat "36.8433"^^xsd:float ; 

•  wgs84_pos:long "-116.47"^^xsd:float . 
 

Class Observation 

The ontology class Observation describes a observation made by a weather sensor station. Each 
observation has several properties, such as the ID of the weather station that has made the observation, the 
type of the observed weather property, the value of the observation and the time when the observation was 
made. 



PlanetData Deliverable D 1.2 

 Page 32 of (58)   
 

• rdf:type (resource: om-owl:Observation, whose actual value is one of the subclasses of om-
owl:Observation defined by the weather ontology to denote weather observations):  

• weather:WindSpeedObservation 

• weather:PrecipitationObservation 

• weather:RainfallObservation 

• weather:SnowfallObservation 

• weather:PressureObservation 

• weather:RadiationObservation 

• weather:TemperatureObservation 

• weather:FreezingTemperatureObservation 

• om-owl:featureOfInterest (resource: om-owl:Feature) 

• om-owl:observationLocation (resource: wgs84_pos:Location) 

• om-owl:memberOf (resource: om-owl:ObservationCollection) 

• om-owl:observedProperty (resource: om-owl:PropertyType, which actual value is one of 
the weather properties defined by the weather ontology, as listed under the om-owl:parameter 
property of the class sens-obs:System above) 

• om-owl:procedure (resource: om-owl:System, refers to the sensor generated this observation) 

• om-owl:result (resource: om-owl:ResultData) 

• om-owl:resultTime (resource: time:Time) 

• om-owl:samplingTime (resource: om-owl:Instant) 

Example RDF instance: 
sens-obs:Observation_AirTemperature_A24_2004_8_10_21_00_00 
 a weather:TemperatureObservation ; 
 om-owl:observedProperty weather:_AirTemperature ; 
 om-owl:procedure sens-obs:System_A24 ; 
 om-owl:result sens-obs:MeasureData_AirTemperature_A24_2004_8_10_21_00_00 ; 
 om-owl:samplingTime sens-obs:Instant_2004_8_10_21_00_00 . 
 

Class MeasureData 

The ontology class MeasureData describes the numerical value of an observation. 

• rdf:type (resource: om-owl:MeasureData, subclass of om-owl:ResultData) 

• om-owl:uom (resource: om-owl:UnitOfMeasurement, whose actual value is one of the units of 
measurement defined in the sensor observation ontology and the weather ontology, as listed under the 
om-owl:uom property of the class sens-obs:LocatedNearRel above) 

• om-owl:floatValue (literal: xsd:float) 

Example RDF instance: 
sens-obs:MeasureData_AirTemperature_A24_2004_8_10_21_00_00 
 a om-owl:MeasureData ; 
 om-owl:floatValue "91.0"^^xsd:float ; 
 om-owl:uom weather:fahrenheit . 
 

Class TruthData 



Deliverable D 1.2 PlanetData 

 Page 33 of (58)  
 

The ontology class TruthData describes the truth-value of an observation. 

• rdf:type (resource: om-owl:TruthData, subclass of om-owl:ResultData) 

• om-owl:booleanValue (literal: xsd:boolean) 

Example RDF instance: 
sens-obs:TruthData_SnowSmoothed_ABRM8_2004_8_9_11_00_00 
 a om-owl:TruthData ; 
 om-owl:booleanValue "true^^http://www.w3.org/2001/XMLSchema#boolean" . 
 

Class Instant 

The ontology class Instant describes a date/time object. 

• rdf:type (resource: owl-time:Instant) 

• owl-time:inXSDateTime (literal: xsd:dateTime) 

Example RDF instance: 
sens-obs: Instant_2004_8_10_21_00_00 
 a owl-time:Instant ; 
 owl-time:inXSDDateTime 
  "2004-08-10T21:00:00-07:00^^http://www.w3.org/2001/XMLSchema#dateTime" . 
 

Class Feature 

The ontology class Feature describes a geographical location. Each observation has several properties, 
such as different types of names of the location, the latitude and longitude of the location, the country to 
which this location belong and other locations that are close to this location. 

• rdf:type (resource: gn:Feature, a geographical object uniquely defined by its GeoNames ID.) 

• gn:countryCode (literal: String, a two letters country code in the ISO 3166 list) 

• gn:name (literal: String, the main international name of a feature. The value has no xml:lang tag.) 

• gn:officialName (literal: String, a name in an official local language) 

• gn:population (literal: xsd:integer) 

• gn:postalCode (literal: String) 

• gn:shortName (literal: String) 

• gn:childrenFeatures (resource: gn:RDFData, links to an RDF document containing the 
description of children features) 

• gn:featureClass (resource: gn:Class, the main category of the feature, as defined in GeoNames 
taxonomy) 

• gn:featureCode (resource: gn:Code, type of the feature, as defined in GeoNames taxonomy) 

• gn:locationMap (resource: gn:Map, a GeoNames map centered on the feature) 

• gn:nearby (resource: gn:Feature, a feature close to the reference feature) 

• gn:nearbyFeatures (resource: gn:RDFData, links to an RDF document containing the 
descriptions of nearby features) 

• gn:neighbour (resource: gn:Feature, a feature sharing a common boarder with the reference 
feature) 



PlanetData Deliverable D 1.2 

 Page 34 of (58)   
 

• gn:neighbouringFeatures (resource: gn:RDFData, links to an RDF document containing the 
descriptions of neighbouring features. Applies when the feature has definite boarders.) 

• gn:parentADM{1,2,3,4} (resource: gn:featureCode, level 1, 2, 3 or 4 administrative parent, 
as defined in the GeoNames ontology) 

• gn:parentCountry (resource: gn:featureCode) 

• gn:parentFeature (resource: gn:Feature) 

• gn:wikipediaArticle (resource: gn:WikiPediaArticle, URL of a Wikipedia article of 
which subject is the resource) 

• wgs84_pos:lat (literal: xsd:float, latitude in degrees) 

• wgs84_pos:long (literal: xsd:float, longitude in degrees) 

Example RDF instance: 
<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<rdf:RDF xmlns:cc="http://creativecommons.org/ns#" 
     xmlns:dcterms="http://purl.org/dc/terms/" 
     xmlns:foaf="http://xmlns.com/foaf/0.1/" 
     xmlns:gn="http://www.geonames.org/ontology#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:wgs84_pos="http://www.w3.org/2003/01/geo/wgs84_pos#"> 
 <gn:Feature rdf:about="http://sws.geonames.org/4045829/"> 
  <rdfs:isDefinedBy> 
   http://sws.geonames.org/4045829/about.rdf 
  </rdfs:isDefinedBy> 
  <gn:name>Omik</gn:name> 
  <gn:featureClass rdf:resource="http://www.geonames.org/ontology#S"/> 
  <gn:countryCode>US</gn:countryCode> 
  <wgs84_pos:lat>52.41667</wgs84_pos:lat> 
  <wgs84_pos:long>173.58333</wgs84_pos:long> 
  <gn:parentFeature rdf:resource="http://sws.geonames.org/5879164/"/> 
  <gn:parentCountry rdf:resource="http://sws.geonames.org/6252001/"/> 
  <gn:parentADM1 rdf:resource="http://sws.geonames.org/5879092/"/> 
  <gn:parentADM2 rdf:resource="http://sws.geonames.org/5879164/"/> 
  <gn:nearbyFeatures  
   rdf:resource="http://sws.geonames.org/4045829/nearby.rdf"/> 
  <gn:locationMap rdf:resource="http://www.geonames.org/4045829/omik.html"/> 
 </gn:Feature> 
</rdf:RDF> 

4.3 Data dictionaries 

Only one dictionary is used in the benchmark to generate sensor locations. 

• Dictionary 1: locations (latitude, longitude, altitude) of all sensors in the LinkedSensorMetadata dataset, 
file: sensor_locations.nt 



Deliverable D 1.2 PlanetData 

 Page 35 of (58)  
 

5 SRBench Query Definitions 
In this section, we give the definitions of the SRBench benchmark queries. The benchmark contains a 
concise, yet comprehensive set of 17 queries that covers the major aspects of streaming RDF/SPARQL 
processing, and each query is intended to challenge a particular aspect of the query processor. Since there 
exists no standard query language for streaming RDF data, the query requirements for a streaming RDF 
benchmark should be language-agnostic, yet have a clear semantics. As a result of this, all SRBench queries 
are defined in terms of the knowledge one wants to obtain or derive from the ontologies, rather than a 
specific streaming RDF query language. 

The addressed RDF/SPARQL features range from simple pattern matching queries to queries with complex 
reasoning tasks. The main advantages of applying Semantic Web technologies on streaming data include 
providing better search facilities by adding semantics to the data, reasoning through ontologies, and 
integration with other data sets. The ability of a streaming RDF engine to process these distinctive features is 
accessed by the benchmark with queries that apply reasoning not only over the streaming sensor data, but 
also over the metadata and even other data sets in the Linked Open Data cloud, currently including the 
GeoNames RDF dataset15 and the DBpedia dataset16. Thus, the SRBench benchmark queries are divided into 
three classes: 

• Q1 – Q7 only query the dynamic streaming data; 

• Q8 – Q11 query both the dynamic streaming data and the static sensor metadata; 

• Q12 – Q17 query not only the Linked Sensor Data dataset but also the GeoNames and DBpedia 
datasets. 

5.1 Basic Pattern Matching 

Q1. Get all rainfall observed in the last hour. 

Use case motivation: a basic but important query. It tests the engine’s ability to handle the most basic feature 
of RDF/SPARQL to gain knowledge about the mostly spoken topic when talking about the weather. 

Inputs: None 

5.2 Optional Pattern Matching 

Q2. Get all precipitation observed in the last hour. 

Use case motivation: we go a step further and ask for all types of precipitation. Since the triple patterns for 
different kinds of precipitations maybe different, optional patterns are needed to capture the possible 
differences. Additionally, this query requires reasoning over all instances of the class 
PrecipitationObservation and its subclasses. 

Inputs: None 

5.3 ASK Query Form 

Q3. Detect if a station is observing a hurricane. 

Tips: a hurricane has a sustained wind (for more than 3 hours) of at least 33 metres per second or 74 miles 
per hour (119 km/h). 

Use case motivation: we want to know if there are any extreme weather conditions among the observations. 
This query tests the engine’s ability to filter out the minimal amount of the streaming data to quickly 
compute the answer. 

Inputs: None 

5.4 Overlapping Sliding Window 

Q4. Get the average wind speed at the stations where the air temperature is >32 degrees in the last 
hour, every 10 minutes. 



PlanetData Deliverable D 1.2 

 Page 36 of (58)   
 

Use case motivation: combine values observed for multiple weather properties. This query tests the engine’s 
ability to deal with data that need to be temporarily stored. 

Inputs: None 

5.5 CONSTRUCT Derived Knowledge 

Q5. Detect if a station is observing a blizzard. 

Tips: a blizzard is a severe snow storm characterised by low temperatures, strong winds and heavy snow 
lasting for at least three hours. 

Use case motivation: detect extreme weather conditions by combining multiple observed weather properties. 
This query tests the engine’s ability to produce new knowledge derived by combining existing data. 

Inputs: None 

5.6 Union 

Q6. Get the stations that have observed extremely low visibility in the last hour. 

Tips: next to direct measurements of low visibility (<10 centimeters), heavy snowfall and rainfall (> 30 
centimeters) also cause low visibility. 

Use case motivation: this is a more complex example of detecting extreme weather conditions, which 
requires not only gaining knowledge explicitly contained in the data, but also deriving implicit knowledge 
from data sources. 

Inputs: None 

5.7 Window-to-Stream operation 

Q7. Detect stations that are recently broken. 

Tips: if a station suddenly stops producing (observation) data, it might be broken. 

Use case motivation: knowing the stability of the stations is an important issue, which can be deduced from 
absent data. This query tests the engine’s ability to cope with the dynamic properties that are specific for 
streaming data. 

Inputs: None 

5.8 Aggregates 

Q8. Get the daily minimal and maximal air temperature observed by the sensor at a given location. 

Use case motivation: temperature is the most common weather condition queried. This query tests the 
engine’s ability to aggregates data that are grouped by their geo-spatial properties. 

Inputs: 

Input Description 

%Latitude% Latitude of the sensor 

%Longitude% Longitude of the sensor 

%Altitude% Altitude of the sensor 

 

5.9 Expression in SELECT Clause 

Q9. Get the daily average wind force and direction observed by the sensor at a given location. 



Deliverable D 1.2 PlanetData 

 Page 37 of (58)  
 

Use case motivation: wind is the other most commonly asked weather condition. The Beaufort Wind Force 
Scale48 is a better way to express the wind force than the wind speed, which requires some post processing of 
the qualified RDF triples. This query tests the engine’s ability to post process the qualified triple patterns. 

Inputs: 

Input Description 

%Latitude% Latitude of the sensor 

%Longitude% Longitude of the sensor 

%Altitude% Altitude of the sensor 

 

5.10 Join 

Q10. Get the locations where a heavy snowfall has been observed in the last day. 

Use case motivation: we want to find places that are suitable for a ski holiday. This query tests the engine’s 
ability to join the dynamic sensor streaming data with the static sensor metadata. 

Inputs: None 

5.11 Subquery 

Q11. Detecting if a station is producing significantly different observation values than its neighbouring 
stations. 

Tips: if two sensor stations are located close (i.e., hasLocatedNearRel) to the same location, these two 
sensors are neighbours of each other. 

Use case motivation: we want to detect the malfunctioning sensors. This query tests the engine’s ability to 
compute complex subquery. 

Inputs: None 

5.12 Property Path Expressions 

This group of queries tests the engine’s ability to derive knowledge from multiple interlinked datasets using 
Property Path expressions. In particular, the queries require computing paths with arbitrary lengths for the 
parentFeature relationship, and computing alternatives for the name of the resulting places. 

Q12. Get the hourly average air temperature and humidity of large cities. 

Tips: use the GeoNames dataset to find large cities, i.e., population > 15000, and use the 
hasLocatedNearRel property in the sensor ontology44 to find sensors located in or near to these cities. 

Use case motivation: we want to find out if the temperature is higher during the rush hours in large cities, 
which says something about the air pollution. 

Inputs: None 

Q13. Get the shores in Florida, US where a strong wind, i.e., the wind force is between 6 and 9, has 
been observed in the last hour. 

Tips: first reason over the parentADM{1,2,3,4} and parentFeature properties of the GeoNames 
ontology to find the shores in Florida, US; and then use the hasLocatedNearRel property in the sensor 
ontology44 to find sensors located near to these shores. 

Use case motivation: we want to find shores in Florida, US where we can go windsurfing now. 

Inputs: None 

                                                        
48 See: http://en.wikipedia.org/wiki/Beaufort_scale 



PlanetData Deliverable D 1.2 

 Page 38 of (58)   
 

Q14. Get the airport(s) located in the same city as the sensor that has observed extremely low visibility 
in the last hour. 

Tips: use the GeoNames dataset and the hasLocatedNearRel property in the sensor ontology44 to find 
airport(s) and sensors located in the same city. 

Use case motivation: we want to trigger an alarm if dangerous weather condition has been observed. 

Inputs: None 

5.13 Ontology-based Reasoning 

This group of queries all tests the engine’s ability to apply reasoning over the ontologies of the interlinked 
datasets. In particular, reasoning over rdfs:subClassOf is required to find all hurricanes; and reasoning 
over owl:sameAs is required to the same associate geographic features described in both the GeoNames 
RDF dataset and the DBpedia dataset. 

Q15. Get the locations where the wind speed in the last hour is higher than a known hurricane. 

Tips: use the DBpedia dataset to get the information of hurricanes in the past. 

Use case motivation: by comparing it with historical values, we can detect extreme weather conditions. 

Inputs: None 

Q16. Get the heritage sites that are threatened by a hurricane. 

Tips: use the DBpedia dataset to get the geographical information of the monuments; use the GeoNames 
dataset and the hasLocatedNearRel property in the sensor ontology to find sensors located close to the 
monuments. 

Use case motivation: we want to trigger an alarm if dangerous weather condition has been observed. 

Inputs: None 

Q17. Estimate the damage where a hurricane has been observed. 

Tips: use the DBpedia dataset to find the damage caused by earlier hurricanes in the same area. 

Use case motivation: the first we want to know after a natural disaster is the damage it brings. 

Inputs: None 

5.14 Evaluation 

When designing the queries, we have paid much attention to the coverage of the queries in different aspects. 
From the point of view of the users, the queries vary from simple queries with few semantics, to complex 
queries with richer semantics. The queries cover a broad scope of the knowledge that the users of a weather 
observation system would want to obtain given the ontologies. 

From the point of view of RDF/SPARQL engines, the queries address a broad scope of features that are 
specific to RDF/SPARQL, which range from simple pattern matching queries to queries with complex 
reasoning tasks. 

To the best of our knowledge, the Social Intelligence Benchmark (SIB)49 is the only existing RDF/SPARQL 
benchmark that has adopted the SPARQL 1.1 feature “Property Path” expressions. However, the SRBench 
makes more extensive use of property path expressions for reasoning. 

We have purposely chosen to not include the sorting feature in the benchmark query set, since it is an 
insignificant feature for streaming data. Because, on the one hand, streaming data are already sorted by 
nature by their timestamps; while on the other hand, requiring results to be sorted on another attribute will 
only produce partially sorted data (i.e., with one window). 

                                                        
49 See: http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark 



Deliverable D 1.2 PlanetData 

 Page 39 of (58)  
 

We believe that the SRBench benchmark clearly shows the added values of the Semantic Web technologies 
on gaining more knowledge from streaming data. The benchmark provides a general framework to assess the 
ability of streaming RDF engines to support such applications. 



PlanetData Deliverable D 1.2 

 Page 40 of (58)   
 

6 SRBench Queries Implementation Using SPARQLStream 
Streaming RDF processing is an evolving topic and the proposed systems are in their earlier stages of 
development. At this moment, one of the most important issues is to assess the functionality of the proposed 
systems. Do they provide a sufficient set of functions that are needed by the streaming applications? Do they 
miss any crucial functionalities? Do they provide any additional functionalities that can be beneficial for 
streaming applications, which thus distinguish themselves from other systems in the same area. 

In the section, we report our experience on applying SRBench on the SPARQL streaming RDF extension 
and engine SPARQLStream, developed by the PlanetData partner UPM, for a functional evaluation. To answer 
the question “Is the SPARQLStream streaming RDF processing engine functionally complete?”, we have 
implemented the complete set of benchmark queries using the SPARQLStream language extension. We choose 
SPARQLStream as the first system to evaluate, because SPARQLStream is the only SPARQL streaming language 
extension based on both SPARQL 1.1 and the CQL language. Additionally, the implementation of 
SPARQLStream has a module structure, which can be easily extended to cooperate with other streaming data 
processors, e.g., MonetDB/DataCell50. 

The SPARQLStream language extension is formally defined in (Calbimonte et al., 2010). To make this 
document self-containing, we have included the formal definition of the syntax and semantic of 
SPARQLStream in Annex A. The queries have been executed using the SPARQLStream engine, downloaded 
from http://code.google.com/p/semanticstreams/source/checkout. 

6.1 Q1 – Get all rainfall observed in the last hour. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
 
SELECT DISTINCT ?sensor ?value ?uom 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
WHERE { 
  ?observation om-owl:procedure ?sensor ; 
               a weather:RainfallObservation ; 
               om-owl:result ?result . 
  ?result om-owl:floatValue ?value ; 
          om-owl:uom ?uom . 
} 

Query Properties: 

• Use the DISTINCT solution modifier 

6.2 Q2 – Get all precipitation observed in the last hour. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
 
SELECT DISTINCT ?sensor ?value ?uom 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
WHERE { 
  ?observation om-owl:procedure ?sensor ; 
               rdf:type/rdfs:subClassOf* weather:PrecipitationObservation ; 
               om-owl:result ?result . 
  ?result ?p1 ?value . 
  FILTER( REGEX(STR(?p1), “value”, “i") ) 
  OPTIONAL { 
    ?result ?p2 ?uom . 

                                                        
50 MonetDB/DataCell is a streaming data processing engine being developed by the PlanetData partner CWI. 
It will be part of the main objective of the following deliverable D1.7 of PlanetData. 



Deliverable D 1.2 PlanetData 

 Page 41 of (58)  
 

    FILTER( REGEX(STR(?p2), “uom”, “i") ) 
  } 
} 

Query Properties: 

• Use the DISTINCT solution modifier 

• Use FILTER constraints 

• Use the REGEX and STR functions on strings 

• Use an OPTIONAL graph pattern 

• Use Property Path expression with an arbitrary length path, to reason over all instances of the class 
weather:PrecipitationObservation and its subclasses. Thus, an engine that supports 
subclass reasoning will not only return observations which is of the type 
PrecipitationObservation, but also observations which are of a subtype of 
PrecipitationObservation, e.g., RainfallObservation and 
SnowfallObservation. 

6.3 Q3 – Detect if a station is observing a hurricane. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
ASK 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations>  
           [NOW - 3 HOURS SLIDE 10 MINUTES] 
WHERE { 
  ?observation om-owl:procedure ?sensor ; 
               om-owl:observedProperty weather:WindSpeed ; 
               om-owl:result [ om-owl:floatValue ?value ] . 
} 
GROUP BY ?sensor 
HAVING ( AVG(?value) >= "74"^^xsd:float ) #milesPerHour 

Query Properties: 

• Use the ASK query form 

• Use GROUP BY, HAVING and aggregation function 

• Requires reasoning over instances of the property weather:WindSpeed and all its Subproperties. 
Thus, an engine that supports subproperty reasoning will not only return observations whose 
observedProperty is WindSpeed, but also observations whose observedProperty are a 
subproperty of WindSpeed, e.g., PeakWindSpeed and WindGust. 

• Requires computing overlapping windows 

6.4 Q4 – Get the average wind speed at the stations where the air 
temperature is >32 degrees in the last hour, every 10 minutes. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ?sensor ( AVG(?windSpeed) AS ?averageWindSpeed ) 
       ( AVG(?temperature) AS?averageTemperature ) 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations>  
           [NOW - 1 HOURS SLIDE 10 MINUTES] 
WHERE { 
  ?temperatureObservation om-owl:procedure ?sensor ; 



PlanetData Deliverable D 1.2 

 Page 42 of (58)   
 

                          a weather:TemperatureObservation ; 
                          om-owl:result ?temperatureResult . 
  ?temperatureResult om-owl:floatValue ?temperature ; 
                     om-owl:uom ?uom . 
  FILTER(?temperature > "32"^^xsd:float && REGEX(STR(?uom), “fahrenheit”, “i”)) 
  ?windSpeedObservation om-owl:procedure ?sensor ; 
                        a weather:WindSpeedObservation ; 
                        om-owl:result [ om-owl:floatValue ?windSpeed ] . 
} 
GROUP BY ?sensor 

Query Properties: 

• Use expressions in the SELECT clause 

• Use FILTER constraints 

• Use the REGEX and STR functions on strings 

• Use GROUP BY and aggregation functions 

• Requires a join between two types of observations on the sensor ID. 

• Requires computing overlapping windows 

6.5 Q5 – Detect if a station is observing a blizzard. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
CONSTRUCT { ?sensor om-owl:generatedObservation [ a weather:Blizzard ] } 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> 
           [NOW - 3 HOURS SLIDE 10 MINUTES] 
WHERE { 
  { SELECT ?sensor 
    WHERE { 
      ?sensor om-owl:generatedObservation [a weather:SnowfallObservation] ; 
              om-owl:generatedObservation ?o1 ; 
              om-owl:generatedObservation ?o2 . 
      ?o1 a weather:TemperatureObservation ; 
          om-owl:observedProperty weather:_AirTemperature ; 
          om-owl:result [om-owl:value ?temperature] . 
      ?o2 a weather:WindObservation ; 
          om-owl:observedProperty weather:_WindSpeed ; 
          om-owl:result [om-owl:value ?windSpeed] . 
    } 
    GROUP BY ?sensor 
    HAVING ( AVG(?temperature) < “32”^^xsd:float && # fahrenheit 
             MIN(?windSpeed) > “40.0”^^xsd:float ) #milesPerHour 
  } 
} 

Query Properties: 

• Use the CONSTRUCT query form 

• Use GROUP BY, HAVING and aggregation functions 

• Use subquery 

• Requires a join between three types of observations on the sensor ID. 

• Requires computing overlapping windows 



Deliverable D 1.2 PlanetData 

 Page 43 of (58)  
 

6.6 Q6 – Get the stations that have observed extremely low visibility in 
the last hour. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ?sensor 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
WHERE { 
  { ?observation om-owl:procedure ?sensor ;  
                 a weather:VisibilityObservation ; 
                 om-owl:result [om-owl:floatValue ?value ] . 
    FILTER ( ?value < "10"^^xsd:float) # centimeters 
  } 
  UNION 
  { ?observation om-owl:procedure ?sensor ; 
                 a weather:RainfallObservation ; 
                 om-owl:result [om-owl:floatValue ?value ] . 
    FILTER ( ?value > "30"^^xsd:float) # centimeters 
  } 
  UNION 
  { ?observation om-owl:procedure ?sensor ; 
                 a weather:SnowfallObservation . 
  } 
} 

Query Properties: 

• Use FILTER constraints 

• Use UNION to match alternative patterns 

6.7 Q7 – Detect stations that are recently broken. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
 
SELECT DSTREAM DISTINCT ?sensor 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
WHERE { 
  ?sensor om-owl:generatedObservation ?observation . 
} 

Query Properties: 

• Use the DISTINCT solution modifier 

• Use DSTREAM 

6.8 Q8 – Get the daily minimal and maximal air temperature observed 
by the sensor at a given location. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ( MIN(?temperature) AS ?minTemperature ) 
       ( MAX(?temperature) AS ?maxTemperature ) 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 24 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
WHERE { 
  ?sensor om-owl:processLocation ?sensorLocation ; 



PlanetData Deliverable D 1.2 

 Page 44 of (58)   
 

          om-owl:generatedObservation ?observation . 
  ?sensorLocation wgs84_pos:alt “%Altitude%”^^xsd:float ; 
          wgs84_pos:lat “%Latitude%”^^xsd:float ; 
          wgs84_pos:long “%Longitude%”^^xsd:float . 
  ?observation om-owl:observedProperty weather:_AirTemperature ; 
          om-owl:result [ om-owl:floatValue ?temperature ] . 
} 
GROUP BY ?sensor 

Query Properties: 

• Use both streaming data and static sensor metadata 

• Use expressions in the SELECT clause 

• Use GROUP BY and aggregation functions 

• Requires a join between the sensor metadata and the observations on the sensor ID 

6.9 Q9 – Get the daily average wind force and wind direction observed 
by the sensor at a given location. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ( IF(AVG(?windSpeed) < 1, 0, 
          IF(AVG(?windSpeed) < 4, 1, 
           IF(AVG(?windSpeed) < 8, 2, 
            IF(AVG(?windSpeed) < 13, 3, 
             IF(AVG(?windSpeed) < 18, 4, 
              IF(AVG(?windSpeed) < 25, 5, 
               IF(AVG(?windSpeed) < 31, 6, 
                IF(AVG(?windSpeed) < 39, 7, 
                 IF(AVG(?windSpeed) < 47, 8, 
                  IF(AVG(?windSpeed) < 55, 9, 
                   IF(AVG(?windSpeed) < 64, 10, 
                    IF(AVG(?windSpeed) < 73, 11, 12) ))))))))))) 
         AS ?windForce ) 
       ( AVG(?windDirection) AS ?avgWindDirection ) 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 24 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
WHERE { 
  ?sensor om-owl:processLocation ?sensorLocation ; 
          om-owl:generatedObservation ?o1 ; 
          om-owl:generatedObservation ?o2 . 
  ?sensorLocation wgs84_pos:alt “%Altitude%”^^xsd:float ; 
          wgs84_pos:lat “%Latitude%”^^xsd:float ; 
          wgs84_pos:long “%Longitude%”^^xsd:float . 
  ?o1 om-owl:observedProperty weather:_WindSpeed ; 
      om-owl:result [ om-owl:floatValue ?windSpeed ] . 
  ?o2 om-owl:observedProperty weather:_WindDirection ; 
      om-owl:result [ om-owl:floatValue ?windDirection ] . 
} 
GROUP BY ?sensor 

Query Properties: 

• Use both streaming data and static sensor metadata 

• Use expressions in the SELECT clause 

• Use IF functions to map the resulting wind speed to the Beaufort Wind Force Scale. 



Deliverable D 1.2 PlanetData 

 Page 45 of (58)  
 

• Use GROUP BY and aggregation functions 

• Requires a join between the sensor metadata and the observations on the sensor ID 

6.10 Q10 – Get the locations where a heavy snowfall has been observed in 
the last day. 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
 
SELECT DISTINCT ?lat ?long ?alt 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 24 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
WHERE { 
  ?sensor om-owl:generatedObservation [a weather:SnowfallObservation] . 
  ?sensor om-owl:processLocation ?sensorLocation . 
  ?sensorLocation wgs84_pos:alt ?alt ; 
                  wgs84_pos:lat ?lat ; 
                  wgs84_pos:long ?long . 
} 

Query Properties: 

• Use the DISTINCT solution modifier 

• Use both streaming data and static sensor metadata 

• Requires a join between the sensor metadata and the observations on the sensor ID 

6.11 Q11 – Detecting if a station has produced significantly different 
measurements than its neighbouring stations 

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT DISTINCT ?sensor 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
WHERE { 
  ?sensor om-owl:generatedObservation ?observation ; 
          om-owl:hasLocatedNearRel [om-owl:hasLocation ?nearbyLocation] . 
  ?observation a ?observationType ; 
               om-owl:observedProperty ?observationProperty ; 
               om-owl:result [ om-owl:floatValue ?value ] . 
  { SELECT AVG(?value2) AS ?avgValue 
    WHERE { 
      ?sensor2 om-owl:generatedObservation ?observation2 ; 
               om-owl:hasLocatedNearRel [om-owl:hasLocation ?nearbyLcation2] . 
      FILTER ( sameTerm(?nearbyLocation, ?nearbyLocation2) ) 
      ?observation2 a ?observationType ; 
                    om-owl:observedProperty ?observationProperty ; 
                    om-owl:result [ om-owl:floatValue ?value2 ] . 
    } 
  } 
  FILTER ( ABS(?value - ?avgValue) / ?avgValue > “0.10”^^xsd:float) 
} 

Query Properties: 

• Use both streaming data and static sensor metadata 



PlanetData Deliverable D 1.2 

 Page 46 of (58)   
 

• Use the DISTINCT solution modifier 

• Use subquery 

• Use the sameTerm, ABS and aggregation functions 

• Use FILTER constraints 

• Reasoning over the om-owl:hasLocatedNearRel property to find neighbouring sensor stations. 

• Requires joins between the sensor metadata and the observations on the sensor ID, and between 
different observations on the observation type and observed property. 

6.12 Q12 – Get the hourly average air temperature and humidity of large 
cities. 

PREFIX gn: <http://www.geonames.org/ontology#> 
PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
 
SELECT ?name ( AVG(?temperature) AS ?avgTemperature ) 
       ( AVG(?humidity) AS ?avgHumidity ) 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> 
           [NOW - 1 HOURS SLIDE 1 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
FROM <http://www.cwi.nl/SRBench/geonames> 
WHERE { 
  ?sensor om-owl:generatedObservation ?temperatureObservation; 
          om-owl:generatedObservation ?humidityObservation; 
          om-owl:hasLocatedNearRel [ om-owl:hasLocation ?nearbyLocation ] . 
  ?temperatureObservation om-owl:observedProperty weather:_AirTemperature ; 
                          om-owl:result [ om-owl:floatValue ?temperature ] . 
  ?humidityObservation om-owl:observedProperty weather:_RelativeHumidity ; 
                       om-owl:result [ om-owl:floatValue ?humidity ] . 
  { SELECT ?name 
    WHERE { 
      ?nearbyLocation gn:featureClass ?featureClass ; 
                      gn:name | gn:officialName ?name ; 
                      gn:population ?population . 
      FILTER ( ?population > 15000 && REGEX(?featureClass, “P” , “i") ) 
    } 
  } 
  UNION 
  { SELECT ?name 
    WHERE { 
      ?nearbyLocation gn:parentFeature+ ?parentFeature . 
      ?parentFeature gn:featureClass ?parentClass ; 
                     gn:name | gn:officialName ?name ; 
                     gn:population ?parentPopulation . 
      FILTER ( ?parentPopulation > 15000 && REGEX(?parentClass, “P” , “i") ) 
    } 
  } 
} 
GROUP BY ?name 

Query Properties: 

• Interlink the LSD dataset and the GeoNames dataset 

• Requires computing disjoint windows 

• Use expressions in the SELECT clause 

• Use GROUP BY and aggregation functions 



Deliverable D 1.2 PlanetData 

 Page 47 of (58)  
 

• Requires joins between the sensor metadata and the observations on the sensor ID, and between a sensor 
and a geographic feature on their location 

• Use subqueries 

• Use FILTER constraints and the REGEX function 

• Use UNION to match alternative patterns 

• Use Property Path expression with alternatives and with an arbitrary length path 

6.13 Q13 – Get the shores in Florida, US where a strong wind, i.e., the 
wind force is between 6 and 9, has been observed in the last hour. 

PREFIX gn: <http://www.geonames.org/ontology#> 
PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
 
SELECT ?shoreName ?lat ?long 
      ( IF(AVG(?windSpeed) < 31, 6,  
         IF(AVG(?windSpeed) < 39, 7, IF(AVG(?windSpeed) < 47, 8, 9))) 
        AS ?windForce ) 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
FROM <http://www.cwi.nl/SRBench/geonames> 
WHERE { 
  ?shore gn:featureClass ?shoreClass ; 
         wgs84_pos:lat ?lat ; 
         wgs84_pos:long ?long ; 
         gn:name|gn:officialName ?shoreName ; 
         gn:parentFeature+ ?florida . 
  ?florida gn:name|gn:officialName ?floridaName . 
  FILTER ( ( REGEX(?shoreClass, “L.CST” , “i") || # coast 
             REGEX(?shoreClass, “T.BCH” , “i") || # beach 
             REGEX(?shoreClass, “T.SHOR” , “i") ) && # shore 
           REGEX(?floridaName, “Florida”, “i”) ) 
  ?sensor om-owl:generatedObservation ?observation; 
          om-owl:hasLocatedNearRel [ om-owl:hasLocation ?shore ] . 
  ?observation om-owl:observedProperty weather:_WindSpeed ; 
               om-owl:result [ om-owl:floatValue ?windSpeed ] . 
  FILTER ( 25 <= ?windSpeed || ?windSpeed <= 54 ) # milesPerHour 
} 
GROUP BY ?shoreName ?lat ?long 

Query Properties: 

• Interlink the LSD dataset and the GeoNames dataset 

• Use expressions in the SELECT clause 

• Use IF functions to map the resulting wind speed to the Beaufort Wind Force Scale. 

• Use GROUP BY and aggregation functions 

• Requires joins between the sensor metadata and the observations on the sensor ID, and between a sensor 
and a geographic feature on their location 

• Use FILTER constraints and the REGEX function 

• Use Property Path expressions with alternatives and with an arbitrary length path 



PlanetData Deliverable D 1.2 

 Page 48 of (58)   
 

6.14 Q14 – Get the airport(s) located in the same city as the sensor that 
has observed extremely low visibility in the last hour. 

PREFIX gn: <http://www.geonames.org/ontology#> 
PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT DISTINCT ?airportName ?lat ?long 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW - 1 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
FROM <http://www.cwi.nl/SRBench/geonames> 
WHERE { 
  ?airport gn:featureClass ?airportClass ; 
           wgs84_pos:lat ?lat ; 
           wgs84_pos:long ?long ; 
           gn:name|gn:officialName ?airportName ; 
           gn:parentFeature+ ?city . 
  ?city gn:featureClass ?cityClass . 
  FILTER ( REGEX(?airportClass, “S.AIRP” , “i") && 
           REGEX(?cityClass, “P” , “i") ) 
  ?sensor om-owl:generatedObservation ?observation; 
          om-owl:hasLocatedNearRel [ om-owl:hasLocation ?city ] . 
  { ?observation om-owl:procedure ?sensor ; 
                 a weather:VisibilityObservation ; 
                 om-owl:result [om-owl:floatValue ?value ] . 
    FILTER ( ?value < "10"^^xsd:float) # centimeters 
  } 
  UNION 
  { ?observation om-owl:procedure ?sensor ; 
                 a weather:RainfallObservation ; 
                 om-owl:result [om-owl:floatValue ?value ] . 
    FILTER ( ?value > "30"^^xsd:float) # centimeters 
  } 
  UNION 
  { ?observation om-owl:procedure ?sensor ; 
                 a weather:SnowfallObservation . 
  } 
} 

Query Properties: 

• Interlink the LSD dataset and the GeoNames dataset 

• Use the DISTINCT solution modifier 

• Requires joins between the sensor metadata and the observations on the sensor ID, and between a sensor 
and a geographic feature on their location 

• Use FILTER constraints and the REGEX function 

• Use UNION to match alternative patterns 

• Use Property Path expressions with alternatives and with an arbitrary length path 

6.15 Q15 – Get the locations where the wind speed in the last hour is 
higher than a known hurricane. 

PREFIX dbpprop: <http://dbpedia.org/property/> 
PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 



Deliverable D 1.2 PlanetData 

 Page 49 of (58)  
 

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos> 
PREFIX yago: <http://dbpedia.org/class/yago/> 
 
SELECT ?lat ?long ?alt( AVG(?windSpeed) AS ?avgWindSpeed ) 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> 
           [NOW - 1 HOURS SLIDE 1 HOURS] 
FROM <http://www.cwi.nl/SRBench/sensors> 
FROM <http://www.cwi.nl/SRBench/dbpedia> 
WHERE { 
  ?observation a weather:WindspeedObservation ; 
               om-owl:procedure ?sensor ; 
               om-owl:result [ om-owl:floatValue ?windSpeed ] . 
  ?sensor om-owl:processLocation ?sensorLocation . 
  ?sensorLocation wgs84_pos:alt ?alt ; 
                  wgs84_pos:lat ?lat ; 
                  wgs84_pos:long ?long . 
  ?hurricane rdf:type/rdfs:subClassOf* yago:Hurricane111467018 ; 
             dbpprop:1MinWinds ?hurricaneWindSpeed. 
  FILTER(?windSpeed > ?hurricaneWindSpeed) 
} 
GROUP BY ?lat ?long ?alt 

Query Properties: 

• Interlink the LSD dataset and the DBpedia dataset 

• Use expressions in the SELECT clause 

• Use GROUP BY and aggregation functions 

• Use FILTER constraints 

• Requires a join between the sensor metadata and the observations on the sensor ID 

• Use Property Path expression with an arbitrary length path, to reason over all instances of the class 
yago:Hurricane111467018 and its subclasses 

6.16 Q16 – Get the heritage sites that are threatened by a hurricane. 

PREFIX category: <http://dbpedia.org/resource/Category:> 
PREFIX dcterms: <http://purl.org/dc/terms/> 
PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX skos: <http://www.w3.org/2004/02/skos/core#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ?heritage 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> 
FROM <http://www.cwi.nl/SRBench/sensors> 
FROM <http://www.cwi.nl/SRBench/geonames> 
FROM <http://www.cwi.nl/SRBench/dbpedia> 
WHERE { 
  ?observation a weather:WindspeedObservation ; 
               om-owl:procedure ?sensor ; 
               om-owl:result [ om-owl:floatValue ?windSpeed ] . 
  FILTER ( ?windSpeed >= “74”^^xsd:float ) #milesPerHour 
  ?sensor om-owl:hasLocatedNearRel [om-owl:hasLocation ?nearbyLocation] . 
  ?heritage owl:sameAs ?nearbyLocation ; 
            dcterms:subject ?category . 
  ?category skos:broader* category: World_Heritage_Sites . 
} 

Query Properties: 



PlanetData Deliverable D 1.2 

 Page 50 of (58)   
 

• Interlink the LSD dataset and the DBpedia dataset 

• Use FILTER constraints 

• Use owl:sameAs reasoning 

• Requires joins between the sensor metadata and the observations on the sensor ID, and between the 
sensor data and the DBpedia data on the ?nearbyLocation. 

• Use Property Path expression with an arbitrary length path 

6.17 Q17 – Estimate the damage where a hurricane has been observed. 

PREFIX dbpprop: <http://dbpedia.org/property/> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
PREFIX gn: <http://www.geonames.org/ontology#> 
PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX yago: <http://dbpedia.org/class/yago/> 
 
SELECT ?damage 
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> 
FROM <http://www.cwi.nl/SRBench/sensors> 
FROM <http://www.cwi.nl/SRBench/geonames> 
FROM <http://www.cwi.nl/SRBench/dbpedia> 
WHERE { 
  ?observation a weather:WindspeedObservation ; 
               om-owl:procedure ?sensor ; 
               om-owl:result [ om-owl:floatValue ?windSpeed ] . 
  FILTER ( ?windSpeed >= “74”^^xsd:float ) #milesPerHour 
  ?sensor om-owl:hasLocatedNearRel [om-owl:hasLocation ?nearbyLocation] . 
  ?hurricane dbpprop:areas [ foaf:name ?areaName ] ; 
             rdf:type/rdfs:subClassOf* yago:Hurricane111467018 ; 
             dbpprop:damages ?damage . 
  ?nearbyLocation gn:parentFeature* ?area . 
  ?area gn:name|gn:officialName ?areaName . 
} 

Query Properties: 

• Interlink the LSD, DBpedia and GeoNames datasets. 

• Use FILTER constraints 

• Requires joins between the sensor metadata and the observations on the sensor ID, between the sensor 
data and the GeoNames data on the ?nearbyLocation, and between the GeoNames data and 
DBpedia data on ?areaName 

• Use Property Path expressions with alternatives and with an arbitrary length path 

6.18 Discussion 

An overview of RDF/SPARQL features used by each query is shown in Table 2. In general, the functionality 
supported by SPARQLStream is fairly complete. At the language level, it is able to express all benchmark 
queries easily and concisely. At the query processing level, some missing features have been discovered. 
During the evaluation, UPM and CWI have closely collaborated to improve the quality of the existing code 
and extend the code to support the missing features. The development on the new features will continue 
under the collaboration of the two partners. 



Deliverable D 1.2 PlanetData 

 Page 51 of (58)  
 

First of all, errors caused by out-of-date software code, in the Stream-translator, which translate a query 
written in SPARQLStream into a query using the language implemented by the underlying streaming data 
processor, have been corrected. 

The (improved) SPARQLStream engine now supports all language syntax required by the benchmark, but 
running queries containing complex SPARQLStream language features, for instance, OPTIONAL, complex 
FILTERs like those with REGEX, needs more development efforts. 

Because the aggregation functions AVG(), MIN(), MAX() have been introduced only in SPARQL 1.1, 
implementation of these functions haven’t been finished. Some preliminary code to support GROUP BY, 
HAVING and ASK have been added, since the evaluation. The development of these features will continue. 

So far, the development of the SPARQLStream engine has concentrated on supporting streaming data, but not 
on supporting both streaming and static data. Furthermore, the CONSTRUCT queries used to only accept 
static RDF data, but no streaming data. As a result of the evaluation, code has been added to support both 
streaming and static RDF data in all kinds of queries and will be further developed. 

The query Q5 uses a subquery as a workaround to overcome the problem that the use of the GROUP BY 
variable ?sensor in the CONSTRUCT clause can otherwise not be detected by the parser. This problem is 
cause by that in the ARQ framework51, CONSTRUCT queries are treated like SELECT * queries, which 
fails to detect that the GROUP BY variable ?sensor is actually use in the CONSTRUCT clause. Since this is 
a problem in third-party software, we cannot estimate if and when it will be fixed. 

Finally, we have noticed during the evaluation that the window-to-stream operators, such as the DSTREAM 
operator, although rarely used, but can be very useful in several important use cases that are specific for 
streaming applications. For instance, the ISTREAM and DSTREAM can be used to detect sudden changes in 
the availability of sensors. So far, support for these operators has been ignored because some details of their 
semantics are still unclear. However, the use case of DSTREAM in the benchmark motivates us to consider 
implementing these operators. 

Table 2: An overview of RDF/SPARQL features used by each query 

 

D
I
S
T
I
N
C
T
 

F
I
L
T
E
R
 

R
eg

ul
ar

 e
xp

re
ss

io
n 

Ex
pa

nd
ed

 fu
nc

tio
ns

 

O
P
T
I
O
N
A
L
 

S
E
L
E
C
T

 w
ith

 
ex

pr
es

si
on

s 

U
N
I
O
N
 

I
F
 

Su
bq

ue
ry

 

G
R
O
U
P
 
B
Y
 

A
gg

re
ga

tio
n 

H
A
V
I
N
G
 

A
S
K
 

C
O
N
S
T
R
U
C
T
 

Pr
op

er
ty

 p
at

h 

Su
bc

la
ss

es
 

Su
bp

ro
pe

rti
es

 

o
w
l
:
s
a
m
e
A
s
 

Q1 P                  
Q2 P P P P P          P    
Q3          P P P P    P  
Q4  P P P  P    P P        
Q5         P P P P  P     
Q6  P     P            
Q7 P                  
Q8      P    P P        
Q9      P  P  P P        
Q10 P                  
Q11 P P  P     P P P        
Q12  P P   P P  P P P    P    
Q13  P P   P    P P    P    
Q14 P P P    P        P    
Q15  P    P    P P    P P   
Q16  P             P   P 
Q17  P             P P   

 

 

                                                        
51 See: http://jena.sourceforge.net/documentation.html 



PlanetData Deliverable D 1.2 

 Page 52 of (58)   
 

7 Conclusion and Future Work 
In this deliverable, we have presented version V1.0 of SRBench, the first general purpose Streaming RDF 
Benchmark, which has been designed from scratch to assess the streaming RDF engines. 

The benchmark has been designed based on an extensive study of the state-of-the-art techniques in both the 
data stream management systems and the streaming RDF processing engines. This ensures that we capture 
all important aspects of streaming RDF processing in the benchmark. 

Motivated by the study of (Duan et al., 2011), we have chosen on purpose to not generate synthetic data for 
the benchmark, but use real-world datasets instead. Thus, SRBench uses three real-world datasets, i.e., the 
LinkedSensorData dataset17, the GeoNames RDF dataset15 and the DBpedia dataset16. The 
LinkedSensorData dataset contains streaming RDF data collected from US weather stations. It is the first and 
largest sensor dataset in the Linked Open Data cloud and the CKAN portal. The LinkedSensorData links 
with the GeoNames RDF dataset through the hasLocationNearRel property, which points to a location 
defined by GeoNames to which a sensor is located close. The GeoNames dataset is linked with the DBpedia 
dataset through the owl:sameAs property, which denotes that two subjects described by the two datasets 
are about the same place. 

The goal of SRBench V1.0 is to evaluate the functional completeness of a streaming RDF engine. The 
benchmark contains a concise, yet comprehensive set of queries which covers the major aspects of streaming 
SPARQL query processing, ranging from simple pattern matching queries to queries with complex reasoning 
tasks. The main advantages of applying Semantic Web technologies on streaming data include providing 
better search facilities by adding semantics to the data, reasoning through ontologies, and integration with 
other data sets. The ability of a streaming RDF engine to process these distinctive features is accessed by the 
benchmark with queries that apply reasoning not only over the streaming sensor data, but also over the 
metadata and even other data sets in the Linked Open Data (LOD) cloud. 

Finally, we have complemented our work on SRBench with a functional evaluation of the benchmark on the 
SPARQLStream query-processing engine developed by the PlanetData partner UPM. The evaluation shows 
that the functionality supported by SPARQLStream is fairly complete. At the language level, it is able to 
express all benchmark queries easily and concisely. At the query processing level, some missing features 
have been discovered, for all of which preliminary code has been added for further development. 

The work on SRBench is our first step in developing and benchmarking streaming RDF engines. A natural 
next step is to run performance and scalability evaluation on different streaming RDF engines and 
continuously improve the benchmark. We have started working on MonetDB/DataCell streaming engine, 
which will be reported in deliverable D1.7 in month 42. During the functional evaluation, we have 
discovered that the current code base of SPARQLStream can be reasonably easily extended to operate on top of 
MonetDB/DataCell. Thus the collaboration between UPM and CWI will be continued. 

 



Deliverable D 1.2 PlanetData 

 Page 53 of (58)  
 

References 
Abadi, D. J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.-H., Lindner, W., 

Maskey, A. S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and Zdonik, S. (2005). The Design of the 
Borealis Stream Processing Engine. In CIDR. 

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Erwin, C., Galvez, E. F., Hatoun, M., 
Maskey, A., Rasin, A., Singer, A., Stonebraker, M., Tatbul, N., Xing, Y., Yan, R., and Zdonik, S. B. 
(2003a). Aurora: A Data Stream Management System. In SIGMOD Conference, page 666. 

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., 
and Zdonik, S. (2003b). Aurora: a new model and architecture for data stream management. The 
VLDB Journal, 12:120– 139. 

Aberer, K., Hauswirth, M., and Salehi, A. (2006a). A middleware for fast and flexible sensor network 
deployment. In Very Large Data Bases (VLDB), Seoul, Korea, 2006. 

Aberer, K., Hauswirth, M., and Salehi, A. (2006b). The Global Sensor Networks middleware for efficient and 
flexible deployment and interconnection of sensor networks. In Technical Report, LSIR-2006-006, 
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 

Ali, M. H., Gerea, C., Raman, B. S., Sezgin, B., Tarnavski, T., Verona, T., Wang, P., Zabback, P., Kirilov, 
A., Ananthanarayan, A., Lu, M., Raizman, A., Krishnan, R., Schindlauer, R., Grabs, T., Bjeletich, S., 
Chandramouli, B., Goldstein, J., Bhat, S., Li, Y., Nicola, V. D., Wang, X., Maier, D., Santos, I., Nano, 
O., and Grell, S. (2009). Microsoft CEP server and online behavioral targeting. PVLDB, 2(2):1558–
1561. 

Anicic, D., Fodor, P., Rudolph, S., Stühmer, N., Stojanovic, N. and Studer, N. (2011a). Etalis: Rule-based 
reasoning in event processing. In Reasoning in Event-based Distributed Systems, Studies in 
Computational Intelligence series. LNCS, Springer Verlag. 

Anicic, D., Fodor, P., Rudolph, S., and Stojanovic, N. (2011b). EP-SPARQL: a unified language for event 
processing and stream reasoning. In WWW ’11, pages 635–644, 2011. 

Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A. S., Ryvkina, E., Stonebraker, M., and Tibbetts, 
R. (2004). Linear Road: A Stream Data Management Benchmark. In Proc. Of the 30th VLDB 
Conference, pages 480–491, Toronto, Canada. 

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., and Widom, J. (2003a). 
STREAM: The Stanford Stream Data Manager. In Proc. of the ACM SIGMOD Int’l. Conf. on 
Management of Data. 

Arasu, A., Babu, S., and Widom, J. (2003b). CQL: A Language for Continuous Queries over Streams and 
Relations. In DBPL2003, pages 1–19.  

Avnur, R. and Hellerstein, J. M. (2000). Eddies: continuously adaptive query processing. SIGMOD Rec., 
29:261–272.  

Babcock, B., Babu, S., Datar, M., Motwani, R., and Thomas, D. (2004). Operator Scheduling in Data Stream 
Systems. The VLDB Journal, 13(4):333–353.  

Babcock, B., Babu, S., Motwani, R., and Datar, M. (2003). Chain: operator scheduling for memory 
minimization in data stream systems. In Proceedings of the 2003 ACM SIGMOD international 
conference on Management of data, SIGMOD ’03, pages 253–264, New York, NY, USA. ACM.  

Babu, S. and Widom, J. (2004). StreaMon: an adaptive engine for stream query processing. In Proceedings 
of the 2004 ACM SIGMOD international conference on Management of data, SIGMOD ’04, pages 
931–932, New York, NY, USA. ACM. 

Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Galvez, E., Salz, 
J., Stonebraker, M., Tatbul, N., Tibbetts, R., and Zdonik, S. (2004). Retrospective on Aurora. The 
VLDB Journal, 13(4):370–383. 



PlanetData Deliverable D 1.2 

 Page 54 of (58)   
 

Balazinska, M., Deshpande, A., Franklin, M. J., Gibbons, P. B., Gray, J., Hansen, M., Liebhold, M., Nath, S., 
Szalay, A. and Tao, V. (2007). Data Management in the Worldwide Sensor Web. IEEE Pervasive 
Computing, 6(2):30–40, 2007.  

Barrasa, J., Corcho, O., and Gómez-Pérez, A. (2004). R2O, an extensible and semantically based database-
to-ontology mapping language. In: SWDB2004, pages1069–1070. 

Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., and Grossniklaus, M. (2010a). Querying RDF Streams 
with C-SPARQL. In SIGMOD Record, 39(1):20–26, March 2010. 

Barbieri, D.F., Braga, D., Ceri, S., and Grossniklaus, M. (2010b). An execution environment for C-SPARQL 
queries. In EDBT 2010, pages 441–452, Lausanne, Switzerland. 

Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., and Grossniklaus, M. (2009). C-SPARQL: SPARQL for 
Continuous Querying. In WWW 2009, pages 1061–1062, April 2009, Madrid, Spain. 

Bolles, A., Grawunder, M., and Jacobi, J. (2008). Streaming SPARQL – extending SPARQL to process data 
streams. In ESWC 08, pages 448–462. 

Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A., and Ye, F. (2007). A semantics-based 
middleware for utilizing heterogeneous sensor networks. In DCOSS’07, pages 174–188, 2007. 

Brenninkmeijer, C.Y., Galpin, I., Fernandes, A.A., and Paton, N.W. (2008). A semantics for a query 
language over sensors, streams and relations. In: BNCOD ’08, pages 87–99. 

Calbimonte, J.-P., Corcho, O., and Gray, A. J. G. (2010). Enabling Ontology-based Access to Streaming 
Data Sources. In 9th International Semantic Web Conference (ISWC2010). 

Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., 
and Zdonik, S. (2002). Monitoring streams: a new class of data management applications. In 
Proceedings of the 28th international conference on Very Large Data Bases, VLDB ’02, pages 215– 
226. VLDB Endowment. 

Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., and Wilkinson, K. (2004). Jena: 
implementing the semantic web recommendations. In: WWW Alt. ’04: Proceedings of the 13th 
international World Wide Web conference on Alternate track papers & posters, New York, NY, USA, 
ACM Press, pages 74–83. 

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M., Hong, W., 
Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M. A. (2003). TelegraphCQ: 
Continuous Dataflow Processing for an Uncertain World. In Proc. of the Int’l Conf. on Innovative 
Database Systems Research (CIDR). 

Chandrasekaran, S. and Franklin, M. J. (2002). Streaming queries over streaming data. In Proceedings of the 
28th international conference on Very Large Data Bases, VLDB ’02, pages 203–214. VLDB 
Endowment. 

Chen, J., Dewitt, D. J., Tian, F., and Wang, Y. (2000). NiagaraCQ: A Scalable Continuous Query System for 
Internet Databases. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data. 

Chen, Q. M. and Hsu, M. C. (2010). Experience in Extending Query Engine for Continuous Analytics. 
Technical Report TR-44, HP Laboratories.  

Corcho, O. and García-Castro, R. (2010). Five challenges for the semantic sensor web. In Semantic Web, 
1(1):121–125. 

Corcho, O., Priyatna, F., Fortuna, C., Grobelnik, M., Calbimonte, J.-P., García-Silva, A., Jeung, H. Y., 
Novak, B., and Moraru, A.(2011). D1.1 Characterisation mechanisms for unknown data sources. In 
EU Project PlanetData (FP7-257641), Deliverable 1.1. http://www.planet-data.eu/sites/default/files/pr-
material/deliverables/D1.1_Characterisation_mechanics_for_unknown_data_sources.pdf 

Cranor, C. D., Johnson, T., Spatscheck, O., and Shkapenyuk, V. (2003). Gigascope: A Stream Database for 
Network Applications. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data. 

Della Valle, E., Ceri, S., van Harmelen, F., and Fensel, D. (2009). It's a Streaming World! Reasoning upon 
Rapidly Changing Information. In IEEE Intelligent Systems, 24(6): 83-89, November/December 2009. 



Deliverable D 1.2 PlanetData 

 Page 55 of (58)  
 

Duan, S., Kementsietsidis, A., Srinivas, K., and Udrea, O. (2011). Apples and Oranges: A Comparison of 
RDF Benchmarks and Real RDF Datasets. In SIGMOD’11, June 2011, Athens, Greece. 

Franklin, M. J., Krishnamurthy, S., Conway, N., Li, A., Russakovsky, A., and Thombre, N. (2009). 
Continuous analytics: Rethinking query processing in a network-effect world. In Proc. of the Int’l 
Conf. on Innovative Database Systems Research (CIDR). 

Galpin, I., Brenninkmeijer, C.Y., Jabeen, F., Fernandes, A.A., and Paton, N.W. (2009). Comprehensive 
optimization of declarative sensor network queries. In: SSDBM 2009, pages 339–360. 

Gedik, B., Andrade, H., Wu, K.-L., Yu, P. S., and Doo, M. (2008). Spade: the system s declarative stream 
processing engine. In Proceedings of the 2008 ACM SIGMOD international conference on 
Management of data, SIGMOD ’08, pages 1123–1134, New York, NY, USA. ACM. 

Guo, Y., Pan, Z., and Heflin, J. (2004). An evaluation of knowledge base systems for large OWL datasets. In: 
The Semantic Web - ISWC 2004, Springer-Berlin/Heidelberg, pages 274–288. 

Groppe, S., Groppe, J., Kukulenz, D., and Linnemann, V. (2007). A SPARQL Engine for Streaming RDF 
Data. In Proc. of the 13th International IEEE Conference on Signal-Image Technologies and Internet-
Based System (SITIS07). 

Groppe., S. (2011). Data Management and Query Processing in Semantic Web Databases. ISBN 978-3-642-
19356-9, Springer-Verlag Berlin Heidelberg, 2011. 

Harris, S. and Seaborne, A. (2012). SPARQL 1.1 Query Language. W3C Working Draft 05 January 2012, 
World Wide Web Consortium, http://www.w3.org/TR/sparql11-query/ 

Hoeksema, J. (2011). A Parallel RDF Stream Reasoner and C-SPARQL Processor Using the S4 Framework. 
Master thesis, VU University, Amsterdam, the Netherlands, Oct. 2011. 

Ivanova, M., Kersten, M. L., Nes, N. and Goncalves, R. (2010). An Architecture for Recycling Intermediates 
in a Column-store. In Transactions on Database Systems (TODS), 35(4), 2010.  

Ivanova, M., Kersten, M. L., Nes, N. and Goncalves, R. (2009). An Architecture for Recycling Intermediates 
in a Column-store. In Proc. of the ACM SIGMOD Conference, Providence, RI, USA, June 29- July 2, 
2009. 

Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., and Sheth, A.P. (2009). Linked Data is Merely More Data. In 
Linked Data Meets Artificial Intelligence. 

Kossmann, D. (2000). The state of the art in distributed query processing. ACM Comput. Surv. 32(4): 422–
469. 

Le-Phuoc, D., Dao-Tran, M., Parreira, J. X., and Hauswirth, M. (2011a). A Native and Adaptive Approach 
for Unified Processing of Linked Streams and Linked Data.In Proceedings of the 10th international 
conference on the semantic web - Volume Part I, pages 370–388, Bonn, Germany. 

Le-Phuoc, D., Parreira, J. X., and Hauswirth, M. (2011b). A Native and Adaptive Approach for Unified 
Processing of Linked Streams and Linked Data. Technical Report DERI-TR-2011-07-06, DERI, IDA 
Business Park, Lower Dangan, Galway, Ireland, July 2011. 

Le-Phuoc, D., Parreira, J. X., Hausenblas, M., and Hauswirth, M. (2010). Continuous query optimization and 
evaluation over unified linked stream data and linked open data. Technical Report DERI-TR-2010-
09-27, DERI, IDA Business Park, Lower Dangan, Galway, Ireland, Sep. 2010. 

Le-Phuoc, D. and Hauswirth, M. (2009). Linked open data in sensor data mashups. In Proc. Semantic Sensor 
Networks, page 1. 

Liarou, E., Goncalves, R., and Idreos, S. (2009). Exploiting the power of relational databases for efficient 
stream processing. In Proc. of the Intl. Conf. on Extending Database Technology (EDBT). 

Madden, S., Shah, M. A., Hellerstein, M. J., and Raman, V. (2002). Continuously Adaptive Continuous 
Queries over Streams. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data.  

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., 
and Varma, R. (2002). Query processing, resource management, and approximation in a data stream 
management system. Technical Report 2002-41, Stanford InfoLab. 



PlanetData Deliverable D 1.2 

 Page 56 of (58)   
 

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G. S., Olston, C., Rosenstein, 
J., and Varma, R. (2003). Query processing, approximation, and resource management in a data 
stream management system. In CIDR. 

Pérez, J., Arenas, M., Gutierrez, C. (2009). Semantics and complexity of SPARQL. ACM Trans. Database 
Syst. 34(3):1–45. 

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL Query Language for RDF. W3C Recommendation 
15 January 2008, World Wide Web Consortium, http://www.w3.org/TR/rdf-sparql-query/. 

Rapoza, J. (2006). SPARQL Will Make the Web Shine. In eWeek.com, 02 May, 2006, 
http://www.eweek.com/c/a/Application-Development/SPARQL-Will-Make-the-Web-Shine/. 

Segaran, T., Evans, C., Taylor, J. (2009). Programming the Semantic Web. O’Reilly Media, Inc., 1005 
Gravenstein Highway North, Sebastopol, CA 95472. p. 84. ISBN 978-0-596-15381-6. 

Ruyter, B. de and Pelgrim, E. (2007). Ambient assisted-living research in carelab. In Interactions, 14(4):30–
33, ISSN 1072-5520,July, 2007. 

Sbz, S. Z., Zdonik, S., Stonebraker, M., Cherniack, M., Etintemel, U. C., Balazinska, M., and Balakrishnan, 
H. (2003). The Aurora and Medusa projects. IEEE Data Engineering Bulletin, 26.  

Sequeda, J. and Corcho, O. (2009). Linked stream data: A position paper. In Proc. Semantic Sensor 
Networks, page 148. 

Sheth, A. P., Henson, C. A., and Sahoo, S. S. (2008). Semantic Sensor Web. IEEE Internet Computing, 
12(4):78–83, 2008. 

Tatbul, E. N. (2007). Load shedding techniques for data stream management systems. PhD thesis, 
Providence, RI, USA. AAI3272068. 

Walavalkar, O., Joshi, A., Finin, T., and Yesha, Y. (2008). Streaming Knowledge Bases. In Proc. of the 4th 
International Workshop on Scalable Semantic Web Knowledge Base System (SSWS2008). 

Whitehouse, K., Zhao, F., and Liu, J. (2006). Semantic Streams: A Framework for Composable Semantic 
Interpretation of Sensor Data. In European Workshop on Wireless Sensor Networks, pages 5–20. 
EWSN, 2006. 

Winter, R. and Kostamaa, P. (2010). Large scale data warehousing: Trends and observations. In Proc. of the 
Int’l. Conf. on Database Engineering (ICDE).  

 



Deliverable D 1.2 PlanetData 

 Page 57 of (58)  
 

Annex A The SPARQLStream Streaming RDF Query Language 
In this section we describe the SPARQLStream query language, an extension to SPARQL for streaming RDF 
data, which has been inspired by previous proposals such as C-SPARQL (Barbieri et al., 2009; Barbieri et 
al., 2010a; Barbieri et al., 2010b) and SNEEql (Brenninkmeijer, et al., 2008). However, significant 
improvements have been made that correct the types supported and the semantics of windowing operations, 
which can be summarised as: 

• Only windows defined in time are supported; 

• The result of a window operation is a window of triples, not a stream, over which traditional operators 
can be applied, as such window-to-stream operators have been added; and 

• The SPARQL 1.1 definition has been adopted for aggregates. 

A.1 SPARQLStream Syntax 

Just as in C-SPARQL, an RDF stream is defined as a sequence of pairs (Ti,τi) where Ti is an RDF triple 
⟨si,pi,oi⟩ and τi is a time stamp which comes from a monotonically non-decreasing sequence. An RDF stream 
is identified by an IRI, which provides the location of the data source. The IRI’s identify virtual RDF streams 
since they are derived from the streaming data sources. 

Window definitions are of the form “FROM Start TO End [SLIDE] [Literal]”, where the Start and End 
are of the form NOW or NOW – Literal, where Literal represents some number of time unit (DAYS, HOURS, 
MINUTES, or SECONDS). The parser also accepts the non-plural form of the time units and is not case 
sensitive. The optional SLIDE indicates the gap between each successive window evaluation. Note that if 
the size of the slide is smaller than the range of the window, then the windows will overlap; if the size of the 
slide coincides with the size of the window, then every triple will appear in one and only one window; and if 
the slide is larger than the range of the window, then the windows sample the stream. Also note that the 
definition of a window can be completely in the past. This is useful for correlating current values on a stream 
with values that have previously occurred. 

The result of applying a window over a stream is a time-stamped bag of triples over which conjunctions 
between triple patterns, and other “classical” operators can be evaluated. Windows can be converted back 
into a stream of triples by applying one of the window-to-stream operators in the SELECT clause: ISTREAM 
for returning all newly inserted answers since the last window, DSTREAM for returning all deleted answers 
since the last window, and RSTREAM for returning all answers in the window. 

Table 3 shows a complete SPARQLStream query which, every minute, returns the average of the last 10 
minutes of wind speed measurements for each sensor, if it is higher than the average speed from 2 to 3 hours 
ago. 

A.2 SPARQLStream Semantics 

The SPARQL extensions presented here are based on the formalisation of (Pérez et al., ). An RDF stream S 
is defined as a sequence of pairs (T,τ) where T is a triple ⟨s, p, o⟩ and τ is a timestamp in the infinite set of 
timestamps 𝕋. More formally, 

S = {(⟨s, p, o⟩, τ ) | ⟨s, p, o⟩ ∈ ((I ∪ B) × I × (I ∪ B ∪ L)), τ ∈𝕋}, 

where I, B and L are sets of IRIs, blank nodes and literals. Each of these pairs can be called a “tagged triple”. 

A stream of windows is defined as a sequence of pairs (ω,τ) where ω is a set of triples, each of the form ⟨s, p, 
o⟩, and τ is a timestamp in the infinite set of timestamps 𝕋, and represents when the window was evaluated. 
More formally, the triples that are contained in a time-based window evaluated at time τ � 𝕋, denoted ωτ, are 
defined as 

ωτts,te,δ(S)={⟨s,p,o⟩ | (⟨s,p,o⟩,τi) ∈  S, ts ≤ τi ≤ te } 

where ts, te define the start and end of the window time range respectively, and may be defined relative to the 
evaluation time τ. Note that the rate at which windows get evaluated is controlled by the SLIDE defined in 
the query, which is denoted by δ. 



PlanetData Deliverable D 1.2 

 Page 58 of (58)   
 

Table 3: An example SPARQLStream query which every minute computes the average wind speed 
measurement for each sensor over the last 10 minutes if it is higher than the average of the last 2 to 3 

hours. 

PREFIX fire: <http://www.semsorgrid4env.eu#> 
PREFIX rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>  
SELECT RSTREAM ?WindSpeedAvg 
FROM STREAM <www.semsorgrid4env.eu/SensorReadings.srdf> 
    [FROM NOW – 10 MINUTES TO NOW SLIDE 1 MINUTE] 
FROM STREAM <www.semsorgrid4env.eu/SensorArchiveReadings.srdf> 
    [FROM NOW – 3 HOURS TO NOW −2 HOURS SLIDE 1 MINUTE] 
WHERE { 
 { 
  SELECT AVG(?speed) AS ?WindSpeedAvg 
  WHERE 
  { 
   GRAPH <www.semsorgrid4env.eu/SensorReadings.srdf> { 
    ?WindSpeed a fire:WindSpeedMeasurement; 
    fire:hasSpeed ?speed; } 
  } GROUP BY ?WindSpeed 
 } 
 { 
  SELECT AVG(?archivedSpeed) AS ?WindSpeedHistoryAvg 
  WHERE 
  { 
   GRAPH <www.semsorgrid4env.eu/SensorArchiveReadings.srdf> { 
    ?ArchWindSpeed a fire:WindSpeedMeasurement; 
    fire:hasSpeed ?archivedSpeed; }  
  } GROUP BY ?ArchWindSpeed 
 } 
 FILTER (?WindSpeedAvg > ?WindSpeedHistoryAvg) 
} 

 

The three window-to-stream operators are defined as 

RStream((ωτ,τ)) = {(⟨s,p,o⟩,τ) | ⟨s,p,o⟩ ∈ ωτ } 

IStream((ωτ, τ), (ωτ−δ, τ − δ)) = {(⟨s, p, o⟩, τ ) | ⟨s, p, o⟩ ∈ ωτ, ⟨s, p, o⟩ ∉ ωτ−δ} 

DStream((ωτ, τ), (ωτ−δ, τ − δ)) = {(⟨s, p, o⟩, τ ) | ⟨s, p, o⟩ ∉ ωτ, ⟨s, p, o⟩ ∈ ωτ−δ } 

In the above definition, δ is the time interval between window evaluations. Note that RStream does not 
depend on the previous window evaluation, whereas both IStream and DStream depend on the contents 
of the previous window. 

 

 


