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Abstract 

The amount of available data for processing is constantly increasing and becomes more diverse. We collect 
our experiences on deploying large-scale data management tools on local-area clusters or cloud 
infrastructures and provide guidance to use these computing and storage infrastructures. 

In particular we describe Apache Hadoop, one of the most widely used software libraries to perform large-
scale data analysis tasks on clusters of computers in parallel and provide guidance on how to achieve optimal 
execution time when performing analysis over large-scale data. 

Furthermore we report on our experiences with projects, that provide valuable insights in the deployment and 
use of large- scale data management tools: 

The Web Data Commons project for which we extracted all Microformat, Microdata and RDFa data from 
the Common Crawl web corpus, the largest and most up-to-date web corpus that is currently available to the 
public. 

SciLens, a local-area cluster machine that has been built to facilitate research on data management issues for 
data-intensive scientific applications. 

CumulusRDF, an RDF store on cloud-based architectures. We investigate the feasibility of using a 
distributed nested key/value store as an underlying storage component for a Linked Data server, which 
provides functionality for serving large quantities of Linked Data. 

Finally we describe the News Aggregator Pipeline, which is a piece of software to perform the acquisition 
of high volume textual streams, it’s processing into a suitable form for further analysis and the distribution of 
the data. 
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Executive summary  
In this deliverable, we describe our experiences on deploying large-scale data management tools on local 
area clusters and provide guidance to use these tools and computing infrastructures. 

We address Apache Hadoop, one of the most widely used software libraries to perform large-scale data 
analysis tasks on clusters of computers in parallel. Hadoop is a software library that provides a reliable 
shared storage and analysis system for distributed computing, with storage provided by HDFS and analysis 
by MapReduce. However, designing MapReduce jobs can be intricate and relying on the distributed system 
architecture of Hadoop does not guarantee desired processing speeds for large-scale data. We describe how 
MapReduce jobs can be designed to achieve performance goals in general. Furthermore we provide guidance 
on how to optimise MapReduce jobs. We detail the different attributes of a MapReduce job or an Hadoop 
cluster itself that have to be addressed to optimise the execution time of a task and to make the processing of 
large-scale data feasible. 

We than report on four projects concretely, that provide valuable insights in the deployment and use of large- 
scale data management tools: 

First we describe the Web Data Commons project, in which we extracted all Microformat, Microdata and 
RDFa data from the Common Crawl web corpus. The common crawl web corpus is the largest and most up-
to-date web corpus that is currently available to the public. We offer the extracted data for download in the 
form of RDF-quads and CSV tables. Here we give an overview of the project and present extracted statistics 
about the popularity of the different encoding standards. We describe in detail our experiences when 
extracting the data in a distributed manner on the Amazon EC2 cloud and processing the results for 
publication with Hadoop. 

Secondly, we report on our experiences with the design and utilisation of SciLens, a local-area cluster 
machine that has been built to facilitate research on data management issues for data-intensive scientific 
applications. The main contribution of the SciLens cluster is that it provides a platform on which we can 
carry out experiments to help develop, examine, compare and improve new DBMS techniques for the 
scientific applications. SciLens enables various possibilities to run experiments on large clusters using real-
world large datasets, obtained directly from different scientific disciplines. We give background information 
about the research on DBMS support for data-intensive sciences. We will briefly describe the data 
management problems in the data-intensive sciences, the mismatch between what the scientists need and 
what the current DBMSs provide, our plans to advance the state-of-the-art of the scientific data management 
and analysis, and the need of a SciLens cluster to help realising the plans. Then, we discuss the design issues 
of SciLens. Furthermore, we describe the initial and the final architecture of SciLens. We discuss two main 
lessons we have learnt during the building of SciLens and describe the tools we have developed to deploy the 
relational DBMS MonetDB on SciLens. Finally, we conclude with an outlook to future work. 

Thirdly, we report on CumulusRDF. Publishers of Linked Data require scalable storage and retrieval 
infrastructure due to the size of datasets and potentially high rate of lookups on popular sites. We investigate 
the feasibility of using a distributed nested key/value store as an underlying storage component for a Linked 
Data server, which provides functionality for serving large quantities of Linked Data via HTTP lookups and 
in addition offers single triple pattern lookups. We devise two storage schemes for our CumulusRDF system 
implemented on Apache Cassandra, an open-source nested key/value store. We compare the schemes on a 
subset of DBpedia and both synthetic workloads and workloads obtained from DBpedia’s access logs. 
Results on a cluster of up to 8 machines indicate that CumulusRDF is competitive to state-of-the-art 
distributed RDF stores. 

Finally, we describe the News Aggregator Pipeline, which is a piece of software to perform the first stage in 
processing and analysing high volume textual streams. The News Aggregator Pipeline handles the 
acquisition of large amounts of data and it’s processing into a suitable form for further analysis: RSS feeds 
and Google news are crawled to obtain links to news articles, which are downloaded. The articles are parsed 
to obtain further links to RSS sources and a clear text version of the article body. Furthermore the News 
Aggregator pipeline provides an efficient mechanism for the distribution of the data, by exposing a stream of 
articles to end-users in clear text as well as a stream of semantically annotated articles. 
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Abbreviations 
COTS Commercially available Off-The-Shelf 

DBMS Database Management System 

DIC Data Intensive Computing 

EC2 Amazon Elastic Compute Cloud 

FITS Flexible Image Transport System 

GDK Goblin Database Kernel 

HDD 

HDFS 

Hard Disc Drive 

Hadoop Distributed File System 

HPC High Performance Computing 

I/O Input/Output 

JBOD Just a Bunch Of Drives 

JVM Java Virtual Machine 

LAN Local-Area Network 

LOFAR Low-Frequency Array 

MAL MonetDB Assembler Language 

NetCDF Network Common Data Form 

ORFEUS Observatories and Research Facilities for European Seismology 

QDR Quad Data Rate 

QoS Quality Of Service 

Pan-STARRS Panoramic Survey Telescope and Rapid Response System 

RAID Redundant Array of Independent Disks 

RDBMS Relational Database Management System 

RDF Resource Description Framework 

RFC Request for Comments 

S3 Amazon Simple Storage Service 

SPARQL SPARQL Protocol and RDF Query Language 

SQS Amazon Simple Queue Service 

SSD Solid State Drive 

UDF User Defined Function 

VLAN Virtual Local Area Network, Virtual LAN 
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1 Introduction 
In this deliverable we report on the collected and synthesized experiences made by PlanetData members on 
deploying large-scale data management tools on local-area clusters or cloud infrastructures and provide 
guidance to use these computing and storage infrastructures to conduct research. 

For this purpose we describe projects and provide guidance regarding four aspects of large-scale data 
management: 

• Data analysis on large datasets. 

• Infrastructure for large-scale data management 

• Storage and provisioning of large datasets 

• Large-scale data acquisition 

With regard to data analysis, we provide an introduction into Apache Hadoop in Chapter 2, one of the most 
widely used software libraries to perform large-scale data analysis tasks on clusters of computers in parallel. 
We focus on the challenges when analysing data with Hadoop and provide a guide to improve the 
performance of analysis tasks. In Chapter 3 we report on the analysis of two large Web corpora for the Web 
Data Commons project, which was preformed with Hadoop as well as a queuing approach on Amazon cloud 
infrastructure. With Web Data Commons we show exemplarily how large analysis tasks can be optimised 
with regard to execution time and cost reduction. 

In Chapter 4 we describe our experience with the design and utilization of a local-area cluster, called 
SciLens, as infrastructure for large-scale data management. Derived from the building of SciLens we give 
guidance on how to select the hardware to achieve the best trade-off between price and performance and how 
to manage a cluster that is intended for experimental use. 

We address data storage and provisioning in Chapter 5 with CumulusRDF, a scalable storage and retrieval 
infrastructure that is able to handle a potentially high rate of lookups. We investigate the feasibility of using a 
distributed nested key/value store as an underlying storage component for a Linked Data server, which 
provides functionality for serving large quantities of Data. 

For large-scale data acquisition we report on the News Aggregator Pipeline in Chapter 6. The News 
Aggregator Pipeline handles the acquisition of large amounts of data and it’s processing into a suitable form 
for further analysis. Furthermore the News Aggregator pipeline provides an efficient mechanism for the 
distribution of the data, by exposing a stream of articles to end-users in clear text as well as a stream of 
semantically annotated articles. 

We conclude in Chapter 7. 
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2 Large Scale Data Processing with Hadoop 
In this section we will give an introduction and guidance for large-scale data processing with the open-source 
Apache Hadoop software library. Hadoop is a framework that allows for the distributed processing of large 
datasets on clusters of computers and is in wide use in industry and science1. The data processing is handled 
on the Hadoop Distributed File System (HDFS) in a two-stage process called MapReduce, consisting of the 
parallel execution of computation tasks (Map) and the integration of results (Reduce). 

The amount of available data for processing is constantly increasing and becomes more diverse (Ganz et al., 
2008). The motivation behind distributed processing of data is that storage capacities of hard drives have 
increased massively over the years, while access speeds have not kept up. To reduce the necessary time for 
read and write operations multiple disks can be employed at once. However, the parallel use of multiple hard 
disks results in new problems for data processing: 

• Hardware failure: As soon more pieces of hardware are employed, the chances on one to fail 
increases. The standard way - for which Hadoop provides facilities in its file system HDFS - to 
mitigate this problem and to avoid data loss is through replication: Redundant copies of data blocks 
are kept by the system so that, in the event of failure, another copy is available. 

• Result integration: Most analysis tasks need to be able to combine the data in some way. Doing this 
correctly is notoriously challenging. MapReduce provides a programming model that abstracts the 
problem from disk reads and writes, transforming it into a computation over sets of keys and values. 

Altogether, Hadoop provides a reliable shared storage and analysis system, with storage provided by HDFS 
and analysis by MapReduce. 

In this chapter we give an overview on how an HDFS storage system works in section 2.1, particularly with 
respect to failure handling. Furthermore we describe the advantages of distributed data analysis with 
MapReduce in section 2.2. We describe how efficient MapReduce jobs can be designed especially with 
respect to joins. In section 2.3 we provide a guide how Hadoop jobs can be optimised with respect to 
execution time.  

 

2.1 Hadoop Distributed File System 

For the storage of data partitioned over a number of machines across a network, Hadoop provides the 
Hadoop Distributed File System (HDFS). HDFS is designed to store large files in a cluster of commodity 
hardware. This means that a particular focus of the design of HDFS is handling of hardware failures, which 
are more likely when commodity hardware is employed. 

Files in HDFS are broken into block-sized chunks. The blocks of an HDFS are usually significantly larger 
(default value: 64 MB) than it would be expected from a single disk system. However the block size can be 
configured manually. The reason for the large block size is the reduction of necessary time for seeks. This 
allows the transfer time of large files, consisting of several data blocks, to be close to the actual disk transfer 
rate, by minimizing the time necessary to seek the start of the blocks. 

The block abstraction for a distributed file system allows files to be larger than any individual disk in the 
cluster: Since the blocks from one file are not required to be stored on the same disk, they can take advantage 
of any of the disks in the cluster. 

Furthermore, the concept of blocks allows for an easy mechanism to provide fault tolerance and availability. 
Every block in the HDFS can be replicated to a number of physically separate machines (default value: 
three). If a block becomes corrupted or a machine fails, a copy of the affected block can be read from another 
location. Hadoop performs this failure management transparent for the user. Furthermore, Hadoop 
automatically replicates affected blocks from their alternative location to other live machines to maintain the 
replication level.  

Figure 1 shows a conceptual overview of the blocks of an HDFS and how a file is stored and replicated over 
the cluster of machines. 
                                                        
1 See: http://wiki.apache.org/hadoop/PoweredBy 
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Figure 1: Desgin of an Hadoop Distributed File System 

To deploy an HDFS means to run a set of daemons (i.e., resident programs) on different servers in a network, 
where every daemon performs a specific role in a master/slave architecture (White 2010): 

2.1.1 NameNode daemon 

The NameNode daemon is the master in the HDFS master/slave architecture and thus directs the slave 
DataNodes. The NameNode manages the file system namespace. It maintains the file system tree and the 
metadata for all the files and directories in the tree. This information is stored persistently on the local disk. 
The NameNode also knows the DataNodes on which all the blocks for a given file are located. Clients access 
the file system by communicating with the NameNode. 

The function of the NameNode is memory and I/O intensive. As such, the server hosting the NameNode 
typically doesn’t store any user data or perform any computations for a MapReduce program to lower the 
workload on the machine. This means that the NameNode server doesn’t double as a DataNode. 

Due to its role as master in the HDFS, the NameNode forms a single point of failure for the HDFS: With 
destruction of the NameNode all files on the file system would be lost, since there would be no way of 
reconstructing the files from the blocks stored across the network. To mitigate this problem the NameNode 
stores the state of the file system persistently. It is recommended to do this persistent backup not only on the 
local file system of the NameNode server, but additionally on a physically separated disk. 

Another way of making the HDFS more resilient against NameNode failure is the use of a Secondary 
NameNode. 

 

2.1.2 Secondary NameNode daemon 

The Secondary NameNode serves as an assistant daemon in the HDFS cluster. Similar to the actual 
NameNode the secondary NameNode is supposed to run on a separate machine, with no other daemons 
deployed on the same server. 

The secondary NameNode is not in contact with the slaves in the cluster, but communicates only with the 
NameNode to monitor the state of the HDFS by taking snapshots of the system at defined intervals. This 
helps to minimize data loss when the NameNode fails: The Secondary NameNode can be reconfigured to act 
as the actual NameNode with the last snapshot as starting configuration. 

 

2.1.3 DataNode daemon 

 The slaves in the HDFS that perform the low level I/O operations (i.e., reading and writing of HDFS blocks 
on the local filesystems) are called DataNodes. A client interacting with the HDFS is informed by the 
NameNode about the DataNodes on which the blocks for a specific file reside. The client then interacts 
directly with the DataNodes to process the file. Furthermore, if data blocks have to be replicated, the 
DataNodes communicate directly with each other (data transfer is not tunneled through the NameNode). 

DataNodes are constantly reporting to the NameNode. Upon initialization, each of the DataNodes informs 
the NameNode of the blocks it’s currently storing. After this mapping is complete, the DataNodes 
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continually poll the NameNode to provide information regarding local changes as well as receive 
instructions to create, move, or delete blocks from the local disk. 

2.2 Data Analysis with MapReduce 

MapReduce is a programming model for data processing. The open source implementation by Apache for 
Hadoop is based on technology published by Google (Dean et al. 2008, which they used to scale their 
system. 

Hadoop can run MapReduce programms written in various programming languages (e.g., Java, Ruby, 
Python, C++). Map reduce programs are inherently parallel, thus allowing to run large-scale data analysis 
tasks on clusters of computers. 

MapReduce works by breaking the processing into two phases: the map phase and the reduce phase.  Each 
phase is defined by a data processing function, and these functions are called mapper and reducer, 
respectively. In the mapping phase, MapReduce takes the input data and feeds each data element to the 
mapper. In the reducing phase, the reducer processes all the outputs from the mapper and arrives at a final 
result. In simple terms, the mapper is meant to filter and transform the input into something that the reducer 
can aggregate over. 

MapReduce uses lists and (key/value) pairs as its main data primitives. The keys and values are often 
integers or strings but can also be dummy values to be ignored or complex object types. In a MapReduce 
framework, applications are written by specifying the mapper and reducer. In the following we describe the 
data flow of a MapReduce application in general (Lam 2011): 

1. The input to an application must be structured as a list of (key/value) pairs, list(<k1,	
  v1>). The 
input format for processing multiple files is usually list(<String	
   filename,	
   String	
  
file_content>) . The input format for processing one large file, such as a log file, is 
list(<Integer	
  line_number,	
  String	
  log_event>). 

2. The list of (key/value) pairs is broken up and each individual (key/value) pair, <k1,	
  v1>, is 
processed by calling the map function of the mapper. In practice, the key k1 is often ignored by the 
mapper. The mapper transforms each <k1,	
  v1> pair into a list of <k2,	
  v2> pairs. The details of 
this transformation largely determine what the MapReduce program does. Note that the (key/value) 
pairs are processed in arbitrary order. The transformation must be self-contained in that its output is 
dependent only on one single (key/value) pair. 

3. The output of all the mappers are (conceptually) aggregated into one giant list of <k2,	
  v2> pairs. 
All pairs sharing the same k2 are grouped together into a new (key/value) pair, <k2,	
  list(v2)>. 
The framework asks the reducer to process each one of these aggregated (key/value) pairs 
individually. 

 

Table 1: Overview of input and output in MapReduce data flow 

 Input Output 

map <k1, v1> list(<k2, v2>) 

reduce <k2, list(v2)> list(<k3,v3>) 

 

Table 1 shows an overview of Input and Output of mapper and reducer in a MapReduce application. 

Hadoop does not allow the keys and values to be of any arbitrary type (e.g., standard Java classes). This is 
because the MapReduce framework has a certain way of serializing keys and values to move them across a 
clusters network. All classes used for keys and values have to support this type of serialization. However, 
Hadoop provides a number of predefined classes, including wrapper classes for all basic data types that can 
be employed as types for keys and values. Table 2 shows a list of these predefined classes. 
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Table 2: Predefined Data Types in Hadoop MapReduce 

Class Description 

NullWritable	
   Null-Value when key of value is not needed 

BooleanWritable	
   Standard Boolean (Wrapper) 

Text	
   String in UTF8 format (Wrapper) 

ByteWritable	
   Single Byte (Wrapper) 

DoubleWritable	
   Double (Wrapper) 

FloatWritable	
   Float (Wrapper) 

IntWritable	
   Integer (Wrapper) 

LongWritable	
   Long (Wrapper) 

 

2.2.1 Parallel Processing 

A MapReduce job is a unit of work that a client wants to be performed (i.e., a specific analysis task); it 
consists of the input data, the MapReduce program and configuration information. Hadoop runs a job by 
dividing into tasks. Here two kinds of tasks can be distinguished: map-tasks and reduce-tasks. 

The initial input to a MapReduce job is divided into fixed-size pieces called input splits, each consisting of a 
list of records. A record is essentially a key/value pair <k1,	
  v1>, that can be consumed by the specified 
mapper for the given job. Hadoop creates one map task for each input split, which runs the user-defined map 
function for each record in the input split.  

The map tasks are performed in parallel on different machines in the cluster. Therefore the map tasks have to 
be self-contained, i.e., the processing of on key/value pair has to be performed independently from all other 
tasks of a job. 

Hadoop tries to assign map tasks to individual machines on the cluster in such a way, that the map tasks run 
“close” to the data. This means that a map task is usually performed on a machine, where all (or most) of the 
records of the corresponding input split are stored. Figure 2 illustrates this process, which is referred to as 
data locality optimization. Note that required records that do not reside on the machine to which a map task 
is assigned, have to be communicated over the network, which results in an inefficient job performance 
(White 2010). 

 

 
Figure 2: Map task assignment to DataNodes 

Here another positive aspect of data replication becomes apparent (cf. section 2.1): If data blocks are 
replicated over several machines, it is more likely to identify a singular machine that contains all blocks with 
the necessary record in an input split. 

However, a more reliable way to ensure optimal data locality is to set the maximum size of an input split to 
the size of one block in the HDFS, thus ensuring, that every input split is contained in one block and 
therefore can be processed locally on one machine.  
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The output of the map tasks is intermediate data, which can be deleted after completion of the job (i.e., after 
the reduce tasks are completed). Therefore they do not need to be stored on the HDFS (with replication) and 
are written to local disk. If a map task fails, than Hadoop will automatically rerun the map task on another 
node. 

The process in which the output from the map tasks is sorted by its key and transported to the reduce tasks is 
known as shuffle. An understanding of this process is crucial for the optimisation of MapReduce jobs. 

Each map task has a circular memory buffer, where output data is stored (default: 100 MB). If a defined 
threshold size of the buffer is filled (default: 80%) a background thread will start to spill the output to the 
local disk. Map output will continue to be written to the buffer while the spill is performed, however if the 
buffer is completely filled the map task will block until the spill is complete. 

During the spill process the background thread divides the output data into partitions corresponding to the 
reducers that will use individual partitions as input. Furthermore, the entries in every partition are sorted with 
their key during the spill. 

The reduce tasks are performed on machines in the cluster similar to the map tasks. Since every reduce task 
has to process all <k2,v2> key/value pairs with the same key k2, all necessary partitions with map output 
data have to be gathered across the cluster for the reduce task. Therefore the reduce task does not profit from 
data locality. Since the map tasks may not finish at the same time, the reduce tasks start copying their 
required partitions as soon as each map task finishes. 

The gathered outputs from the map tasks are stored in the memory of the machine that performs a reduce 
task, if the output is small enough. If the in-memory buffer reaches a threshold size, the gathered data is 
merged (maintaining the sort order) and again spilled to disk. 

When all the output data from the map tasks is gathered, the reduce task executes the user defined reduce 
function for each key in the gathered data. The output of this phase is usually written to HDFS, since it is the 
overall output of the MapReduce Job. Every reducer generates an output file.  

Figure 3 shows an overview of a complete MapReduce Job. 

 
Figure 3: Overview of a MapReduce job (White, 2010) 

Similar to the storage component of Hadoop is the analysis component of a MapReduce job performed by 
daemons running on the machines in the cluster in a master/slave architecture (White 2010): 

2.2.1.1 JobTracker daemon 

The JobTracker is the master in the MapReduce analysis master/slave architecture of Hadoop. The 
JobTracker is often run on the same server as the NameNode daemon of the HDFS component. Once the 
code for a specific MapReduce Job is submitted to the cluster, the JobTracker determines an execution plan 
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by identifying the files that are to be processed and assigning tasks to other machines in the cluster. The 
JobTracker also monitors the tasks as they are running. If a task fails, the JobTracker will automatically 
relaunch it, possibly on a different machine in the cluster, up to a predefined limit of retries. 

2.2.1.2 TaskTracker daemon 

The slaves in the MapReduce architecture are called TaskTrackers. They manage the execution of individual 
tasks on the machine they are running on. Note, that a TaskTracker is able to launch map tasks as well as a 
reduce tasks. 

Each TaskTracker is responsible for executing the individual tasks that the JobTracker assigns. Although 
there is a single TaskTracker per slave node, each TaskTracker can spawn multiple Java Virtual Machines to 
handle many map or reduce tasks in parallel. 

Every TaskTracker constantly communicates with the JobTracker and reports the progress of the assigned 
task. If the JobTracker fails to receive a signal from a TaskTracker within a specified amount of time, it will 
assume the TaskTracker has crashed and will resubmit the currently assigned task to another TaskTracker. 

2.2.2 Join operations in MapReduce jobs 

For specific data analysis tasks often two or more different dataset have to be considered. The process to 
reconcile the different datasets for a MapReduce job is called join. Joins can be performed in different ways, 
depending on the size and partitioning of the input datasets. The decision how to implement a join for a 
MapReduce job can have significant influence on the execution time of the job. Therefore we give an 
overview of the different approaches to joins in MapReduce jobs in this section, and provide guidance how 
to choose the optimal approach for a given job. 

2.2.2.1 Side Data Distribution 

If only one of the input datasets constitutes “big data” (i.e., a large dataset), while the other input datasets are 
fairly small (e.g., metadata about the large dataset), it is a valid option to copy the small datasets on all 
machines in the cluster that run tasks. This process of distributing data to all TaskTrackers is called side data 
distribution (White, 2012). It allows the individual TaskTrackers to effect the join within the performed map 
function (or reduce function). Figure 4 illustrates the side data distribution for two input datasets. 

 
Figure 4: Side data distribution for a large dataset A and a small side data B. Join is performed in the 

map function. 

 

Side data can be seen as extra read-only data needed by a job to process the main dataset. To distribute the 
side data on all machines in the cluster two approaches are possible: 

1. Job configuration: In the configuration files of a Hadoop system arbitrary key/value pairs can be 
defined. These defined key/value pairs can be read from within a map or reduce function, since every 
TaskTracker reads the configuration files before a job is launched. 

However this approach is only feasible if the side data is only a few kilobytes, since the 
configuration files are read into the memory of every machine that runs a TaskTracker or the 
JobTracker, even if they are not needed. Note that the memory size of the machines should not be 
seen as the upper limit for this approach, since the calculations performed on the machines with a 
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TaskTracker are also memory intensive and therefore the overall performance of a job depends on 
the available memory during execution.  

2. Distributed cache: Files containing side data can also be specified to be used with the distributed 
cache of Hadoop. Such files can reside on an arbitrary file system connected to the Hadoop cluster. 

When a job is launched the specified files are copied to the file system of the machine that runs the 
JobTracker (usually HDFS). Before the individual tasks are started the TaskTrackers copy the files 
to their local disk (i.e., the cache), allowing the files to be used within their tasks. 

The TaskTracker also monitors if the files are needed for additional tasks from the same job. If the 
files are no longer needed they are deleted to make room for new files when the cache exceeds a 
defined size (default: 10 GB). 

This approach can handle larger side datasets than the distribution with the configuration files, since 
it does not use the memory of the machines. At the same time the required disk read and write 
operations can make this approach slower that using the configuration files.  

The resulting network traffic from the distribution of the side data can have a negative impact on the job 
performance. If side data distribution can and should be used, depends to large extend on the employed 
Hadoop cluster. More precisely the following characteristics of the cluster have to be considered: 

• Size of the cluster: More available machines in the cluster require the data to be copied more often. 
Therefore side data distribution is more suited for smaller clusters. 

• Network bandwidth: The higher the available bandwidth in a network is, the faster can the data be 
distributed. Therefore side data distribution is more suited in networks with high bandwidth. 

 

2.2.2.2 Map-side Joins 

A map-side join works by performing the join before the data reaches the map function as depicted in Figure 
5. For this to work, though, the inputs to each map must be partitioned and sorted in a particular way. Each 
input dataset must be divided into the same number of partitions, and it must be sorted by the same key (the 
join key) in each source. All the records for a particular key must reside in the same partition. 

 
Figure 5: Map-side join of two large datasets A and B 

Hadoop provides a special Class (CompositeInputFormat) that can be used to determine the input splits 
for map-side joins: The intermediate records <k1,	
  v1A> and <k1,	
  v1B> of two partitions that are to be 
joined (due to the same join key) are combined to a key/value pair <k1,	
  v1A+v1B>, with is the record of 
the actual input split used in one of the map tasks. 

The downside of this approach is that an optimal data locality for the execution of the map tasks cannot be 
guaranteed: since the intermediate records that are combined to a record in the actual input split might not 
reside on the same machine, Hadoop has to transfer parts of the data to perform a map task. 

Due to the very strict requirements on the input datasets (divided in the same number of partitions sorted by 
the same key) map-side joins are only suited for a very specific scenario: output data of other MapReduce 
jobs with the same number of reducers and the same key fulfil the requirements of map-side joins. Therefore 
map-side joins can be used to further process data resulting from a series of such previous MapReduce jobs. 
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2.2.2.3 Reduce-side Joins 

Reduce-side joins are the general solution to join datasets with Hadoop. Here the datasets do not have to be 
structured in any particular way, however this approach is less efficient since the complete MapReduce 
framework is employed to combine the datasets. This means that a complete MapReduce job is performed to 
generate a combined input dataset for further processing. Therefore this approach should only be used if 
none of the other described approaches can be employed. 

We describe how reduce-side joins work as illustrated in Figure 6. 

 

 
Figure 6: Data flow of a reduce-side join 

 

 

In a reduce-side join, the map is to read the (potentially heterogeneous) records of the different datasets and 
package them to key value pairs, where the key is the join key and the value is the original complete record, 
tagged with the data source (e.g., filename). This implies that the key with which the records are supposed to 
be joined has to be extracted by the map function from the records of all datasets. 

As described in section 2.2.1, in the shuffle phase all key/value pairs are sorted according to their keys and 
passed to the reducers, so that one reducer processes all pairs with the same key. In the reduce phase the full 
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cross-product of the values is calculated according to the contained data source tag. The resulting value pairs 
are finally combined to the records of the joined dataset (Lam 2011). 

 

2.3 Hadoop Job Optimisation 

The time required to perform tasks with large-scale data is usually the most critical factor when deciding if a 
task is feasible. In this section we provide guidelines and describe techniques to increase the performance of 
data analysis tasks performed with Hadoop in particular in terms of execution time. 

2.3.1 Input Data  

To optimise the execution time of Hadoop jobs not only the necessary time necessary for the calculation in 
the actual task must be considered, but also the time required to read the initial input data can be an 
important factor. To adjust MapReduce programs or even the employed Hadoop cluster specifically for the 
input data that is to be consumed by a job can result in a significant decrease of execution time. The same 
holds true if the input data itself can be easily pre-processed to reduce the necessary workload in a job. 

In the initial step of a MapReduce job the input data is divided into input splits to which the map tasks are 
assigned. This process can be an initial bottleneck for the performance of a MapReduce job, since it is 
performed by the JobTracker on a single machine. To achieve an optimal performance when determining the 
input splits, the individual records in a split should be identifiable with as little computational effort as 
possible. Good examples for records that are easy to identify include: 

• Line-by-line records: The key of a record is the byte offset of the beginning of a line in the input data 
file or the line number. The value in a record is the content of the line. 

• File-by-file records: The key of a record is the filename. The value is the content of the file. 

In every case it should be avoided to sort the input data or group them together to input splits according to 
some characteristics within the data. This would lead to a significant increase in execution time, since it 
would be executed on the single machine of the JobTracker. Furthermore it would lead to input splits that are 
fragmented over the cluster, which implies the loss of optimal data locality. Grouping and sorting of input 
data are operations that have to be performed in the map or shuffle phase of a MapReduce job. 

 Problems arise when the input data is in a structured format (e.g., XML) that requires a more elaborate 
parsing of the data to identify records. In such cases (if file-by-file records can also not be employed) the 
simplest pattern possible to identify the desired records. E.g., searching for XML elements by the name of 
the XML-tags, rather than by the structure. 

Often MapReduce jobs do not use all of the accessible input data. Reducing the number of bytes to read can 
enhance the overall throughput of the job. E.g., if the structure of the input data is known, and the necessary 
data to perform a MapReduce job can be found in the first 20 characters of every line in the input dataset, the 
value of line-by-line records should not be set to the complete content of the line, but only to the first 20 
characters. 

Finally another value that can be adjusted to optimize the job performance is the size of the input splits and 
in turn the number of splits created out of the input data. Having many splits means the time taken to process 
each split is small compared to the time to process the whole input. So if the splits are processed in parallel, 
the processing is better load-balanced if the splits are small, since a faster machine will be able to process 
proportionally more splits over the course of the job than a slower machine. Even if the machines are 
identical, failed processes or other jobs running concurrently make load balancing desirable, and the quality 
of the load balancing increases as the splits become more fine-grained. 

On the other hand, if splits are too small, then the overhead of managing the splits and of map task creation 
begins to dominate the total job execution time. For most jobs, a good split size tends to be the size of a 
HDFS block (White 2012), 64 MB by default, although this can be changed for the cluster (for all newly 
created files), or specified when each file is created. 
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RDF Data 

The considerations for input data of MapReduce jobs hold true for input data in RDF format: here especially 
relevant is that different serializations of RDF data are more suited than others: serialisations that allow to 
read triples line by line, independently of other triples should always be preferred (e.g., N-Tuple), while 
more structured serializations are to be avoided if possible (e.g., RDF/XML, N3). 

Recent results (Huang et al. 2011) have shown that some of the standard configurations of Hadoop should be 
changed to achieve a considerable performance increase when handling graph structured data like RDF: 

• By default Hadoop uses hash functions to decide where on a cluster a data block is stored. For graph 
structured data this usually results in vertices being randomly distributed across the cluster, due to 
the result of the hash function applied to the identifier of the vertices. This can be a significant 
disadvantage for graph operations (e.g., graph pattern matching). For such operations the graph is 
traversed by passing through neighbours of vertices, however data that is close to each other in the 
graph can end up spread out across the cluster on different physical machines. This leads to a 
significant increase in network traffic. 

To achieve a better data locality, neighbours in a graph should be stored close to each other. 
Therefore, to store graph data a clustering algorithm should be employed rather than hash functions. 

• As described in section 2.2.1 the replication of data serves not only for fault tolerance but also helps 
to achieve better data locality, since it increases the possibilities to assign map tasks to machines. 
The default approach of Hadoop is to replicate every data block a fixed number of times. However 
for graph data it is beneficial to replicate data that is on the border of a partition of the graph more 
often than data that already has all its neighbours stored locally in the same partition: 

Vertices that are stored on the border of a partition are likely to have neighbours on other machines 
in the cluster. If these vertices are replicated more often it is likely that neighbours are found on the 
same physical machine, thus reducing network traffic. 

 

2.3.2 Shuffle Optimisation 

The phase in a MapReduce job where the output data of the map tasks is transferred to the reduce tasks is a 
point where a lot of job specific optimisations are possible to decrease execution time. Table 3 shows an 
overview of the most important properties that can be changed to optimise the shuffle process. 

Memory 

The output of the map tasks is written to a memory buffer and spilled to disk if it is filled up to a defined 
threshold. If the buffer fills up completely during a spill, the map task block until the spill is completed. This 
should be avoided if possible, either by lowering the threshold or by increasing the size of the memory buffer 
for jobs with very fast map tasks. 

It should also be avoided to have multiple spills to disk per map task. To achieve one spill per map task for 
optimal performance the size of the memory buffer has to be adjusted, however this is only possible if the 
size of the map output (per task) can be estimated ex ante. 

On the reduce side, the best performance is obtained when the intermediate data can reside entirely in 
memory. By default, this does not happen, since for the general case all the memory is reserved for the 
reduce function. The proportion of heap size, that can be used to retain map output data in memory is by 
default 0, but can be changed if the memory requirements of the reduce function are not too high. Note that 
there is a tradeoff between the time saved due to less disk I/O operations and the performance decrease of the 
reduce tasks due to less available memory. 

The general principle is to give the shuffle as much memory as possible. The amount of memory given to the 
Java virtual machines (JVM) in which the map and reduce tasks should be made as large as possible for the 
amount of memory on the machines. By default Hadoop allocates 1GB of memory for each daemon on a 
machine (TaskTracker and DataNode). In addition, the TaskTracker launches separate child JVMs to run 
map and reduce tasks in, which need be factored into the total memory footprint of a worker machine.   
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The number of tasks that can be launched simultaneously (default 2 map tasks and 2 reduce tasks) should be 
governed by the number of available processors on the machines. Because MapReduce jobs are normally 
I/O-bound, it makes sense to have more tasks than processors to get better utilization. The amount of 
oversubscription depends on the CPU utilization of each job, but a good rule of thumb is to have a factor of 
between one and two more tasks (counting both map and reduce tasks) than processors. The amount of 
memory allocated to each child JVM can also be set (default: 200 MB). 

The overall memory allocation should fit into the available memory of the machine with other processes 
running on the machine taken into account. It has to be avoided that processes are swapped out of the 
memory as this it leads to severe performance degradation. The precise memory settings are necessarily very 
cluster-dependent, and can be optimized over time with experience gained from monitoring the memory 
usage across the cluster (White, 2010). 

To further optimize the use of JVMs the number of tasks a single JVM can perform can be configured 
(default: 1 task): using separate JVM for every map and reduce task incurs start-up costs for each task. If the 
map tasks do their own initialization, such as reading into memory a large data structure that initialization is 
part of the start-up cost as well. If each task runs only briefly then the start-up cost can be a significant 
portion of a task’s total run time. However Hadoop allows the reuse of already started JVMs, thus amortizing 
the start-up costs across multiple tasks of the same job.  

Compression 

Map output is spilled to disk and then copied to the machine performing a reduce task. Since disk I/O 
operations are very crucial in terms of job execution time – especially for large-scale data – it can be 
beneficial to compress these intermediate data. File compression brings two major benefits: it reduces the 
space needed to store files, and it speeds up data transfer across the network, or to or from disk. 
However the reduce tasks need to decompress the data to process them, for which they need additional time. 
This means that there is a tradeoff to be considered. The employed compression algorithm can influence this 
tradeoff: Different compression formats have different characteristics and exhibit a space/time trade-off: 
faster compression and decompression speeds usually come at the expense of smaller space savings. ZIP can 
be recommended as a general-purpose compressor, since it is in the middle of the space/time trade-off. 
Further ZIP supports splitting (at file boundaries), this means that is possible to seek at any point in the 
stream and start reading at any point further on. Splittable compression formats are especially suitable for 
MapReduce jobs. 

  

Table 3: Configuration properties that can be used to optimise the job performance 

Property Type Default value Description 

io.sort.mb int 100 Size of the memory buffer to use when 
sorting map output. 

io.sort.spill.percent float 0.80 Threshold usage proportion for the memory 
buffer to start spilling to disk. 

mapred.compress.map. 
output 

boolean false Compress map output. 

mapred.map.output. 
compression.codec 

Class 
name 

org.apache.hadoop.io.c
ompress.DefaultCodec 

The compression codec to use for map 
outputs. 

mapred.reduce.copy. 
backoff 

int 300 The maximum amount of time, in seconds, 
to spend retrieving one map output for a 
reducer before declaring it as failed. 

mapred.inmem.merge. 
threshold 

int 1000 The threshold number of map outputs for 
starting the process of merging the outputs 
and spilling to disk. 

mapred.job.reduce.input
.buffer.percent 

float 0.0 Proportion of total heap size to be usedfor 
retaining map outputs in memory during 
the reduce. For the reduce phase to begin, 
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the size of map outputs in memory must be 
no more than this size. 

mapred.tasktracker. 
map.tasks.maximum 

int 2 Maximum number of map tasks that will be 
run on a TaskTracker simultaneously. 

mapred.tasktracker. 
reduce.tasks.maximum 

int  2 Maximum number of reduce tasks that will 
be run on a TaskTracker simultaneously. 

mapred.child.java.opts String -Xmx200m The JVM options used to launch the 
TaskTracker child process that runs map 
and reduce tasks. 

mapred.job.reuse.jvm. 
num.tasks 

int  1 Maximum number of tasks a JVM can run. 
A value of -1 means no limit. 

 

2.3.3 Combiner 

Combiners can be employed to further improve MapReduce jobs. Combiners add an additional combine 
phase between map and reduce. They are supposed to condense the output of the map tasks. Therefore 
Combiners can reduce the amount of data shuffled between the map and reduce phases, and lower network 
traffic improves execution time. 

Combiner can be seen as local reducers, who perform a reduce task over the output of a map job locally on 
the same TaskTracker the map task was performed. This means combiner do not aggregate the output of 
multiple map tasks like it is done the actual reduce phase. 

Since the combiner function is an optimization, Hadoop does not provide a guarantee of how many times it 
will call it for a particular map output record. This implies that for a combiner to work, it must be an 
equivalent transformation of the data with respect to the reducer (Lam 2011). If we take out the combiner, 
the reducer’s output will remain the same. Furthermore, the equivalent transformation property must hold 
when the combiner is applied to arbitrary subsets of the intermediate data.  

As an example consider a MapReduce job where the map tasks extract a list of numerical values from the 
input data and the reduce task determines the maximum value of the extracted data. Here a combiner can be 
employed to directly identify the maximum value from the subset of result values generated by the individual 
map tasks. Thus, only a small portion of the initial map output has to be transferred to the reducer, where less 
data has to be processed (potentially allowing to keep it in memory for further optimization as described in 
section 2.3.2). This is illustrated in Figure 7. 
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Figure 7: MapReduce to determine maximum value with combiner (bottom) and without combiner 

(top) 

 

2.3.4 Speculative Execution 

The MapReduce framework specifies the map tasks and the reduce tasks to be idempotent. This means that 
when a task fails, Hadoop can restart that task and the overall job will end up with the same result. Hadoop 
can monitor the health of running nodes and restart tasks on failed nodes automatically. This makes fault 
tolerance transparent to the developer. 

However this behavior can also be exploited to increase the performance of the jobs: Tasks often run slow 
because of temporary congestion. This doesn’t affect the correctness of the running job but certainly affects 
its performance. Even one slow-running task will delay the completion of a MapReduce job. Until all 
mappers have finished, none of the reducers will start running. Similarly, a job is not considered finished 
until all the reducers have finished. 

Hadoop uses the idempotency property again to mitigate the slow-task problem. Instead of restarting a task 
only after it has failed, Hadoop will notice a slow-running task and schedule the same task to be run in 
another node in parallel. Idempotency guarantees the parallel task will generate the same output. Hadoop will 
monitor the parallel tasks. As soon as one finishes successfully, Hadoop will use its output and kill the other 
parallel tasks. This entire process is called speculative execution (Lam, 2011). Speculative execution is 
turned on by default and should only be turned off if the tasks of a job have side effects and are therefore not 
idempotent (e.g., a task writes to external files). 

2.4 Conclusion 

Hadoop is a software library that provides a reliable shared storage and analysis system, with storage 
provided by HDFS and analysis by MapReduce. However, designing MapReduce jobs can be intricate and  
rely on the distributed system architecture of Hadoop does not guarantee desired processing speeds for large-
scale data. 

We described how MapReduce jobs can be designed to achieve performance goals in general. Furthermore 
we provided guidance on how to optimise MapReduce jobs by detailing the different attributes of a 
MapReduce job or the Hadoop cluster itself that have to be addressed to optimise the execution time of a task 
and to make the processing of large-scale data feasible. 
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3 Web Data Commons – Structured Data from Large Web 
Corpora 

In this section we describe our experience with the Web Data Commons project2 (Mühleisen et al. 2012), for 
which we extracted all Microformat, Microdata and RDFa data from the Common Crawl3 web corpus. The 
common crawl web corpus is the largest and most up-to-date web corpus that is currently available to the 
public. Furthermore, we provide the extracted data for download in the form of RDF-quads and CSV tables. 

Here we give an overview of the project and present extracted statistics about the popularity of the different 
encoding standards as well as the kinds of data that are published using each format. We describe in detail 
our experiences when extracting the data and processing the results for publication. 

3.1 Introduction 

In recent years, much work has been invested in transforming the so-called “eyeball” web, where 
information is presented for visual human perception towards a “Web of Data”, where data is produced, 
consumed and recombined in a more or less formal way. A part of this transformation is the increasing 
number of websites, which embed structured data into their HTML pages using different encoding formats. 
The most prevalent formats for embedding structured data are: Microformats, which use style definitions to 
annotate HTML text with terms from a fixed set of vocabularies; RDFa, which is used to embed any kind of 
RDF data into HTML pages; and Microdata, a recent format developed in the context of HTML5. 

The embedded data is crawled together with the HTML pages by Google, Microsoft and Yahoo!, which use 
the data to enrich their search results. These companies have so far been the only ones capable of providing 
insights into the amount as well as the types of data that are currently published on the Web using 
Microformats, RDFa and Microdata. While a previously published study by Yahoo! Research (Mika, 2011) 
provided many insights; the analyzed web corpus is not publicly available. This prohibits further analysis 
and the figures provided in the study have to be taken at face value.  

However, the situation has changed with the advent of the Common Crawl. Common Crawl is a non-profit 
foundation that collects data from web pages using crawler software and publishes this data. So far, the 
Common Crawl foundation has published three Web corpora, one dating 2009/2010, one dating February 
2012 and recently a corpus dating July 2012 (which is not yet part of the Web Data Commons project). 
Together the first two corpora contain over 4.5 Billion web pages. Pages are included into the crawls based 
on their PageRank score, making these corpora snapshots of the popular part of the web. 

The Web Data Commons project has extracted all Microformat, Microdata and RDFa data from the 
Common Crawl web corpora and provides the extracted data for download in the form of RDF-quads and 
CSV tables. 

3.2 Embedding Structured Data 

This section summarizes the basics about Microformats, RDFa and Microdata and provides references for 
further reading. 

3.2.1 Microformats 

An early approach for adding structure to HTML pages was Microformats4. Microformats define a number 
of fixed vocabularies to annotate specific things such as people, calendar entries, products etc. within HTML 
pages. Well known Microformats include hCalendar for calendar entries according to RFC2445, hCard for 
people, organizations and places according to RFC2426, geo for geographic coordinates, hListing for 
classified ads, hResume for resume information, hReview for product reviews, hRecipe for cooking recipes, 
Species for taxonomic names of species and XFN for modeling relationships between humans. 

                                                        
2 See: http://www.webdatacommons.org 
3 See: http://commoncrawl.org 
4 See: http://microformats.org 
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For example, to represent a person within a HTML page using the hCard Microformat, one could use the 
following markup: 

<span	
  class	
  ="vcard">	
  
<span	
  class	
  ="fn">Jane	
  Doe</span>	
  
</span>	
  

In this example, two inert <span> elements are used to first create a person description and then define the 
name of the person described. The main disadvantages of Microformats are their case-by-case syntax and 
their restriction to a specific set of vocabulary terms. 

To improve the situation, the newer formats, RDFa and Microdata, provide vocabulary-independent syntaxes 
and allow terms from arbitrary vocabularies to be used. 

3.2.2 RDFa 

RDFa defines a serialization format for embedding RDF data (Klyne et al. 2004) within (X)HTML pages. 
RDFa provides a vocabulary-agnostic syntax to describe resources, annotate them with literal values, and 
create links to other resources on other pages using custom HTML attributes. By also providing a reference 
to the used vocabulary, consuming applications are able to discern annotations. To express information about 
a person in RDFa, one could write the following markup: 

<span	
  xmlns:foaf=”http://xmlns.com/foaf/0.1/”	
  typeof="foaf:Person">	
  
<span	
  property="foaf:name">Jane	
  Doe</span>	
  
</span>	
  

Using RDFa markup, we refer to an external, commonly-used vocabulary and define an URI for the thing we 
are describing. Using terms from the vocabulary, we then select the “Person” type for the described thing, 
and annotate it with a name. While requiring more markup than the hCard example above, considerable 
flexibility is gained. A mayor supporter of RDFa is Facebook, which has based its Open Graph Protocol5 on 
the RDFa standard. 

3.2.3 Microdata 

While impressive, the graph model underlying RDF was thought to represent entrance barriers for web 
authors. Therefore, the competing Microdata format emerged as part of the HTML5 standardization effort. In 
many ways, Microdata is very similar to RDFa, it defines a set of new HTML attributes and allows the use of 
arbitrary vocabularies to create structured data. However, Microdata uses key/value pairs as its underlying 
data model, which lacks much of the expressiveness of RDF, but at the same time also simplifies usage and 
processing. Again, our running example of embedded structured data to describe a person is given below: 

<span	
  itemscope	
  itemtype="http://schema.org/Person">	
  
<span	
  itemprop="name">Jane	
  Doe</span>	
  
</span>	
  

We see how the reference to both type and vocabulary document found in RDFa is compressed into a single 
type definition. Apart from that, the annotations are similar, but without the ability to mix vocabularies as it 
is the case in RDFa. The Microdata standard gained attention as it was selected as preferred syntax by the 
Schema.org initiative, a joint effort of Google, Bing and Yahoo, which defines a number of vocabularies for 
common items and carries the promise that data that is represented using these vocabularies will be used 
within the applications of the founding organizations. 

3.3 Format Usage 

For the Web Data Commons project we used two web corpora released by the Common Crawl foundation. 
The first corpus contains web resources (pages, images...) that have been crawled between September 2009 
and September 2010. The second corpus contains resources dating February 2012, thereby yielding two 
distinct data points for which we can compare the usage of structured data within the pages. As a first step, 
we have filtered the web resources contained in the corpora to only include HTML pages, thus reducing the 

                                                        
5 See: http://ogp.me 
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size of the input data of our extraction jobs. Table 4 shows a comparison of the two corpora. We can see how 
HTML pages represent the bulk of the corpora. The newer crawl contains fewer web pages. 148 million 
HTML pages within the 2009/2010 crawl contained structured data, while 189 million pages within the 2012 
crawl contained structured data. Taking the different size of the crawl into account, we can see that the 
fraction of web pages that contain structured data has increased from 6% in 2010 to 12% in 2012. The 
absolute numbers of web pages that used the different formats are given in Table 5. The datasets that we 
extracted from the corpora consist of 3.2 billion RDF quads (2012 corpus) and 5.2 billion RDF quads 
(2009/2010 corpus). 

 

Table 4: Comparison of the Common Crawl corpora used for Web Data Commons 

 2009/2010 corpus 2012 corpus 

Crawl Dates 09/2009-09/2011 02/2012 

Total URLs 2.8 Billion 1.7 Billion 

HTML Pages 2.5 Billion 1.5 Billion 

Pages with Data 148 Million 189 Million 

 

Table 5: URLs using the different formats 

Format 2009/2010 corpus 2012 corpus 

RDFa 14,314,036 67,901,246 

Microdata  56,964 26,929,865 

geo  5,051,622 2,491,933 

hcalendar 2,747,276 1,506,379 

hcard 83,583,167 61,360,686 

hlisting 1,227,574 197,027 

hresume 387,364 20,762 

hreview 2,836,701 1,971,870 

species 25,158 14,033 

hrecipe 115,345 422,289 

xfn 37,526,630 26,004,925 

 

Figure 8 shows the distribution of the different formats as a percentage of the number of URLs with the 
respective format to the total number of URLs within the corpora and compares the fractions for the 
2009/2010 corpus and the 2012 corpus. We see that RDFa and Microformats gain popularity, while the 
usage of the single-purpose Microformats remain more or less constant. The reason for the explosive 
adoption of the Microdata syntax between 2010 and 2012 might be the announcement in 2011 that Microdata 
is the preferred syntax of the Schema.org initiative. 
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Figure 8: Common Crawl corpora - format distribution 

 

 

3.4 Types of Data 

While each Microformat can only be used to annotate the specific types of data it was designed for, RDFa 
and Microdata are able to use arbitrary vocabularies. Therefore, the format comparison alone does not yield 
insight into the types of data being published. RDFa and Microdata both support the definition of a data type 
for the annotated entities. Thus simple counting the occurrences of these types can give an indicator of their 
popularity. The top 20 values for type definitions of the RDFa data within the 2012 corpus are given in Table 
6. Type definitions are given as shortened URLs, using common prefixes6. Note that gd: stands for Google’s 
Data-Vocabulary, one of the predecessor of Schema.org. 

We have then manually grouped the 100 most frequently occurring types by entity count into groups. These 
groups are given in Table 8. The most frequent types were from the area of website structure annotation, 
where for example navigational aids are marked. The second most popular area is information about people, 
businesses and organizations in general, followed by media such as audio files, pictures and videos. Product 
offers and corresponding reviews represent the fourth most frequent group, and geographical information 
such as addresses and coordinates was least frequent. Groups below 1 % frequency are not given. 

Table 9 shows the same analysis for the Microdata data within the 2012 corpus. Apart from variations in the 
specific percentages, the same groups were found to be most frequently used. An interesting observation was 
that only two of the 100 most frequently occurring types were not from of the Schema.org namespace, 
confirming the overwhelming prevalence of types from this namespace, which is not surprising since the 
Microdata format itself was made popular by this initiative. This is also shown in the listing of the 20 most 
frequent type definitions given in Table 7, where all URLs originate from either the Schema.org domain or 
the Data-Vocabulary domain. 

 

 

 

 

 

 

 

                                                        
6 See: http://prefix.cc/popular.file.ini 



Table 6: Top 20 Types for RDFa         

Type Entities 

gd:Breadcrumb  13,541,661 

foaf:Image 4,705,292 

gd:Organization 3,430,437 

foaf:Document 2,732,134 

skos:Concept 2,307,455 

gd:Review-aggregate 2,166,435 

sioc:UserAccount 1,150,720 

gd:Rating 1,055,997 

gd:Person 880,670 

sioctypes:Comment 666,844 

gd:Product 619,493 

gd:Address 615,930 

gd:Review 540,537 

mo:Track 444,998 

gd:Geo 380,323 

mo:Release 238,262 

commerce:Business 197,305 

sioctypes:BlogPost 177,031 

mo:SignalGroup 174,289 

mo:ReleaseEvent 139,118 

 

Table 7: Top 20 Types for Microdata 

Type Entities 

gd:Breadcrumb  18,528,472 

schema:VideoObject 10,760,983 

schema:Offer 6,608,047 

schema:PostalAddress 5,714,201 

schema:MusicRecording 2,054,647 

schema:AggregateRating 2,035,318 

schema:Product 1,811,496 

schema:Person 1,746,049 

gd:Offer 1,542,498 

schema:Article 1,243,972 

schema:WebPage 1,189,900 

gd:Rating 1,135,718 

schema:Review 1,016,285 

schema:Organization 1,011,754 

schema:Rating 872,688 

gd:Organization 861,558 

gd:Product 647,419 

gd:Person 564,921 

gd:Review-aggregate 539,642 

gd:Address 538,163 

Table 8: Entities by area for RDFa 

Area % Entities 

Website Structure  29 % 

People, Organizations  12 % 

Media  11 % 

Products, Reviews  10 % 

Geodata 2 % 

Table 9: Entities by area for Microdata 

Area % Entities 

Website Structure 23 % 

Products, Reviews 19 % 

Media 15 % 

Geodata 8% 

People, Organizations 7% 

 

 

3.5 Extraction Process 

The Common Crawl datasets are stored in the AWS Simple Storage Service7 (S3) in 100MB compressed arc 
files. To avoid additional time costs for downloading, we performed the extraction in the Amazon Elastic 

                                                        
7 See: http://aws.amazon.com/s3/ 
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Compute Cloud8 (EC2). The main criteria here are the costs to achieve a certain task. Extracting structured 
data had to be performed in a distributed way in order to finish this task in a reasonable time. We developed 
two extraction tools to identify structured data in the HTML pages and transform them into RDF-quads: 

• Based on a Hadoop MapReduce job: The Common Crawl foundation provides a custom arc-­‐
InputSplitFormat	
  class, which allows us to generate input splits with individual homepages as 
records for the map tasks. In a map task the structured data from the homepages are extracted and 
transformed to RDF-quads. The subsequent reduce task simple writes the extracted quads to disk. 

• Based on the Amazon Simple Queue Service (SQS): SQS provides a message queue 
implementation, which we used to coordinate 100 extraction nodes. Since the Common Crawl 
corpora are already partitioned into separate files of around 100MB each, we added the identifiers of 
each of these files as messages to the queue. The extraction nodes share this queue and take file 
identifiers from it. The corresponding file was then downloaded from S3 to the node. The 
compressed archive was split into individual web pages. We extracted the structured data from the 
pages. The resulting RDF-quads were written back to S3 together with extraction statistics and later 
collected. This process is illustrated in Figure 9. 

 
Figure 9: Web Data Commons extraction process on Amazon SQS 

Both tools are publicly available9. For the actual extraction of data from both corpora we used the SQS-based 
approach, because Amazon charges additional fees for using Hadoop infrastructure on EC2. 

On each page, we ran our RDF extractor based on the Anything To Triples (Any23) library10. Any23 parses 
web pages for structured data by building a DOM tree and then evaluates XPath expressions to extract the 
structured data. While profiling, we found this tree generation to account for much of the parsing cost, and 
we have thus searched for a way to reduce the number of times this tree is built. Our solution was to run 
regular expressions against each archived web page prior to extraction, which detected the presence of 
structured data within the HTML page, and only to run the Any23 extractor when the regular expression 
found potential matches. The extraction process on a singular Node is illustrated in Figure 10. 

                                                        
8 See: http://aws.amazon.com/ec2/ 
9 See: https://subversion.assembla.com/svn/commondata/ 
10 See: http://incubator.apache.org/any23/ 
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Figure 10: Extraction of structured data on a singular node 

The costs for parsing the 28.9 Terabytes of compressed input data of the 2009/2010 Common Crawl corpus, 
extracting the RDF data and storing the extracted data on S3 totaled 576 EUR (excluding VAT) in Amazon 
EC2 fees. We used 100 spot instances of type c1.xlarge for the extraction, which altogether required 3,537 
machine hours. For the 20.9 Terabytes of the February 2012 corpus, 3,007 machine hours at a total cost of 
523 EUR were required. 

 

3.6 Data transformation to CSV-Tables 

Additionally to the RDF-Quads format of the extracted data from the Web Data Commons project, we also 
wanted to provide CSV-tables of the structured data with a fixed schema (i.e., Microformats). For data with a 
fixed schema we can leverage that their structure is homogeneous, i.e., extracted RDF quads from 
Microformat data use only a constrained set of properties. The values for these properties (for the complete 
Microformat dataset) can be extracted with a SPARQL query. Note that this is not possible for RDFa data 
and Microdata, since they allow for the use of arbitrary vocabularies, which would imply the need to design 
an individual SPARQL query for every used vocabulary. 

We used Hadoop MapReduce Jobs to execute the queries and transform the extracted values into CSV tables. 
A distributed framework was necessary to execute the queries over billions of triples in a reasonable amount 
of time. 

For the necessary infrastructure we made use of the KIT OpenCirrus11 Hadoop Cluster. OpenCirrus is a 
collaboration of several organizations to provide an open cloud-computing research test bed designed to 
support research into the design, provisioning and management of services at a global scale. For our analysis 
we used 54 work nodes, each with a 2.27 GHz 4-Core CPU and 100GB RAM. 

For the MapReduce jobs we leveraged that an extracted Microformat dataset never originates from several 
homepages. The extracted RDF-quads contain in the fourth position of every quad (i.e., context node) the 
URL of the homepage they were extracted from. This implies that every quad in a set of RDF-quads that 
matches a graph pattern in one of our SPARQL queries has the same context node. Therefore we developed 
an N-­‐Quad-­‐RecordReader	
  that generates input splits for the map tasks, which contain records of the form 
<context,	
  triples>.	
  The records are key/value pairs with the set of all triples as value, which have the 
same context node. The key is simply the URL of the homepage, from which the triples originate. Note that 
the N-­‐Quad-­‐RecordReader is able to identify the records in a scalable manner without reading the 
complete dataset for every record, due to the fact that the RDF-quads are already sorted by their context 
node. Figure 11 Illustrates how the N-­‐Quad-­‐RecordReader works. 

                                                        
11 See: https://opencirrus.org/ 
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Figure 11: Creating records with the same context node 

The records in the input splits now contain reasonable sized chunks of RDF to execute our SPARQL queries 
in the map tasks. The extracted values for the individual entities are passed to the reduce tasks together with 
the original homepage URL. The reducers perform a clean-up (e.g., escaping existing commas in extracted 
literal) and format the values into lines of CSV-tables. Finally the generated tables are committed to the 
HDFS. Figure 12 illustrates the complete MapReduce process. We were able to generate the CSV-tables on 
average within 1 hour for every Microformat with our approach.  

 
Figure 12: MapReduce job to generate CSV-tables from RDF-quads 

 

3.7 Summary 

We extracted structured data from two of the largest publicly available web corpora to this date and analyzed 
the extracted data. This analysis of the two Common Crawl corpora has shown that the percentage of web 
pages that contain structured data has increased from 6 % in 2010 to 12 % in 2012. The analysis showed an 
increasing uptake of RDFa and Microdata, while the Microformat deployment stood more or less constant. 
Furthermore, we provide detailed statistics about the popularity of types in the different formats. 

We have shown how such an extraction over a very large dataset is possible within a reasonable amount of 
time, using affordable resources on the Amazon EC2 Cloud.  

The extracted data itself can be downloaded as RDF-quads or CSV-tables. The latter implied a 
transformation of the extracted data, which we performed using Hadoop.  
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4 SciLens – A Local-Area Research Cluster for Petabyte 
Scale Scientific Data Management Techniques 

In this section, we report on our experiences with the design and utilisation of SciLens, a local-area cluster 
machine that has been built to facilitate research on data management issues for data-intensive scientific 
applications. The main contribution of the SciLens cluster is that it provides a platform on which we can 
carry out experiments to help develop, examine, compare and improve new DBMS techniques for the 
scientific applications. SciLens enables various possibilities to run experiments on large clusters using real-
world large datasets, obtained directly from different scientific disciplines.  

This section is further organised as follows. First, we give background information about the research on 
DBMS support for data-intensive sciences. We will briefly describe the data management problems in the 
data-intensive sciences, the mismatch between what the scientists need and what the current DBMSs 
provide, our plans to advance the state-of-the-art of the scientific data management and analysis, and the 
need of a SciLens cluster to help realising the plans. Then, we discuss the design issues of SciLens. Thirdly, 
we describe the final architecture of SciLens. Fourthly, we discuss two main lessons we have learnt during 
the building of SciLens. Fifthly, we describe the tools we have developed to deploy the relational DBMS 
MonetDB12 on SciLens. Finally, we conclude with an outlook to future work. 

4.1 Background 

4.1.1 The Fourth Paradigm in evolution 

To truly understand the complexities of global warming, gene diversity and the wonders of the universe, the 
sciences more and more rely on database technology to digest and manipulate large amounts of raw facts. It 
requires support for the daily aggregation of Terabytes of science data, a synergy with large-scale existing 
science repositories (e.g., based on FITS13, NetCDF14), efficient support for the preferred computational 
paradigm (e.g., array processing environment like MATLAB), and linked-in libraries (e.g., the statistical 
package R). The ability to explore huge digital artifacts assembled in data warehouses, databases and files at 
unprecedented speed becomes the pivot to keep abreast in science. Significant advances in data warehouse 
technology are needed to aid scientists in this quest for quantitative insight in and model driven validation of 
phenomena coming from, e.g., astronomical observations, life-science experiments, neuroinformatics and 
environmental sensor-based monitoring systems (Cyberinfrastructure Vesion, 2007). The creators of such 
technology are the catalyst for future Nobel Prize winners. 

Jim Gray (1944-2007) chartered this road ahead as the Fourth Paradigm (Hey et al., 2009), i.e., scientific 
discoveries are increasingly enabled by scalable database management technology. It is the next step in 
evolution which started with the first paradigm based on thousands of years of experimentation, the second 
paradigm of the last 500 years based on theory formulation, and the third paradigm of the last 50 years based 
on simulation through computational science. The fourth paradigm closes the loop by providing the setting to 
comparatively assess results obtained through observation and produced by simulations against those 
predicted by models. 

This data explosion is unfolding due to better experimental instruments and large-scale sensor networks. 
They form the prime basis to advance science in the years ahead. Scientific databases are far larger, and 
growing faster, than their commercial counterparts (Becla and Lim, 2008). The number of table attributes 
can run into thousands of tables degenerate to key-value stores, such as for protein databases, and the number 
of rows in a table can run into the billions, such as for astronomical catalogs. 

This makes it hard for scientists to grind its content for in-sights using their daily tools, e.g., spreadsheets and 
statistical packages. As pointed out in the recent study on patterns of information use in life sciences 
(Patterns of information, 2009), scientists “share concerns about receiving, generating, handling and 
managing huge volumes of information and data, in particular genome sequence data, as well as accessing, 
                                                        
12 See: http://www.monetdb.org/ 
13 See: http://heasarc.nasa.gov/docs/heasarc/fits.html 
14 See: http://www.unidata.ucar.edu/software/netcdf/ 
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organising and analysing vast quantities of varied data, and then making sense of them... Researchers fear 
that there will be too much data to handle, process or even look at”. 

4.1.2 Where do DBMSs fall short 

Current database management systems, developed mostly for administrative tasks, lack components required 
to reach the goals set for the Fourth Paradigm wave. Major innovations in this domain partly overhauling the 
DBMS architecture, is widely recognized as a grand challenge in the research community (Stonebraker et al., 
2009; Becla and Lim, 2009; Gray et al., 2005; Gray and Szalay, 2004).The heart of a scientific data 
warehouse is its database system, running on a modern distributed platform, and used for both direct 
interaction with data gathered from experimental devices and management of the derived knowledge using 
workflow software. However, most (commercial) DBMS offerings fall short for scientific data management 
in one or more of the following areas: 

• Multi-paradigm data models. Database management systems are mostly focused on the relational data 
model and its algebraic computation, but in science the array-programming paradigm is prevalent. This 
lack of computational expressiveness reduces database systems to managing blobs of non-interpreted 
data, which are handed over to a linked-in library for further processing. However, the mixture of both 
paradigms, which allows switching between array- and tabular- views at low cost, provides opportunities 
currently only found hard coded in specialized user-programs. For example, image segmentation can be 
partly based on the relational selection mechanism, while subsequent smoothing may rely on the array 
view of the same data for speed. 

• Event stream processing. Sensor-based devices and networks are evolving at great speed. All nodes are 
connected into a worldwide-distributed application to share events. They call for a direct feed into the 
science warehouse, followed by complex-event-processing techniques to react instantly to unexpected 
events. The even more ambitious web-of-things would create a potential flooding of streaming data that 
can only be handled by application logic close to the source. Hints on what to expect can be found in, 
e.g., the radio astronomy setting of LOFAR15 with multi-gigabits per second event streams.  

• Sequence matching. Sequence information from biology is encoded in large strings. Nowadays, a data 
warehouse of gene sequences is achievable, even for archiving sequence data from a large number of 
individuals simultaneously. But pattern directed search over such large repositories is hardly supported. 
Techniques developed for this field have not yet found their way into generic offerings of database 
suppliers.  

• Provenance. Scientific database are mostly append only. Data comes from observations, but more 
importantly, a lot of metadata are added based on the analysis of the observations. To ensure correct 
future interpretation, the precise sequence of operations, from observation, cleaning to knowledge 
derivations, should be maintained. Such provenance issues are hardly supported in database systems. 
Instead, workflow systems currently fill this gap. 

• Science library integration. The operations provided by a relational DBMS are geared mainly towards 
administrative applications. The use of a relational DBMS for scientific applications stresses its 
functionality to link-in existing science libraries as User Defined Functions (UDFs). However, the 
impedance mismatch between data structures and operational behaviour often lead to the non-acceptable 
approach to simply extract data from a database, run a program against it, and update the database with 
the results.  

• Multi-scale query processing. The size of scientific databases renders traditional query processing 
flawed. Expecting real-time response for ad-hoc queries over multi-terabytes science databases will 
simply fail unless extreme hardware investments are made. A multi-scale, statistically sound 
organisation of the database, which allows gradual expansion of the area of interest to explore for query 
answering, is a necessary route to explore. A weighted sampling as proposed in (Sidirourgos et al., 2011) 
is a promising step into this direction.  

• Summarization. The scheme deployed in a database management system to simply produce a result set 
fails due to its size and difficulties of the ad-hoc user when he attempts to precisely formulate the 

                                                        
15 See: http://www.lofar.org/ 
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queries. Scientists do not exactly know up front what they are looking for. The ultimate query is a result 
of an interactive process, driven by partial answers. The process of harvesting the knowledge through ad 
hoc querying will be greatly improved by on-the-fly summarization of multi-gigabytes. However, it is an 
area largely unexplored in the context of database research.  

• Scale-up and scale-out. Traditional distributed and parallel database techniques require a predictable 
workload. This is rarely the case in science. Attempts to scale out into Cloud computing using, e.g., 
Map-Reduce techniques, gives a short-term answer for massive data-parallel problems. It fails, however, 
to address the inherent complexity of distributed processing, where each sub-query contains cross 
correlation to other elements in the database (which need not reside on the same node).  

• Green computation. The predominant approach in business intelligence applications is to throw 
hardware at the database challenges to reach satisfactory response time. Hundreds of disks distributed 
over tens of nodes to realize just a few GB/sec bandwidths are common. Despite continuously dropping 
hardware prices, such solutions remain expensive and energy-consumptive. Moreover, scientists are too 
budget constrained to permit them to follow this brute force approach. Much can be gained if we can 
harness the database management challenges into energy saving solutions. The ideal would be a 10 TB 
data warehouse in cool and silent “shoeboxes” on the desk with enough processing capacity for science 
applications at an affordable price level of say $500. 

4.1.3 Who will rescue us from a data overload? 

Scientific data management in astronomy during the 80s and 90s has shown that reliance on the third-
generation programming expertise of domain specialists is bound to fail. It does not provide for a scalable 
solution, and distracts the scientists from going after the information contained in their experimental data. 
Wearied of following hype topics of limited impact, technology inventors, such as Jim Gray and Alex 
Szalay, have been called upon to cross the chasm between disciplines. They proofed the productivity gains in 
science from using a relational DBMS and its query language SQL. 

The third paradigm focused on large-scale simulation. It triggered a software infrastructure to scale-out 
computational jobs over computer clusters and later over a dynamically changing network, nicknamed the 
Cloud. Middleware and grid computing support packages were developed. However, the focus was on the 
computational aspects, leaving the data management to a relational system and/or the underlying file stores. 
The recent revival of data-parallel programming, i.e., Map-Reduce, addresses only part of the issues at stake. 

Although middleware tools form a large area on their own, scientific workflow packages rely strongly on 
DBMS features, document information retrieval and semantic web technology, e.g., high volume RDF 
processing. This often leads to under utilization of DBMSs in science projects. The DMBSs degrade to an 
administration tool for a large passive repository of data files. To illustrate, multi-tier data infrastructure of 
the LHC (Large Hadron Collider) consists for >95% of HDF516 (Hierarchical Data Format 5) files with 
database management primarily devoted to workflow management. The scale and flexibility required for 
data intensive research extend beyond this brick-and-mortar solution for most real-world information 
systems. For example, in astronomy, planned instruments will produce >100 petabyte by the end of this 
decade producing catalogs with 3000 million galaxy surveys17. Likewise the amount of data produced by 
environmental sensory systems is expected to explode. In seismology, the amount of event data collected in 
1998 was a trickle 2 MB, while the planned combined sensor network will produce > 10TB/year as of 2011. 
Data ingress speed is actually doubling every year. 

Current database management systems lack components required to reach the goals set for the Fourth 
Paradigm. The heart of a scientific data warehouse is its database system, running on a modern distributed 
platform, and used for both direct interaction with data gathered from experimental devices and 
management of the derived knowledge using workflow software. However, most (commercial) DBMS 
offerings fall short for scientific data management in one or more of the aforementioned areas. To tackle 
these problems, we are addressing three pivotal shortcomings of database system architectures for science, 
using MonetDB as a frame of reference: 

                                                        
16 See: http://www.hdfgroup.org/HDF5/ 
17 See for instance the LSST(Large Synoptic Survey Telescope) project: http://www.lsst.org/lsst/ 
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• Data Vaults: to research the architectural consequences for blending database technology over existing 
science file repositories and evolving scientific instruments, which would make data available through a 
DBMS beyond the hitherto limitation of meta-data in relational stores. 

• SciQL: Having thus opened the treasuries of experimental data for further analysis, we address the 
limitations of the query language SQL. We are developing a natural extension to SQL, called SciQL, 
which provides a symbiosis between the relational- and array- paradigms. We are developing solutions 
to cope with both (sparse) arrays and data cubes running into the hundreds of TB, but also to blend this 
with relational query processing and optimization schemes. A true multi-paradigm symbiosis will 
emerge. 

• Data Cyclotron: scale-up and scale-out is pursued through an elastic distributed processing system, 
called the Data Cyclotron, which addressed in particular the requirements of knowledge discovery 
algorithms using an elastic (virtual) ring of processing nodes to boost query processing. 

4.1.4 Why do we need yet another cluster? 

The fourth paradigm time window calls for leading edge computer science and engineering research activity 
to avoid that next generation scientific instruments produce data we are not able to digest. The actions called 
for should go beyond theory and (micro-) benchmarks to assess more-and-more complex data structures 
and algorithms. Instead, Jim Gray’s laws for data engineering should lead the way (Gray et al., 2005). They 
stimulate the need for reliance on realistic data, a focus on scale-out of the solutions, and moving analysis 
towards the data itself. All this should be done within a methodology that combines early articulation of the 
20 queries to describe the challenge and an approach based on evolving full-functional exemplars. 

The proof of the pudding is in the eating, which also amounts to high-risk science and engineering. In this 
light we continue the tradition of the CWI database research group to develop solutions up to the point they 
can be shared with and picked up through an open-source solution. All software will become part of the 
MonetDB suite. This calls for a hardware infrastructure to validate our algorithms and share experiences 
through access to real-life application demonstrators. The SciLens cluster has been built to fulfil this 
request. 

HPC v.s. DIC. Many large clusters already exist, e.g., the SARA Lisa cluster18 and the Amazon EC2 
cloud19, on which experiments of distributed and parallel computing can be conducted. However, the existing 
clusters are not suitable for the database experiments we want to carry out for several reasons.  

First, the existing clusters generally focus on supporting High-Performance Computing (HPC), for which 
extremely fast floating point computations is the primary issue; while in data-intensive database research, 
dealing with a large amount of data is one of the primary issues, so we need fast data access and high I/O 
bandwidth. For instance, in the SARA Lisa cluster, there is only one storage node. So for this cluster, a 
dataset of 4TB is already too large, also transferring the whole dataset from the storage node to the 
computation nodes for each experiment is high time consuming. 

Second, the existing (mostly HPC-oriented) clusters are mainly used for productions. They are not intended 
for users who want to explore new possibilities, but are intended to facilitate mature applications, e.g., 
calculations for chemists and weather forecast. This means that the existing clusters mainly focus on 
providing a stable environment, while for our data-intensive database research, we want to be able to 
experiment with different hardware configurations (e.g., different network configurations) and different 
versions of the software including the unstable versions. These needs cannot be satisfied by the existing 
Cloud or cluster systems. 

Finally, in database research, we often need to examine in details the behaviour of both hardware and 
software, so at a certain point, we need to access the kernel information of the testing systems to find out, 
e.g., what is actually going on and how the hardware is being use. Accessing the low-level system 
information is usually not allowed for ordinary users on the aforementioned clusters. 

                                                        
18 See: https://www.sara.nl/systems/lisa/ 
19 See: http://aws.amazon.com/ec2/ 
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4.2 Design Considerations 

Database systems are very large software systems, which bring together a plethora of algorithmic 
knowledge, optimization techniques, and plan architecture considerations. Scientific database research call 
for a real-life sized system to evaluate technology and extract user experiences. The design of the SciLens 
infrastructure should maximise external exposure and obtain deep results on scalability in heterogeneous 
clusters. We use the Amdahl Blade principle as the basic criterion for the design of SciLens. 
Amdahl Blade Computing. Computer systems aimed at driving data intensive research differentiate from 
computational science, e.g., super-computers, by a much more prominent balance of the system components 
in the storage stack. Queries over large-scale database are more susceptible to IO bandwidth and latency than 
the number of CPU cycles thrown at it when data is available in the core. Even with careful algorithmic 
design, most database systems tend to stall on access to memory or disk. 
Amdahl formulated several rules for a balanced system20: 
• The speedup of a distributed system should be proportional to its longest sequential code paths.  

• The bandwidth should reach one bit of IO/sec per instruction/sec (BW). 

• The amount of main memory should reach one byte per instruction/sec (MEM). 

• Each IO operation is equivalent to 50.000s of instructions. 

In database queries, many blocking operations, e.g., sorting and relational joins, provide a strong upper 
bound on the attainable speedup. Indexing and proximity based algorithms in database systems are inherently 
random access operations, which affect the effective bandwidth usage. Modern multi-core computers move 
further away from Amdahl’s laws. Large super computers have low numbers on bandwidth and memory. For 
the IBM Blue Gene the bandwidth BW= 0.013 bit of IO/sec per instruction/sec and the memory factor 
MEM=0.471 byte per instruction/sec. A state-of-the-art experimental system at Johns Hopkins University 
reaches BW=0.66 and MEM=1.0. Pioneering work of Szalay (Szalay et al., 2002) underpins the need for 
different system configurations to deal with the requirements posed. It identifies two recent technological 
innovations as critical: Solid State Disks (SSD) combine high I/O rates with low power and energy efficient 
CPUs, e.g., Intel’s Atom family of processors designed for the mobile market. They showed that it is 
possible to use these to build balanced, so called Amdahl blades offering very high performance per Watt 
while maintaining a low total-cost-of-ownership. 

4.3 Architecture of the SciLens Cluster 

4.3.1 The dream 

Figure 13 shows the original architecture of SciLens. The infrastructure is based on the Amdahl blade 
philosophy and uses common-of-the-shelf components. The initial system configuration is a 4-tier cluster: a 
computational top tier with 1 node called Diamond, a high-end tier with 16 nodes called Rocks, a Cloud-
oriented tier with 64 nodes called Bricks, and an energy-conservative tier with 256 nodes called Pebbles. 
Each tier consists of a homogeneous platform. All tiers come with the same global hardware resources of 1 
TB RAM and 128 TB disk space. The tiers are assembled in both an InfiniBand network and a Gb (Gigabit) 
Ethernet to enable topology reconfiguration and slicing over all tiers. The infrastructure is specifically tuned 
towards data intensive work, i.e., it is focused on massive IO instead of raw compute power. 

The key rationale for a multi-layer structure is to create a setting where comparative real-life experiments are 
feasible. The applications available and foreseen call for multi-terabyte storage settings. In turn, this calls for 
sizable tiers to explore the limits of distribution. For example, a 4 TB science database like Skyserver21 can 
be handled by a single Rock. The effects of migration down the hierarchy may well uncover the rules to stop 
at the Bricks layer. Or trigger research into new database optimization and algorithms. The nodes in each tier 
are affordable systems, without exotic hardware components. 

                                                        
20 See: http://en.wikipedia.org/wiki/Amdahl%27s_law 
21 See: http://www.sdss.org/ 
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Using homogeneous tiers with each 1TB of RAM and 128TB of disk is needed to support scalability 
experiments. In the cause of the lifetime of this system, we expect experiments to call for > 50TB of data. 
The current infrastructure already faces serious data administration challenges due to an ‘overloaded’ 20TB 
disk farm. Furthermore, it should be homogeneous, because it is a known fact in database areas, that even a 
minor change in hardware configuration or the operating system version can have a disturbing effect on the 
performance characteristics. For example, going from Linux Fedora 10 to 11 caused MonetDB performance 
to drop significantly (>20%), and it is only partly recovered in Fedora 12. This is without changing the 
DBMS software stack itself. 

Each tier is initially physically organised as a ring with InfiniBand. The ratio is to provide a system 
infrastructure were a large distributed ring buffer of 1TB of memory becomes available for data intensive 
applications. For read dominant applications, this gives an easy to program backbone to share data of 
common interest and still can realise a high throughput of the application code. 

The multi-tier structure provides valuable insight in algorithms, parallelism when the code moves up or 
down the tier. However, with a slight change in topology, slices over all tiers can be cut out to create a 
multilevel caching structure from different components. For example, a Rock node could be supported by a 
series of Pebbles. With proper query planning, this creates a setting where large intermediate results are 
handled without transport cost in the Rock, while the massive scan operations on the bulk data can be 
subcontracted to a large number of the slower Pebbles. 

The Pebble layer is configured as an outward look into energy conservative computing. It has no spinning 
parts and the CPU power is much less than one ordinary expects from a desktop. The large number of nodes, 
hooked up into two different network infrastructures (i.e., InfiniBand and Gb Ethernet) enables in depth 
studies on the algorithmic consequences. In scientific database applications with less intermediate data 
productions, e.g., life sciences, it may well be that the Gb Ethernet is sufficient. Contrarily, for data mining 
applications the low latency in the InfiniBand ring is preferred. 

 
Figure 13: The original architecture of the SciLens cluster 
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The projected top node Diamond is scheduled as the bridge towards affordable supercomputing on the 
desktop. It should ideally be a single node machine with 1TB of DRAM where the CPU characteristics are 
either the proper number of cores or a mixture with high-end graphics processor cards (GPUs). The hardware 
trend would not call for this investment before 2013. 

Although each node in the system is an Amdahl blade, the combined effect on the total system performance 
is an open research question. This envisioned architecture provides a controlled laboratory setting to deepen 
our understanding of the algorithmic trade-offs of local, remote, or in flux (streaming) processing on large 
amounts of data. The multi-tier layers provide the setting for quantitative evaluation against, e.g., level of 
parallelism, system complexity and homogenous/heterogeneous virtual machine platforms. Each tier is large 
enough to support at least the astronomy SkyServer22 and seismology ORFEUS23 applications on a continual 
basis. By switching between the tiers, their relative performance and cost structure can be determined. 
Carving out slices over all tiers provide a hierarchical data cache. The InfiniBand fabrique permits variations 
in topology and exploration of different algorithms for distributed shared memory. The combined storage can 
be used as a staging area for specific experiments, e.g., TPC-H24 and SS-DB25 benchmarks, or other 
emerging user applications, e.g., Pan-STARRS26, LOFAR27 and the initial SKA28 test cases. 

The SciLens infrastructure is expected to become a landmark in data intensive research through its 
comparative application portfolio at realistic scales. The SciLens infrastructure is configured to facilitate real 
life application deployment. Studying them at full scale provides valuable insights in the requirements on 
database technology. The direct access to change the system configuration (e.g., network topology) and 
control over the complete DBMS software stack (2M lines of code) enables validation experiments hitherto 
not achievable. 

                                                        
22 See: http://www.sdss.org/ 
23 See: http://www.orfeus-eu.org/ 
24 See: http://www.tpc.org/tpch/ 
25 Available at: http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf 
26 See: http://pan-starrs.ifa.hawaii.edu/public/ 
27 See: http://www.lofar.org/ 
28 See: http://www.skatelescope.org/ 
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Figure 14: The actual architecture of the SciLens cluster 

 

4.3.2 From dream to reality 

Since 2011, we have been conducting the first round of building and installing machines for the two lower 
most layers of the SciLens cluster. After having done some tests (described in Section 4.4.1), we have 
decided to make some changes to the selected hardware in the original SciLens architecture to achieve the 
best trade-off between maximising the amount of hardware we can buy and the performance and price of the 
hardware. The actual architecture of SciLens is depicted in Figure 14: The actual architecture of the SciLens 
clusterThe configuration of the two lower most layers is as follows. 

The Pebbels. The bottom layer is called the Pebbles, which consists of 144 low-end systems with a low-
performance processor but a lot of hard discs (HDDs). The Pebbles are each equipped with an AMD E350 
BobCat processor and 8GB memory. Each Pebble has five 2TB HDDs. One disc is used for the system and 
some scratch space. The remaining four discs are configured as a 4-way RAID 0 disc29 to achieve a 
bandwidth of almost 400GB/sec. The Pebbles are intended to store large datasets that are rarely used. For 
reasons of prices, the Pebbles are connected with a 1Gb (gigabit) Ethernet, instead of an InfiniBand network. 

The Rocks. The layer above the Pebbles is called the Rocks30, which consists of 144 moderate systems that 
are comparable with contemporary desktop machines. Each Rock has an Intel® Core™ i7-2600K Quad-Core 
processor with Hyper-Threading and 16GB memory. All Rocks are connected through both a 1Gb Ethernet 

                                                        
29 See: http://en.wikipedia.org/wiki/RAID 
30 In the final architecture of SciLens, the names of the two middle layers are switched due to some human 
factors. So, in the end, the layer above Pebbles is called Rocks and the layer above the Rocks is called 
Bricks. 
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network and a 40Gb Quad Data Rate (QDR) InfiniBand network. At the moment, each Rock has only one 
2TB hard disc, but there is room for two SSDs if needed. 

The Ethernet network. The Ethernet network of SciLens has a standard setup, which schema is depicted in 
Figure 15. Currently, it has 10 switches each with 48 ports.  Each host is connected to one switch using one 
port. The network uses a star topology, i.e., there is one switch that connects all other 9 switches using 4 
cables of 1Gb connection. One of the 9 switches is only used for administrative purpose, which leaves 8 
switches to be used for connecting the hosts. The switches are fully managed switches, which means that we 
have the full control of the configuration of the network.  This allows us to try out different network settings, 
such as Virtual LANs (VLANs)31 with varying Quality of Service (QoS) and all kinds of RFCs (i.e., different 
internet protocols). The connections between the switches can be the bottleneck when large amount of data 
need to be transfers through the switches. However, for reasons of price, we decided to not connect the 
switches using 10Gb links yet. This can be considered during the second round. 

The Ethernet is wired in such a way that from the 8 switches that have hosts connected, 2 of them are filled 
with Pebbles and 2 of them are filled with Rocks. The other 4 switches are filled half with Rocks and half 
with Pebbles. This way, if one wants to do experiments with larger clusters, one can use 36 machines 
connected to a single switch, which avoid possible bottlenecks between the switches. If one wants to do 
experiments on different machines, i.e., some pebbles and some rocks, one can also avoid having to transfer 
a large amount of data between switches. 

The InfiniBand network. The Rocks are also connected with an InfiniBand network, because next to the 
standard Ethernet network, we also want to have a network that provides high bandwidth between nodes and 
switches. This way, we can have a large cluster in which we can move around large datasets. The InfiniBand 
network has 12 Mellanox switches32, 8 of them are leaf switches and the remaining 4 are spine switches33. 
The switches are so-called "half-blocking", which means that they only have half of the potential bandwidth 
between the switches, because to get the maximum amount bandwidth, we need four more switches. The 
schema of the InfiniBand network is depicted in Figure 16. Each Rock is connected to one leaf switch using 
a QDR HBA (Host Bus Adapter) port of 40Gb/sec, which in turn, is connected to all four spine switches with 
three cables. The leaf switches are not interconnected to each other, neither are the spine switches. In the 
InfiniBand network, the swiches are connected through such a high-speed network that they will not create 
potential bottlenecks for data transferring. Thus, in the InfiniBand network, transferring data from any 
machine to any other machine in the network goes extremely fast. 

                                                        
31 See: http://en.wikipedia.org/wiki/Virtual_LAN 
32 See: http://www.mellanox.com/ 
33 The names “leaf” and “spine” are standard terms in InfiniBand networks, which indicate the role of the 
switches. Leaf switches are switches to which the hosts are connected, while spine switches are only used to 
connect the leaf switches. 

 
Figure 15: Schema of the SciLens Ethernet 

network (not all nodes and switches are shown). 
Nodes are connected to switches, and switches are 

inter-connected with 4x1Gb Ethernet. 

 

 
Figure 16:  The setup of the InfiniBand network 

in SciLens. Each node is connected to one leaf 
switch, which in turn, is connected to all four 

spine switches with three cables. 
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The Ganglia monitoring system. To monitor the health and activities of the SciLens cluster, we use 
Ganglia34. Ganglia is an open-source scalable distributed monitoring system for high-performance computing 
systems such as clusters and Grids. It is based on a hierarchical design targeted at federations of clusters. 
Ganglia supports clusters up to 2000 nodes in size.  Figure 17 shows a “physical view” of the SciLens 
cluster, which lists all machines in the cluster with a brief description of the hardware resources on each 
machine. Figure 18 shows a “full view” of the SciLens cluster, which displays various statistics about the 
health of the machines and the activities. Figure 19 shows the “node view” of a single node 
pebble011.scilens in the cluster, with extended information about the hardware and software resources on 
this node, and some brief statistics of the past and current usage of the node. Figure 20 shows the “host 
view” of the same node, which displays more elaborated statistic information. 

  

                                                        
34 See: http://ganglia.sourceforge.net/ 
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Figure 17: The physical view of the SciLens cluster: a list of all machines in the cluster with a brief 

description of the hardware resources on each machine. 

 
Figure 18: The full view of the SciLens cluster: various statistics about the health of the machines and 

the past and current activities. 
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Figure 19: The node view of a single node pebble011.scilens in the cluster: extended information about 

the hardware and software resources on this node, and some brief statistics of the past and current 
usage of the node. 

 
Figure 20: The host view of a single node pebble011.scilens in the cluster: displays elaborated statistic 

information. 
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4.4 Lessons Learnt 

From the building of the first round of SciLens, we have learnt two main lessons. The one is how to select 
the hardware to achieve the best trade-off between price and performance. The other one is how to manage a 
cluster that is intended for experimental use. Below we elaborate both lessons. 

AMD E350 BobCat processors are used in the Pebbles, which is highly comparable with the original Intel 
Atom processors. The advantage of the AMD BobCat processors is that they can work with 8GB memory. 
 

4.4.1 How to select the best suitable hardware 

Before placing the final order for the SciLens machines, we have carried out extensive tests to assess if the 
initial architecture of SciLens is indeed optimal, in terms of the price and performance of the selected 
hardware and their power usage. So, in the spring of 2011 we assembled 12 test machines with highly 
different configurations, e.g., different processors, different HDDs, both HDDs and SSDs, different RAID 
cards, to evaluate the original design of the two bottom tiers. We even tried different power supplies and 
casings, to see how we can put a maximal amount of hardware in a minimal amount of casings, so that we 
can minimise the necessary server room space for the cluster machines. 

The test. The test machines were assembled from Commercially available Off-The-Shelf (COTS) elements 
and included Intel® Atom™ D425@1.8Ghz, Intel® Atom™ 330@1.6 GHz, Intel® Core™ i3-
540@3.07Ghz, Intel® Pentium® Processor E5700@3.00GHz, Intel® Core™ i3-M350@2.27Ghz, Intel® 
Core™ i7-860@2.8 GHz, Intel® Core™ i7-970@ 2.8Ghz, Intel® Core™ i7-2600, AMD Athlon™ II X2 
250, and AMD BobCat. It covered a complete range of affordable processors with 1 to 6 cores. For hard 
drives we experimented with RAID-0 configurations from 1-4 160 GB, 500 GB and 2TB SATA disks and 
128 GB, 250 GB SSDs. All systems were mounted on state-of-the art motherboards. 

Given the large number of parameters, a heuristic search was initiated to find the ‘best’ solution for the 
bottom layers. The search components were based on measuring pure disk IO bandwidth, network 
capabilities, compilation of the MonetDB system and two database warehouse benchmarks, i.e., TPC-H35 
and the air-traffic benchmark36. The latter are considered representative for the work we intend to perform on 
the machine. In addition, we measured electricity consumption of the complete system in idle mode, boot 
and high-stress situations. 

The conclusions. The selection process uncovered the weakness of the presumed energy conservative Intel 
Atoms. Using these systems for database processing turned out to both poor in performance and far more 
energy draining. For example, the complete workload on an Intel® Atom™ took around 5.2 hours compared 
to on the Intel® Core™ i7-970 processor in 1.2 hours. Although the peak energy drain was 40 against 132 
Watt, the total energy consumed by the Intel® Core™ i7-970 was better as the machine could be turned off 
after an hour. This phenomena has been observed in most cloud settings as well; migration of work and 
turning off machines is by far the best energy saver. Furthermore, the prices of the processors do not scale 
linearly with their performance. So, for instance, the Intel® Core™ i7 processors are much faster than the i3 
processors, but the i7 processors only cost about €50 more. Therefore, we choose the i7 processors for the 
Rocks. 

Both the Intel® Atom™ processors and AMD BobCat processors are slow but energy saving processors. The 
Intel® Atom™ processors are more popular, but the AMD BobCat processors are highly comparable with 
them in techniques, price and presentation. We finally choose AMD BobCat over Intel® Atom™, because 
AMD BobCat is able to work with 8GB memory, while Intel® Atom™ only works with up to 4GB memory. 

The disk specific benchmark37 confirmed the well-known dependency on read/write mix and the block sizes. 
However, in assembling the systems the motherboard chip sets had sufficient impact on the results measured. 
                                                        
35 See: http://www.tpc.org/tpch/ 
36 A description is available at: 

http://www.mysqlperformanceblog.com/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-
monetdb/ 
37 Just some standard I/O tests that simply read/write GBs of consecutively stored data from/to the disk. 
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In a 4-way RAID 0 setting, the SATA HDDs topped at 380 MB/sec and the peak for the SSD was 2 GB/sec 
using an expensive JBOD card38. However, although a 4-way RAID 0 with SSDs is five times faster than the 
SATA disks in pure I/O operations, the benefit of faster SSDs was not fully reflected in the database 
workload performance. In the TPC-H benchmark results, using SSDs only leads to about a factor 2 of 
performance improvement compared with a similar machine configured with SATA HDDs. 

4.4.2 How to manage an experimental cluster 

As pointed out before (Section 4.1.4), the intended usage of the SciLens cluster is rather different than the 
existing HPC-oriented (Cloud) clusters. Because SciLens will be used by a relatively small number of users 
to try out highly experimental software, we choose a minimalistic management strategy to keep the cluster 
maintainable and dynamic (i.e., can be easily updated to different versions of software), while allowing any 
specific user requests to be discussable. 

A minimal set of software. To avoid duplicate maintenance work, and also because other Linux 
distributions are not better and other (commercial) OS is not an option, the same OS as used on the CWI 
desktop machines, i.e., Fedora, is used on the SciLens machines. However, experiments with alternatives OS 
are possible by request. Moreover, we only install a minimal amount of software packages on the SciLens 
machiens (~800 compared with ~3800 on a normal desktop) that are required to run experiments and only 
provide command line interface. This is because SciLens should only be used for experiments, it should not 
be used for daily work, e.g., software development or writing documents. There is (almost) no connections to 
the outside world. Transferring data to the SciLens machines needs to be done through the CWI desktops. 
The idea behind this is that usually data only need to be copied to the SciLens machine once, and used for all 
experiments one wants to do. Finally, no backups of the SciLens machines are made, since backing up PBs 
of data is not feasible. Thus, owners of important datasets have to take care of the backups themselves. 

No scheduler. Currently, we do not use any scheduler to control the usage of the machines by the users. This 
is because schedulers are generally difficult to use, so they should be avoided whenever possible; also if 
there is enough resources, there is no need to limit the usage. Without any monitoring, the users are expected 
to check the availability of a node before using it; also if a large number of nodes are needed, the user should 
inform the user group to see if there are any objections. Thus, if it turns out to be necessary later on, we 
might consider using a scheduler for, e.g., long running tests requiring many machines. 

No guarantees. Because we want to do all kinds of new experiments on the SciLens cluster, so, unlike the 
normal desktop systems that are expected to be stable and always working, experimental software will be 
installed and used on the SciLens machines. Because the behaviours of those experimental software are 
highly unpredictable, it is not possible to prevent them from causing problems (e.g., system crashes). It is 
also not possible to predict, after a software or machine crash, if it is possible and how long it takes to bring a 
machine back online. In this sense, the cluster is always in a beta stage. Although urgent experiments can get 
extra machines and help, users of the SciLens cluster should never make any assumption of the availability 
of the machines and software. 

 

                                                        
38 JBOD stands for Just a bunch of disks, which is a non-RAID drive architecture, containing an array of 
drives, each of which is accessed directly as an independent drive. See: http://en.wikipedia.org/wiki/Non-
RAID_drive_architectures 
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Figure 21: Distributed database management of MonetDB for Cloud environment and local-area 

clusters. 

 

4.5 Deploying MonetDB on SciLens 

In this subsection, we describe the tools we have developed that together support managing (i.e., create, start, 
stop and checking status) and querying databases that reside on different nodes in a Cloud or LAN 
environment, such as the SciLens cluster. The tools include the following programs: 

• monetdbd: the MonetDB database server daemon. It is responsible for i) serving all databases in one 
local database farm to local or remote clients; and ii) redirecting a local client to a remote monetdbd if 
necessary. 

• monetdb: control a single MonetDB database server instance, which can be either local or remote. 

• mserver5: the MonetDB server version 5 of the data processing engine, which serves a single 
database to a (local or remote) client. 

• mclient: the MonetDB command-line client tool39, which can be used to connect to a database server 
and perform queries40. 

Figure 21 demonstrates how the tools interact with each other. Two nodes are connected through a Cloud or 
local-area cluster. A monetdbd is running on node1 and serving three databases, dbA, dbB and dbC, in its 
local database farm mydbfarm1. Two of the three databases, dbA and dbB, have already been started, 
indicated by a surrounding mserver5 process. So, queries on these two databases will be answered by the 
corresponding mserver5. The situation on node2 is similar. The main difference is that only one database, 
dbZ, is already up and running. The database dbX is started on demand after a client connection; its 
surrounding mserver5 process is indicated using the dashed line. 

On node1, the left-most mclient sends a request to the local monetdbd to connect to database dbC. Since 
dbC is on the local host and is up and running, a connection between the requesting mclient and the 
mserver5 in charge of dbC is established immediately. Then, the right-most mclient sends a request to 
the local monetdbd to connect to the database dbX. Since dbX is not locally available, the monetdbd on 
node1 searches in the local network for the remote monetdbd that serves dbX. This action is called 
neighbour discovery. The monetdbd instance on node2 will be found, which starts a mserver5 to serve 
the database dbX. Finally, the monetdbd instance on node1 transparently redirects the requesting the right-
most mclient to the mserver5 serving dbX on node2. On node2, the mclient requests are handled in 
a similar way. The request from the left-most mclient to connect to the database dbC on node1 is 

                                                        
39 MonetDB also supports other ways to connect to a database server, such as ODBC, JDBC, PHP, Python 
Perl and Ruby bindings. 
40 The primary query language is SQL. MonetDB also support other query languages such as JAQL, SciQL 
and SPARQL, but their support is in a less mature stage. 
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automatically redirect to the mserver5 on node1 serving dbC. The request from the right-most mclient 
to connect to the local database dbX is handled by a connection to the mserver5 that has just been started 
to serve dbX. So, the monetdbd daemon program provides a single access point for the database users (e.g., 
human users or (web) applications) to databases distributed over multiple nodes, but takes the burden of 
managing distributed databases (e.g., tracing their exact locations) from the users. 

Figure 21 also shows that with the tool monetdb, one (e.g., the database administrator) can manage any 
single MonetDB database server mserver5 from any node in the network. Note the difference between the 
requests sent by the two monetdb instances on node1 and node2, respectively. Because the monetdb on 
node1 wants to manage a remote database dbZ@node2, its request explicitly identifies the remote node on 
which the database is running. Another difference is between an mclient and a monetdb. An mclient 
is not aware of the exact location of the database to which it wants to connect to, so an mclient always 
sends its connecting request to its local monetdbd which will take care of establishing a connection with 
the desired database. However, a monetdb is aware of the location of the database it wants to manage, so 
the connection request goes directly to the monetdbd on the target host. This choice is motivated by the 
fact that the administrator of a local-area cluster usually has the full knowledge of the distribution of all 
databases in the system. 

In the reminder of this section, we elaborate how each of these tools work. Particularly, how a monetdbd 
discovers remote databases (Section 4.5.1.1), and how it handles multiple clients (Section 4.5.1.2). The man 
pages with complete usage information of these tools are included in Appendix I - Appendix IV. 

4.5.1 The MonetDB Database Server daemon: monetdbd 

The MonetDB Database Server daemon is called monetdbd. It can be started as follows: 

monetdbd command [command_args] dbfarm 
Where command is one of: create, start, stop, get, set, version or help. The database farm 
dbfarm to operate on must always be given to monetdbd explicitly. The complete usage information of 
monetdbd and its arguments and options is given in Appendix I. 

The program is mainly meant to be used as a daemon, but it also allows setting up and changing the 
configuration of database farms. The use of monetdbd is either as user-oriented way to configure, start and 
stop a database farm, or to be started from a startup script, such as from /etc/init.d/ on Linux systems or 
smf(5) on Solaris systems, as part of a system startup. 

A monetdbd instance manages one local cluster based database farm, referred to as the dbfarm, which is a 
directory in the system. Nowadays, the dbfarm location always has to be given as argument to monetdbd. 

Within its local cluster monetdbd takes care of starting up databases when necessary, and stopping them 
either upon request via monetdb (see Section0 below) or when being shut down. Client database 
connections are made against monetdbd initially which redirects or proxies the client to the appropriate 
database process, started on the fly when necessary. 

When started, monetdbd runs by default in the background, sending log messages to merovingian.log41, 
until being sent a stop, terminate or interrupt signal, possibly using the stop command of monetdbd. 

monetdbd uses a neighbour discovery scheme to detect other monetdbd processes running in the local 
network. Databases from those remote instances are made available to a local client that is trying to connect 
with a remote database. Remote databases never override local databases, and their availability is controlled 
by the remote monetdbd process. See also the sharing capabilities of monetdb (Section0) and Remote 
Databases (Section4.5.1.1) below. 

                                                        
41 monetdbd is formerly known as merovingian. It was renamed to monetdbd since the name 
merovingian proved to be confusing to most regular end-users. Internally, monetdbd uses the name 
merovingian at many places for historical reasons. 
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4.5.1.1 Remote Databases 

The neighbour discovery capabilities of monetdbd allow a user to contact a remote database transparently, 
as if it were a local database. By default, a monetdbd announces all its local databases in the network, so 
that a neighbouring monetdbd can pick them up to make them available for its local users. This feature can 
be disabled globally, or on database level. For the latter, the monetdb (see Section0 below) utility can be 
used to change the share property of a database. 

While neighbour discovery in itself is sufficient to locate a database in a cluster, it is limited in 
expressiveness. For instance, database names are assumed to be unique throughout the entire system. This 
means local databases overshadow remote ones, and duplicate remote entries cannot be distinguished. To 
compensate for this, monetdbd allows adding a tag to each database that is being shared. This tag is sent in 
addition to the database name, and only understood by other monetdbd programs. 

Tags are arbitrary ASCII-strings matching the pattern [A−Za−z0−9./]+. There are no assumed semantics in 
the tag, which allows for multiple approaches when using the tag. The tag is always used in combination 
with the database name. For this, the ‘/’ character is used as the separator, which hence suggests the user to 
use that character as the separator for multilevel tags. monetdbd allows common path globbing using ‘*’ 
on tags, which allows for many use cases. Consider for instance three databases with their tags: 
dbX/master/tableQ, dbY/slave/tableQ and dbZ/slave/tableQ. A default match has implicit ‘/*’ added to the 
search, making more generic search strings match more specific ones. Hence, a connection with database 
dbX is the same as dbX/*, which hence matches dbX/master/tableQ. Similarly, a database connection for 
*/master matches the same database as before. Note that the implicit ‘/*’ is not added if that would cause no 
matches, such as for */master/tableQ, which would return all masters for tableQ, which in our example is 
only dbX. In contrast, a database connect for */slave/tableQ matches with either dbY or dbZ. monetdbd 
returns these two options to the client in a round-robin fashion, such that subsequent connects for the same 
pattern result in a load-balanced connect to either of both databases. 

With tags in use, one can possibly make distinction between databases with setup similar to the above 
example. The previous example could hence also be setup as follows: tableQ/master, tableQ/slave and 
tableQ/slave. Connecting to tableQ/slave would now return either of the two matching databases even 
though they are not unique (apart from the host they are located on, which is not shown in the example). 
While being confusing for humans, for monetdbd it is the same situation as in the previous example. 
However, because globbing allows making things easier to understand, tags for both slaves could be changed 
to slaveX or slave/X and use the necessary pattern to match them. It is up to the user to decide how to use the 
tags. 

4.5.1.2 Multiplex-Funnels  

monetdbd implements multiplex-funnel capabilities. As the name suggests two techniques are combined, 
the multiplexer and the funnel. 

The funnel capability limits the access to the database to one client at a time. That is, if multiple clients 
connect to the funnel, their queries will be serialised such that they are executed one after the other. An effect 
of this approach is that clients no longer have an exclusive channel to the database, which means that 
individual queries from one client may have been interleaved with queries from others. This most notably 
makes SQL transaction blocks unreliable with a funnel. The funnel, hence, is meant to scale down a large 
amount of clients that perform short-running (read-only) queries, as typically seen in web-based query loads. 

When a funnel is defined to use multiple databases, the funnel adds a multiplexer to its query channel. A 
multiplex-funnel sends each query to all of the defined databases. This behaviour can be quite confusing at 
first, but proves to be useful in typical sharding configurations, where in particular simple selection queries 
have to be performed on each of the shards. The multiplexer combines the answers from all defined 
databases in one single answer that it sends back to the client. However, this combining is without any smart 
logic, that is, the multiplexer does not evaluate the query it is running, but just combines all answers it 
receives from the databases. This results in, e.g., as many return tuples for a SELECT COUNT(*) query, as 
there are databases defined. 

Due to the two above-mentioned characteristics, a multiplex-funnel has some limitations. As mentioned 
before, transactions over multiple queries are likely not to result in the desired behaviour. This is due to each 
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query to the funnel is required to be self-contained. Further, since for each query, the results from multiple 
servers have to be combined into one, that query must only return a single response, i.e., multi-statement 
queries are most likely causing the funnel to respond with an error, or return garbled results. Last, the size of 
each query is limited to currently about 80K. While this size should be sufficient for most queries, it is likely 
not enough for, e.g., COPY INTO statements. Apart from the data transfer implications, such statements 
should not be used with the funnel, as the results will be undefined due to the limited query buffer. 
Applications using the funnel should aim for short and single-statement queries that require no transactions. 

4.5.2 Control a MonetDB Database Server instance: monetdb 

The controlling program of a MonetDB Database Server instance is call monetdb. It can be started as 
follows: 

monetdb [monetdb_options] command [command_options][command_args] 
Where command is one of: create, destroy, lock, release, status, start, stop, kill, set, 
get, inherit, discover, help or version. The commands facilitate adding, removing, maintaining, 
starting and stopping a database inside the MonetDB Database Server. monetdb allows an administrator of 
the MonetDB Database Server to perform various operations on the databases in the cluster. It relies on a 
monetdbd running on the target host in the background for all operations. The complete usage information 
of monetdb and its arguments and options is given in Appendix II. 

4.5.3 The MonetDB server version 5: mserver5 

The current MonetDB server that performs all processing on request of clients for a certain database is called 
mserver542. Note that while mserver5is the process that does the actual work, as we have explained 
before, it is recommended to start, monitor and connect to an mserver5 process through monetdbd. 

This man-page given in Appendix III describes the options that mserver5 understands. However, it is 
only intended for people who really need to work with mserver5 itself. In regular cases, the programs 
monetdbd and monetdb control the many options, and allow adjusting them to appropriate values where 
sensible. For normal usage, it is preferred to apply any configuration through these programs. 

When the build-time configuration did not disable this, an mserver5 process presents the user with a 
console prompt. On this prompt, MAL commands can be executed. The architecture is setup to handle 
multiple streams of requests. The first thread started represents the server, which is the console prompt, 
reading from standard input and writing to standard output. 

The server thread started remains in existence until all other threads die. The server can be stopped by 
pressing Ctrl-D or entering the command \q in its console, or by sending it a termination signal (SIGINT, 
SIGTERM, SIGQUIT). 

4.5.4 The MonetDB command-line tool: mclient 

mclient is the command-line interface to a MonetDB server. It can be started as follows: 

mclient [ options ] [ file or database [ file ... ] ] 
If the −−statement=query (−s query) option is given, the query is executed. If any files are listed 
after the options, queries are read from the files and executed. The special filename ‘-‘ refers to the standard 
input. Note that if there is both a −−statement option and filename arguments, the query given with 
−−statement is executed first. If no −−statement option is given and no files are specified on the 
command line, mclient reads queries from standard input. 

When reading from standard input, if standard input is a terminal or if the −−interactive (−i) option 
is given, mclient interprets lines starting with a ‘\’ (backslash) character specially. See the section 
BACKSLASH COMMANDS in Appendix IV. 

Before mclient starts parsing command line options, it reads a .monetdb file. If the environment variable 
DOTMONETDBFILE is set, it reads the file pointed to by that variable instead. When unset, mclient 
                                                        
42 The number 5 indicates the version number of the DBMS kernel. 
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searches for a .monetdb file in the current working directory, and if that does not exist, in the current user’s 
home directory. This file can contain defaults for the flags user, password, language, 
save_history, format and width. For example, an entry in a .monetdb file that sets the default 
language for mclient to MAL looks like this: language=mal. To disable reading the .monetdb file, set 
the variable DOTMONETDBFILE to the empty string in the environment. 

The complete usage information of mclient and its arguments and options is given in Appendix IV. 

4.6 Conclusion 

In the section, we have reported our experience on the designing, building and managing of the SciLens 
cluster, a large-scale local-area cluster intended for database research for data-intensive scientific application. 
We have also described four tools that have been developed to run distributed MonetDB databases on a 
Cloud or local-area network. 

Currently, we are working on the second round to install machines for the two upper layers. The Bricks layer 
will typically contain machines that are comparable with contemporary server systems. We are considering 
the option 16 machines, with each of them equipped with two 8-core Intel® Xeon® processors, 256GB 
memory and four 2TB HDDs. We plan to connect the Bricks with two InfiniBand networks and two 1Gb 
Ethernet networks. The configuration for the top layer is still rather open.  Basically, it will have 1, 2 or 4 
high-end machines with, e.g., 8 core, 2 TB RAM. Another option we want to consider is to get 10Gb 
Ethernet between the switches, or even between some leaf machines. Thirdly, depending on the price and 
availability, we want to consider adding SSDs to the Rocks and/or in the high-end machines. Finally, we 
want to consider adding GPUs into the top layer high-end machines, since CPU-GPU cross device query 
processing is gaining increasing interest from the database research community (Pirk, 2012). 
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5 CumulusRDF: Linked Data Management on Nested Key-
Value Stores 

Many datasets on the Linked Data web cover descriptions of millions of entities. DBpedia (Auer et al. 2007), 
for example, describes 3.5m things with 670m RDF triples, and LinkedGeoData describes around 380m 
locations with over 2bn RDF triples. Standard file systems are ill equipped for dealing with these large 
amounts of files (each description of a thing would amount to one file). Thus, data publishers typically use 
full-fledged RDF triple stores for exposing their datasets online. Although the systems are in principle 
capable of processing complex (and hence expensive) queries, the offered query processing services are 
curtailed to guarantee continuous service43. 

At the same time, there is a trend towards specialised data management systems tailored to specific use cases 
(Stonebaker et al. 2005). Distributed key-value stores, such as Google Bigtable (Chang et al. 2006), Apache 
Cassandra (Lakshman et al. 2009) or Amazon Dynamo (DeCandia et al. 2007), sacrifice functionality for 
simplicity and scalability. These stores operate on a key-value data model and provide basic key lookup 
functionality only. Some key-value stores (such as Apache Cassandra and Google’s Bigtable) also provide 
additional layers of key-value pairs, i.e. keys can be nested. We call these stores nested key-value stores. As 
we will see, nesting is crucial to efficiently store RDF data. Joins, the operation underlying complex queries, 
either have to be performed outside the database or are made redundant by de-normalising the storage 
schema. Given the different scope, key-value stores can be optimised for the requirements involving web 
scenarios, for example, high availability and scalability in distributed setups, possibly replicated over 
geographically dispersed data centres. 

Common to many key-value stores is that they are designed to work in a distributed setup and provide 
replication for fail-safety. The assumption is that system failures occur often in large data centres and 
replication ensures that components can fail and be replaced without impacting operation. 

The goal of our work (Ladwig et al. 2011) is to investigate the applicability of key-value stores for managing 
large quantities of Linked Data. We present our main contributions: 

• We devise two RDF storage schemes on Google BigTable-like (nested) key-value stores supporting 
Linked Data lookups and atomic triple pattern lookups (Section 5.1). 

• We compare the performance of the two storage schemes implemented on Apache Cassandra, using 
a subset of the DBpedia dataset with a synthetic and a real-world workload obtained from DBpedia’s 
access log (Section 5.2). 

We discuss related work in Section 5.3 and conclude with a summary and an outlook to future work in 
Section 5.4. 

5.1 Storage Layouts 

In the following we describe indexing schemes for RDF triples on top of nested key/value stores. The goals 
for the index scheme are: 

• To cover all six possible RDF triple pattern with indices to allow for answering single triple patterns 
directly from the index. In other words, we aim to provide a complete index on RDF triples (Harth et 
al. 2005). 

• To employ prefix lookups so that one index covers multiple patterns; such a scheme reduces the 
number of indices and thus index maintenance time and amount of space required. 

Ultimately, the index should efficiently support basic triple pattern lookups and (as a union of those) Linked 
Data lookups which we evaluate in Section 5.2. 

                                                        
43 Restrictions on query expressivity are common in other large-scale data services, for example in the 
Google Datastore.  
See: http://code.google.com/appengine/docs/  python/datastore/overview.html/#Queries_and_Indexes 
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5.1.1 Nested Key-Value Storage Model 

Since Google’s paper on Bigtable (Chang et al. 2006), a number of systems have been developed that mimic 
Bigtable’s mode of operation. Bigtable pioneered the use of the key-value model in distributed storage 
systems and inspired systems such as Amazon’s Dynamo (DeCandia et al. 2007) and Apache’s Cassandra 
(Lakshman et al. 2009). We illustrate the model in Figure 22. 

 
Figure 22: Key-value storage model comprising rows and columns. A lookup on the row key (k) 

returns columns, on which a lookup on column keys (c) returns values (v). 

 

We use the notation {	
  key:value	
  } to denote a key-value pair. We denote concatenated element with, 
e.g., sp, constant entries with ’constant’ and an empty entry with -­‐. The storage model thus looks like 
the following: 

{	
  row	
  key	
  :	
  {	
  column	
  key	
  :	
  value	
  }	
  }	
  

Systems may use different strategies to distribute data and organise lookups. Cassandra uses a distributed 
hash table structure for network access: storage nodes receive a hash value; row keys are hashed and the row 
is stored on a node, which is closest in numerical space to the row key’s hash value. Only hash lookups thus 
can be performed. 

Although there is the possibility for configuring an order preserving partitioner for row keys, we dismiss that 
option, as skewed data distribution easily can lead to hot-spots among the storage nodes. 

Another restriction is that entire rows are stored on a single storage node - data with the same row key 
always ends up on the same machine. Columns, on the other hand, are stored in order of their column keys, 
which means that the index allows for range scans and therefore prefix lookups. 

Please note that keys have to be unique; both row keys and column keys can only exist in the index once, 
which has implications on how we can store RDF triples. 

Cassandra has two further features which our index schemes use: supercolumns and secondary indices. 
Supercolumns add an additional layer of key-value pairs; a storage model with supercolumns looks like the 
following: 

{	
  row	
  key	
  :	
  {	
  supercolumn	
  key	
  :	
  {	
  column	
  key	
  :	
  value	
  }}}	
  

Supercolumns can be either stored based on the hash value of the supercolumn key or n sorted order. In 
addition, supercolumns can be further nested. 

Secondary indices, another feature of Cassandra we use for one of the storage layouts, allow to map column 
values to row keys: 

{	
  value	
  :	
  row	
  key	
  }	
  

Applications could use the regular key-value layout to also index values to row keys, however, secondary 
indices are “shortcuts” for such indices. In addition, secondary indices are built in the background without 
requiring additional maintenance code. 
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We identify two feasible storage layouts: one based on supercolumns (“Hierarchical Layout”), and one based 
on a standard key-value storage model (“Flat Layout”), but requiring a secondary index given restrictions in 
Cassandra. 

5.1.2 Hierarchical Layout 

Our first layout scheme builds on supercolumns.  

The first index is constructed by inserting (s, p, o) triples directly into a supercolumn three-way index, with 
each RDF term occupying key, supercolumn and column positions respectively, and an empty value. We 
refer to that index as SPO, which looks like the following: 

{	
  s	
  :	
  {	
  p	
  :	
  {	
  o	
  :	
  -­‐	
  }	
  }	
  

For each unique s as row key, there are multiple supercolumns, one for each unique p. For each unique p as 
supercolumn key, there are multiple columns, one for each o as column key. The column value is left empty. 

Given that layout, we can perform (hash-base) lookups on s, (sorted) lookups on p and (sorted) lookups on 
o. We construct the POS and OSP indices analogously. We use three indices to satisfy all six RDF triple 
patterns as listed in Table 10. The patterns (spo) and (???) can be satisfied by any of the three indices. 

 

Table 10: Triple patterns and respective usable indices to satisfy triple pattern 

Triple Pattern Index 

(spo) SPO, POS, OSP 

(sp?) SPO 

(?po) POS 

(s?o) OSP 

(?p?) POS 

(s??) SPO 

(??o) OSP 

(???) SPO, POS, OSP 

 

5.1.3 Flat Layout 

We base our second storage layout on the standard key-value data model. As columns are stored in a sorted 
fashion, we can perform range scans and therefore prefix lookups on column keys. We thus store (s, p, o) 
triples as 

{	
  s	
  :	
  {	
  po	
  :	
  -­‐	
  }	
  }	
  

where s occupies the row-key position, p the column-key position and o the value position. 

We use a concatenated po as column key as column keys have to be unique. Consider using  

{s	
  :	
  	
  {	
  p	
  :	
  {	
  o	
  }}}	
  

as layout, which p as column key and o as value. In RDF, the same predicate can be attached to a subject 
multiple times, which violates the column key uniqueness requirement. We would like to delegate all low 
level index management to Cassandra, hence we do not consider maintaining lists of o’s manually. 

The SPO index satisfies the triple patterns (s??),(sp?) and (spo) with direct lookups. To perform a (sp?) 
lookup on the SPO index, we look for the column keys matching p (via prefix lookup on the column key po) 
on the row with row key s. 

We also need to cover the other triple patterns. Thus, two more indices are constructed by inserting (p, o, s) 
and (o, s, p) re-orderings of triples, leading to POS and OSP indices. In other words, to store the SPO, POS 
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and OSP indices in a key-value store, we create a column family for each index and insert each triple three 
times: once into each column family in different order of the RDF terms. 

There is a complication with the POS index though, because RDF data is skewed: many triples may share the 
same predicate (Harth et al. 2007). A typical case are triples with rdf:type as predicate, which may 
represent a significant fraction of the entire dataset. Thus, having P as the row key will result in a very 
uneven distribution with a few very large rows. As Cassandra is not able to split rows among several nodes, 
large rows lead to problems (at least a very skewed distribution, out of memory exceptions in the worst 
case). The row size may exceed node capacity; the uneven distribution makes load balancing problematic. 
We note that skewed distribution may also occur on other heavily used predicates (and possibly objects, for 
example in case of heavily used class URIs), depending on the dataset. For an in-depth discussion of uneven 
distribution in RDF datasets see Duan et al. 2011 

To alleviate the issue, we take advantage of Cassandra’s secondary indexes. 

First, we use PO (and not P) as a row key for the POS index which results in smaller rows and also better 
distribution, as less triples share predicate and object than just the predicate. The index thus looks like the 
following: 

{	
  po	
  :	
  {	
  s	
  :	
  -­‐	
  }	
  }	
  

In each row there is also a special column ’p’ which has P as value: 

{	
  po	
  :	
  {	
  ’p’	
  :	
  p	
  }	
  }	
  

Second, we use a secondary index which maps column values to row keys, resulting in an index which 
allows for retrieving all PO row keys for a given P. Thus, to perform a (?p?) lookup, the secondary index is 
used to retrieve all row keys that contain that property. For (?po) lookups, the corresponding row is simply 
retrieved. 

In effect, we achieve better distribution at the cost of a secondary index and an additional redirection for 
(?p?) lookups. 

 

5.2 Evaluation 

We now describe the experimental setup and the results of the experiments. We perform two sets of 
experiments to evaluate our approach: 

• first, we measure triple pattern lookups to compare the hierarchical (labelled Hier) and the flat 
storage (labelled Flat) layout; 

• second, we select the best storage layout to examine the influence of output format on overall 
performance. 

 

5.2.1 Setting 

We conducted all benchmarks on four nodes in a virtualised infrastructure (provided via OpenNebula44, a 
cloud infrastructure management system similar to EC2). Each virtualised node has 2 CPUs, 4 GB of main 
memory and 40 GB of disk space connected to a networked storage server (SAN) via GPFS45. The nodes run 
Ubuntu Linux. We used version 1.6 of Sun’s Java Virtual Machine and version 0.8.1 of Cassandra. The 
Cassandra heap was set to 2GB, leaving the rest for operating system buffers. We deactivated the Cassandra 
row cache and set the key cache to 100k. The Tomcat46server was run on one of the cluster nodes to 
implement the HTTP interface. Apache JMeter47 was used to simulate multiple concurrent clients. 

                                                        
44 See: http://opennebula.org 
45 See: http://www-03.ibm.com/systems/software/gpfs/ 
46 See: http://tomcat.apache.org/ 
47 See: http://jakarta.apache.org/jmeter/ 
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5.2.2 Dataset and Queries 

For the evaluation we used the DBpedia 3.6 dataset48 excluding page links; characteristics of that DBpedia 
subset are listed in Table 11. We obtained DBpedia query logs from 2009-06-30 to 2009-10-25 consisting of 
87,203,310 log entries. 

Table 11: DBpedia dataset characteristics 

Name Value 

Distinct triples 120,436,315 

Distinct subjects 18,324,688 

Distinct predicates 42,004 

Distinct objects 40,531,020 

 

We constructed two query sets: 

• for testing single triple pattern lookups, we sampled 1 million S, SP, SPO, SO, O patterns from the 
dataset; 

• for Linked Data lookups we randomly selected 2 million resource lookup log entries from the 
DBpedia logs (which, due to duplicate lookups included in the logs, amount to 1,241,812 unique 
lookups). 

The triple pattern lookups were executed on CumulusRDF using its HTTP interface. The output of such a 
lookup is the set of triples matching the pattern, serialised as RDF/XML. 

The output of a Linked Data lookup on URI u is the union of two triple pattern lookups: 1) all triples 
matching pattern (u??) and 2) a maximum of 10k triples matching (??u). The number of results for object 
patterns is limited in order to deal with the skewed distribution of objects, which may lead to very large 
result sets. A similar limitation is used by the official DBpedia server (where a maximum of 2k triples in 
total are returned). 

 

5.2.3 Results: Storage Layout 

Table 12 shows the size and distribution of the indices on the four machines. The row size of a Cassandra 
column family is the amount of data stored for a single row-key. For example, for the OSP index, this is the 
number of triples that share a particular object.  

 

Table 12: Index size per node in GB. POS Flat is not feasible due to skewed distribution of predicates. 
The size for POS Sec includes the secondary index. 

Index Node 1 Node 2 Node 3 Node 4 Std.Dev. Max. Row 

SPO Hier 4.41 4.40 4.41 4.41 0.01 0.0002 

SPO Flat 4.36 4.36 4.36 4.36 0.00 0.00044 

OSP Hier 5.86 6.00 5.75 6.96 0.56 1.16 

OSP Flat 5.66 5.77 5.54 6.61 0.49 0.96 

POS Hier 4.43 3.68 4.69 1.08 1.65 2.40 

POS Sec 7.35 7.43 7.38 8.05 0.33 0.56 

POS Flat - - - - - - 

                                                        
48 See: http://wiki.dbpedia.org/Downloads36 
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The load distribution shows several typical characteristics of RDF data and directly relates to the dataset 
statistics from Table 11. The small maximum row size for SPO shows that there are very few triples that 
share a subject. The large maximum row size of the OSP index indicates that there are a few objects that 
appear in a large amount of triples, i.e., the distribution is much more skewed (this is usually due the small 
number of classes that appear as objects in the many rdf:type triples). 

Here, we can also see the difference between the hierarchical and secondary POS indices. The hierarchical 
POS index only uses the predicate as key, leading to a very skewed distribution (indicated by the maximum 
row size) and a very uneven load distribution among the cluster nodes (indicated by the high standard 
deviation). The POS index using a secondary index fares much better as it uses the predicate and object as 
row key. This validates the choice of using secondary index for POS over the hierarchical layout. 

 

5.2.4 Results: Queries 

The performance evaluation consists of two parts: first, we use triple pattern lookups to compare two 
CumulusRDF storage layouts and, second, we examine the influence of output formats using Linked Data 
lookups. 

 

Triple Pattern Lookups Figure 23 shows the average number of requests/s for the two CumulusRDF 
storage layouts (flat and hierarchical) for 2, 4, 8, 16 and 32 concurrent clients. Overall, the flat layout 
outperforms the hierarchical layout. For 8 concurrent clients, the flat layout delivers 1.6 times as many 
requests per second as the hierarchical layout. For both layouts the number of requests per second does not 
increase for more than 8 concurrent clients, indicating a performance limit. This may be due to the bottleneck 
of using a single HTTP server (as we will see in the next section).  

 
Figure 23: Requests per second for triple pattern lookups with varying number of clients. 

Figure 24 shows the average response times from the same experiment, broken down by pattern type (S, O, 
SP, SO and SPO). This shows the differences between the two CumulusRDF storage layouts. While the 
hierarchical layout performs better for S, O and SP patterns, it performs worse for SO and SPO patterns. The 
worse performance for SO and SPO is probably due to inefficiencies of Cassandra super columns. For 
example, Cassandra is only able to de-serialise super columns as a whole, which means for SPO lookups all 
triples matching a particular subject and predicate are loaded. This is not the case for the flat layout (which 
does not use super columns): here, Cassandra is able to load only a single column, leading to much better 
response times. 



PlanetData Deliverable D 5.2 

 Page 58 of (86)   
 

 
Figure 24: Average response times per triple pattern (for 8 concurrent clients). Please note we omitted 

patterns involving the POS index (P and PO). Error bars indicate the standard deviation. 

 

Linked Data Lookups Figure 25 shows the average number of requests per second of the flat layout of 
CumulusRDF with two different output formats: RDF/XML and NTriples. As CumulusRDF stores RDF data 
in N3 notation the N-Triples output is cheaper to generate (for example, it does not require the escaping that 
RDF/XML does). This is reflected in the higher number of lookups per second that were performed using N-
Triples output. The difference between the two output formats is more pronounced for a higher number of 
concurrent clients: for 4 clients N-Triples is 12% faster than RDF/XML, whereas for 8 clients the difference 
is 26%. This indicates that the performance is mainly limited by the Tomcat server, whose web app performs 
the output formatting. 

 
Figure 25: Requests per second Linked Data lookups (based on flat storage layout) with varying 

number of clients (including measure of effect of serialisation). 

 

5.2.5 Conclusion 

Overall, the evaluation shows that the flat layout outperforms the hierarchical layout. We also see that 
Apache Cassandra is a suitable storage solution for RDF, as indicated by the preliminary results. As the 
different layouts of CumulusRDF perform differently for different types of lookups, the choice of storage 
layout should be made considering the expected workload. From the experiments we can also see that the 
output format also has a large impact on performance. It may be beneficial to store the RDF data in an 
already escaped form if mainly RDF/XML output is desired. 
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5.3 Related Work 

A number of RDF indexing schemes have been devised. YARS (Harth et al. 2005) described the idea of 
“complete” indices on RDF with context (quads), with an index for each possible triple pattern. Similar 
indices are used by RDF-3X (Neumann et al. 2008) and Hexastore (Weiss et al. 2008). All of these systems 
are built to work on single machines. In our work we use complete indices for RDF triples, implemented in 
three indices over a distributed key-value store. 

Abadi et al. 2007 introduced an indexing scheme on C-Store for RDF called “vertical partitioning”, however, 
with only an index on the predicate while trying to optimise access on subject or object via sorting of rows. 
The approach is sub-optimal on datasets with many predicates as subject or object lookups without specified 
predicate require a lookup on each of the predicate indices. For a follow-up discussion on C-Store we refer 
the interested reader to (Sidirougos et al. 2008). 

The skewed distribution for predicates on RDF datasets and the associated issues in a distributed storage 
setting have been noted in (Harth et al. 2007). 

Stratustore is an RDF store implemented over Amazon’s SimpleDB (Stein et al. 2010). In contrast to 
Stratusstore, which only makes use of one index on subject (and similarly the RDF adaptor for Ruby49), we 
index all triple patterns. In addition, Cassandra has to be set up on a cluster while SimpleDB is a service 
offering, accessible via defined interfaces. 

 

5.4 Conclusion and Future Work 

We have presented and evaluated two index regimen for RDF on nested key-value stores to support Linked 
Data lookups and basic triple pattern lookups. The flat indexing scheme has given best results; in general, our 
implementation of the flat indexing scheme on Apache Cassandra can be seen as a viable alternative to full-
fledged RDF stores in scenarios where large amounts of small lookups are required. We are working on 
packaging the current version of CumulusRDF for publication as open source at 
http://code.google.com/p/cumulusrdf/. We would like to add functionality for automatically generating and 
maintaining dataset statistics to aid dataset discovery or distributed query processors. Future experiments 
include measures on workloads involving inserts and updates. 

                                                        
49 See: http://rdf.rubyforge.org/cassandra/ 
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6 News Aggregator – A High-Volume Data Aggregation 
Pipeline 

 
In this section, we describe a news aggregator pipeline, which was partially developed within the PlanetData 
project and showcases the handling of relatively large amounts of data. 

The aggregator represents the first stage in processing and analysing textual streams – their acquisition, pre-
processing into a form suitable for further analyses, and an efficient mechanism for their distribution. 

6.1 Overview 

The news aggregator is a piece of software developed at JSI which provides a real-time aggregated stream of 
textual news items provided by RSS-enabled news providers across the world. The pipeline performs the 
following main steps: 

1) Periodically crawls a list of RSS feeds and a subset of Google News and obtains links to news 
articles 

2) Downloads the articles, taking care not to overload any of the hosting servers 

3) Parses each article to obtain 

a. Potential new RSS sources, to be used in step (1) 

b. Cleartext version of the article body 

4) Process articles with Enrycher (see Section 6.3.2) 

5) Expose two streams of news articles (cleartext and Enrycher-processed) to end users. 

 

6.2 System Architecture 

Refer to Figure 26 for a schematic overview of the architecture. The first part of the aggregator is based 
around a PostgreSQL database running on a Linux server. The database contains a list of RSS feeds which 
are periodically downloaded by the RSS monitoring component. RSS feeds contain a list of news article 
URLs and some associated metadata, such as tags, publication date, etc. Articles that are not already present 
in the database are added to a list of article URLs, and marked for download. Tags and publication date are 
also stored alongside, if found in the RSS. 

A separate component periodically retrieves the list of new articles and fetches them from the web. The 
complete HTML is stored in the database, and simultaneously sent to a set of cleaning processes over a 0mq 
message queue. 

The cleaning process converts the HTML into UTF-8 encoding, determines which part of the HTML 
contains the useful text, and discards the remainder and all of the tags. Finally, a classifier is used to 
determine the primary language.  

The cleaned version of the text is stored back in the database, and sent over a message queue to consumers. 

Documents in English language are sent to the Enrycher web service, where named entities are extracted and 
resolved, and the entire document is categorized into a DMOZ topic hierarchy. 

Both the cleartext and the enriched versions of documents are fed to a filesystem cache, which stores a 
sequence of compressed xml files, each containing a series of documents in the order they have arrived 
through the processing pipeline. The caching service exposes an HTTP interface to the web through an 
Apache transparent proxy, serving those compressed xml files on user request. 
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Figure 26. News aggregator system architecture. 

 

The Apache server also hosts a CGI process capable of generating HTML5 server-side events, which 
contains the article metadata and cleartext as payload. These events can be consumed using Javascripts 
EventSource object in a web browser. 

 

6.3 Data Preprocessing 

Data preprocessing is an important part of the pipeline, both in terms of the added value provides and in 
terms of challenges posed by the data volume. The articles themselves are certainly useful, but almost any 
automated task dealing with them first needs to transform the raw HTML into a form more suitable for 
further processing. We therefore perform the preprocessing ourselves; this is much like the practice followed 
by professional data aggregation services like Spinn3r or Gnip. 

In terms of data volume, preprocessing is the most interesting stage and the one at which the most tradeoff 
can be made. The present data download rate of about one article per second is nothing extreme, especially if 
we consider scaling to multiple processing nodes; however, it is nontrivial in that adding complex 
preprocessing steps (e.g. full syntactic parsing of text) or drastically increasing data load (e.g. including a 
10% sample of the Twitter feed) would turn preprocessing into a bottleneck and require us to scale the 
architecture.  

6.3.1 Extracting article body from web pages 

Extracting meaningful content from the HTML is the most obviously needed preprocessing step. As this is a 
pervasive problem, a lot has been published on the topic; see e.g. Pasternack (2009), Arias (2009), and 
Kohlschütter (2010). We initially implemented the algorithm by Pasternack because of its simplicity and 
reported state-of-the-art performance. The algorithm scores each token (a word or a tag) in the document 
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based on how probable it is to comprise the final result (the scores are trained); then it extracts the maximum 
token subsequence. 

Datasets 

We tested the initial algorithm on three manually developed datasets. Each of the three consists of 50 
articles, each from a different web site.  

• english – English articles only. 

• alphabet – Non-English articles using an alphabet, i.e. one glyph per sound. This includes e.g. 
Arabic. 

• syllabary – Non-English articles using a syllabary, i.e. one glyph per syllable. This boils down to 
Asian languages. They lack word boundaries and have generally shorter articles in terms of glyphs. 
Also, the design of Asian pages tends to be slightly different. 

Some of the input pages (about 5%), realistically, also do not include meaningful content. This is different 
from other data sets but very relevant to our scenario. Examples are paywall pages and pages with a picture 
bearing a single-sentence caption.  

The fact that each of the 150 articles comes from a different site is crucial – most of the papers on this topic 
evaluate on a dataset from a small number of sites, which leads to overfitting and poor performance in the 
general case. This was also the case with Pasternack’s algorithm. In particular, it tends to chip off the 
beginning and end of the article body if there is a link in vicinity; and it tends to include discussion threads 
appearing under the article body as the “benefit” of comments’ text outweighs the markup between the body 
and the comments. 

As the performance was unsatisfactory, we developed three new algorithms. 

Algorithms 

• WWW – an improved version of Pasternack, it extracts two most promising contiguous chunks of 
text from the article to account for the fact that the first paragraph is often placed separately from the 
main article body. 

• WWW++ – a combination of WWW and heuristic pre- and post-processing to account for the most 
obvious errors of WWW. For instance, preprocessing tries to remove comments. 

• DOM – a completely heuristics-based approach which requires the DOM tree to be computed. With 
the fast libxml package, this is not a limiting factor. The core of the heuristic is to take the first large 
enough DOM element that contains enough promising <p> elements. Failing that, take the first <td> 
or <div> element which contains enough promising text. The heuristics for the definition of 
“promising” rely on metrics found in other papers as well; most importantly, the amount of markup 
within a node. Importantly, none of the heuristics are site-specific. 

In all three algorithms, all pages are first normalized to the utf8 character set using the BeautifulSoup50 
package (which in turn uses a combination of http headers, meta tags and the chardet tool). 

Evaluation 

We evaluated two of the three pairs of algorithms by comparing per-article performance. We did compare 
WWW and DOM; based on informal inspection of outputs, DOM would be certain to perform better. 

Algo 
Dataset 

WWW vs WWW++ 
number of articles where one of the algorithms performs better 

WWW++ vs DOM 
number of articles where one of the algorithms performs better 

WWW tie WWW++ WWW++ tie DOM 
English 2 43 4 7 34 8 

alphabet 4 37 8 6 36 7 
syllabary 0 44 6 2 12 32 

                                                        
50  See: http://www.crummy.com/software/BeautifulSoup/ 
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Table 13. Performance comparison of webpage chrome removal algorithms 

The differences between the algorithms are statistically significant with a 5% confidence interval only on the 
syllabary dataset; it is however clear from the data that overall, WWW++ performs better than WWW and 
DOM performs better still. DOM is therefore our algorithm of choice. 

 

For DOM, we additionally performed an analysis of errors on all three datasets. As the performance did not 
vary much across datasets, we present the aggregated results. For each article, we manually graded the 
algorithm output as one of the following: 

• Perfect [66.3%] – The output deviates from the golden standard by less than one sentence or not at 
all: a missing section title or a superfluous link are the biggest errors allowed. This also includes 
cases where the input contains no meaningful content and the algorithm correctly returns an empty 
string. 

• Good [22.1%] – The output contains a subset or a superset of the golden standard. In vast majority 
of the cases, this means a single missing paragraph (usually the first one which is often styled and 
positioned on the page separately) or a single extraneous one (short author bio or an invitation to 
comment on the article). A typical serious but much rarer error is the inclusion of visitors’ comments 
in the output. 

• Garbage [5.8%] – The output contains mostly or exclusively text that is not in the golden standard. 
These are almost always articles with a very short body and a long copyright disclaimer that gets 
picked up instead. 

• Missed [5.8%] – Although the article contains meaningful content, the output is an empty string, i.e. 
the algorithm fails to find any content. 

If we combine “Perfect” and “Good” (where the outcome is most often only a sentence away from the 
perfect match) into a “Positive” score, both precision and recall for DOM are 94%. This (article-based) 
metric is arguably comparable with the word- or character-based metrics employed in some other papers on 
state of the art methods (Kohlschütter 2010); those also report precision and accuracy of at most 95%. 

6.3.2 Extracting semantic information from unstructured text 

For most of semantic processing, we rely on Enrycher (Štajner 2009) running as a service. In order to 
increase error resiliency, improve the utilization of the service and avoid undue delays in the preprocessing 
pipeline, we access the service in a multithreaded fashion. For performance evaluation and other information, 
please refer to the paper by Štajner. 

Enrycher annotates each article with named entities appearing in the text (resolved to Wikipedia when 
possible), discerns its sentiment and categorizes the document into the general-purpose DMOZ category 
hierarchy. 

We also annotate articles with a language; detection is provided by a combination of Google’s open-source 
Compact Language Detector library for mainstream languages and a separate Bayesian classifier. The latter 
is trained on character trigram frequency distributions in a large public corpus of over a hundred languages. 
We use CLD first; for the rare cases where the article’s language is not supported by CLD, we fall back to 
the Bayesian classifier. The error introduced by automatic detection is below 1% (McCandless, 2011). 

6.4 Data Properties 

In no particular order, we list some statistics of the data provided by the news aggregator. 

6.4.1 Sources 

The crawler actively monitors about 75000 feeds from 1900 sites. The list of sources is constantly being 
changed – stale sources get removed automatically, new sources get added from crawled articles. In addition, 
we occasionally manually prune the list of sources using simple heuristics as not all of them are active, 
relevant or of sufficient quality. The feed crawler has inspected about 350000 RSS feeds in its lifetime. The 
list was bootstrapped from publically available RSS compilations.  
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Besides the RSS feeds, we use Google News (news.google.com) as another source of articles. We 
periodically crawl the US English edition and a few other language editions, randomly chosen at each crawl. 
As news articles are later parsed for links to RSS feeds, this helps diversify our list of feeds while keeping 
the quality high. 

We also support additional custom news sources, provided by payable services and/or project partners in 
various projects.  

The sources are not limited to any particular geography or language.  

6.4.2 Language distribution 

We cover 37 languages at an average daily volume of 100 articles or more. English is the most frequent with 
an estimated 54% of articles being in that language. German, Spanish and French are represented by 3 to 10 
percent of the articles. Other languages reaching at least 1% of the corpus are Chinese, Slovenian, Portugese, 
Korean, Italian and Arabic.  

6.4.3 Data volume 

The crawler currently downloads between 50000 and 100000 articles per day which amounts to roughly one 
article per second. The current archive contains about 40 million articles and begins in May 2008.  

 
Figure 27. The daily number of downloaded articles. A weekly pattern is nicely observable. Through 

most of 2011, only Google News was used as an article source, hence the significantly lower volume in that 
period. 

The median and average article body length is 1750 and 2400 bytes, respectively. 

6.4.4 Responsiveness 

We poll the RSS feeds at varying time intervals from 5 minutes to 12 hours depending on the feed's past 
activity. Google News is crawled every two hours. All crawling is currently performed from a single 
machine; precautions are taken not to overload any news source with overly frequent requests. 

Based on articles where the RSS feed provides the original time of publication, we estimate 70% of articles 
are fully processed by our pipeline within 3 hours of being published, and 90% are processed within 12 
hours. 

6.5 Data Dissemination 

Two streams of news are made available: 

1) The stream of all downloaded news articles 

2) The stream of English articles, processed with Enrycher 
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Figure 28. Demo preview of the news stream at http://newsfeed.ijs.si/. 

6.5.1 Storing and Serving the Data 

Each stream of articles is serialized into XML and segmented by time into .gz files several megabytes in 
size. The data is made available through a simple HTTP service that can be polled for new files periodically. 
Although this scheme introduces minor additional delays, it has the major benefit of keeping the server-side 
cache simple and easy to maintain. 

Independent of this server-side, filesystem-based cache, a complete copy of the data is still kept in the 
traditional structured database. This is the only copy guaranteed to be consistent and contain all the data; 
from it, the XML files can be regenerated at any time. This is particularly useful in case of XML format 
changes and/or improvements to the preprocessing pipeline. 

For a client to access the data, a request can be made to a URL of the form 
 http://newsfeed.ijs.si/stream/STREAM_NAME?after=TIMESTAMP 
This returns the oldest available .gz file created after TIMESTAMP or HTTP error 404 if no recent enough 
file exists.  

The after parameter is optional; if omitted, the oldest .gz file overall is returned. (We will attempt to 
maintain a month's worth of articles available through this API. The remainder of the archive is available to 
project partners on request.) TIMESTAMP must be given in the ISO 9601 format yyyy-mm-
ddThh:mm:ssZ (Z and T are literals). 

We also provide a python script which polls the server at one-minute intervals and copies new .gz files to the 
local disk as they are made available on the server. See http://newsfeed.ijs.si/. 

Note: Due to the streaming nature of the pipeline, the articles in .gz files are only approximately 
chronologically sorted; they are sorted in the order in which they were processed rather than published. 

6.5.2 Stream Serialization Format and Contents 

Each .gz file contains a single XML tree. The root element, <article-set>, contains zero or more 
articles in the following format (elements marked with “?” are only present when we successfully extract the 
corresponding piece of information): 
<article id="internal article ID; consistent across streams">  
   <source> 
      <uri> URL from which the article was discovered; typically the RSS feed 
</uri>  
      <title> Title for the source </title>  
      <type> MAINSTREAM_NEWS </type>  
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      <location?> 
         <longitude> publisher longitude in degrees </longitude> 
         <latitude> publisher latitude in degrees </latitude> 
         <city?> publisher city </city> 
         <country?> publisher country </country> 
      </location>  
      <tags?> RSS-provided tags; the tag vocabulary is not controlled  
         <tag> some_tag </tag> 
         <tag> another_tag </tag> 
      </tags> 
   </source> 
   <uri> URL from which the article was downloaded </uri> 
   <publish-date?> The publication time and date.</publish-date> 
   <retrieve-date> The retrieval time and date.</retrieve-date> 
   <lang> 3-letter ISO 639-2 language code </lang>  
   <location?> 
      <longitude> story content longitude in degrees </longitude> 
      <latitude> story content latitude in degrees </latitude> 
      <city?> story city </city> 
      <country?> story country </country> 
   </location>  
   <tags?> RSS-provided tags; the tag vocabulary is not controlled  
      <tag> some_tag </tag> 
      <tag> another_tag </tag> 
   </tags> 
   <img?> The URL of a related image, usually a thumbnail. </img>  
   <title> Title. Can be empty if we fail to identify it. </title>  
   <body> See below. </body>  
</article> 
 

The <article-body> element contains 

• for the cleartext stream: cleartext body of the article, segmented into paragraphs with <p></p> 

• for the Enrycher stream: an XML subtree as returned by Enrycher. See documentation at  
http://enrycher.ijs.si/ for the exact format. Content-wise, the subtree contains document 
categorization into DMOZ, named entity detection and named entity resolution (i.e. entities are 
linked to DBpedia and YAGO). 
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7 Conclusion 
In this deliverable we give guidance on the deployment and use of large-scale data management tools and 
infrastructure.  

We reported on our collected experience to derive best practices and enable the PlanetData partners to 

• Optimize analysis tasks for performance and cost reduction. 

• Develop Strategies to design and manage local area clusters. 

• Maintain scalable data storage and provisioning systems. 

• Acquire large data sets and pre-process them for further use. 

In particular we detailed best practices for data analysis with Apache Hadoop and MapReduce. We focused 
on typical challenges when developing MapReduce analysis tasks (e.g., joins) and provided methods to 
resolve resulting problems. Furthermore we gave a guide on the design of Hadoop clusters to reduce the 
execution time of analysis tasks. 

With regard to data analysis we additionally described the Web Data Commons project as showcase on how 
to perform an analysis over large datasets. Concretely we extracted structured data from two large Web 
corpora using Amazon cloud infrastructure and post-processed the data with a Hadoop MapReduce job. 

We addressed infrastructure design with SciLens, a local area cluster. From the design of SciLens we derived 
best practices on how to select hardware to achieve the best trade-off between price and performance and 
how to manage a cluster that is intended for experimental use. 

With regard to data storage and provisioning we described CumulusRDF, where we investigate the 
feasibility of using a distributed nested key/value store as an underlying storage component to achieve 
scalable storage and retrieval system. Our results indicate that the chosen approach is competitive to state-of-
the-art distributed RDF stores. 

Furthermore we described how the acquisition of large amounts of data and it’s processing into a suitable 
form for further analysis can be handled with the News Aggregator Pipeline, a large-scale data acquisition 
tool. 

This deliverable serves as guidance for further research of all PlanetData members on large-scale data. 
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Appendix I The monetdbd man-page 

NAME  

monetdbd − the MonetDB Database Server daemon 

SYNOPSIS  
monetdbd command [command_args] dbfarm 

DESCRIPTION 

monetdbd is the MonetDB Database Server daemon. The program is mainly meant to be used as 
daemon, but it also allows to setup and change the configuration of a dbfarm. The use of monetdbd 
is either as user-oriented way to configure, start and stop a database farm, or to be started from a 
startup script, such as from /etc/init.d/ on Linux systems or smf(5) on Solaris systems, as part of a 
system startup.  

monetdbd is the system formerly known as merovingian. It was renamed to monetdbd since 
the name merovingian proved to be confusing to most regular end-users. Internally, monetdbd 
uses the name merovingian at many places for historical reasons.  

A monetdbd instance manages one local cluster based, which is a directory in the system, referred 
to as the dbfarm. Nowadays, the dbfarm location always has to be given as argument to monetdbd. 

Within its local cluster monetdbd takes care of starting up databases when necessary, and stopping 
them either upon request via monetdb(1) or when being shut down. Client database connections are 
made against monetdbd initially which redirects or proxies the client to the appropriate database 
process, started on the fly when necessary. 

When started, monetdbd runs by default in the background, sending log messages to 
merovingian.log, until being sent a stop, terminate or interrupt signal, possibly using the stop 
command of monetdbd. 

monetdbd uses a neighbour discovery scheme to detect other monetdbd processes running in the 
local network. Databases from those remote instances are made available to a locally connecting 
client. Remote databases never override local databases, and their availability is controlled by the 
remote monetdbd process. See also the sharing capabilities of monetdb(1) and the REMOTE 
DATABASES section below. 

COMMANDS  

The commands for monetdbd are create, start, stop, get, set, version, and help. The 
commands facilitate initialising a dbfarm, starting and stopping the MonetDB Database Server, and 
retrieving or setting options.  
create dbfarm 

Initialises a new database farm, such that a MonetDB Database Server can be started on that 
location. All necessary directories are attempted to be created, and an initial properties file is 
created in the directory itself. dbfarm must be a location addressable in the local filesystem 
hierarchy. 

start [-n] <dbfarm> 

Starts monetdbd, the MonetDB Database Server, on the given dbfarm. When the -n flag 
is given, monetdbd will not fork into the background, but instead remain attached to the 
calling environment, until given a stop signal. 

stop <dbfarm> 

Sends a stop signal to the monetdbd process responsible for the given dbfarm. 

get <all | property[,property[,..]]> <dbfarm> 
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Prints the requested properties, or all known properties, for the given dbfarm. For each 
property, its value is printed. Some properties are virtual, and given for information purposes 
only, they cannot be modified using the set command. 

set property=value <dbfarm> 

Sets property to value for the given database. For a list of properties, run monetdbd get 
all. Some properties require a restart of the MonetDB Database Server in order to take 
effect. The set command, will however always write the property, and tell the running 
monetdbd to reload the properties file (if running). For an explanation of the properties, 
see the CONFIGURATION section below. 

CONFIGURATION  

monetdbd reads its properties from the .merovingian_properties file inside the dbfarm. This file is 
created by the create command. This file is not meant to be edited manually, instead it should be 
updated using the set command. The following properties can be set:  
logfile 

This property points to the file where all log messages are written to. It is relative to the 
dbfarm directory, but can be absolute to point to e.g. another medium. Changing this 
property takes effect immediately at runtime. 

pidfile 

monetdbd stores the process ID of the background server in the file pointed to by this 
property. The same rules apply as for the logfile property. 

sockdir 

For faster access, monetdbd uses UNIX domain sockets for its control mechanism and 
regular database connections. The sockets are placed as files in the filesystem hierarchy. The 
sockdir property controls in which directory they are placed. In general this setting should 
not be changed. 

port 

This property specifies which TCP port monetdbd should listen to for connection requests. 
Defaults to 50000. 

control 

For remote management of monetdbd, the control property specifies whether or not to 
enable remote management. Note that for remote management, a passphrase is required, see 
below. It defaults to false for security reasons. Changing this property takes effect 
immediately at runtime. 

passphrase 

To control monetdbd from a remote machine, a passphrase is necessary, to be given to 
monetdb(1). The passphrase can be either given as hashed value prefixed by the hash type 
in curly braces (e.g. {SHA512}xxx...) or as plain text value which will be hashed 
automatically. Note that the only hash accepted is the one specified at configure time, which 
is SHA512. Changing this property takes effect immediately at runtime. 

discovery 

Specifies whether neighbour discovery is to be enabled using UDP broadcasts or not. The 
broadcasts are done on the same portnumber as the port setting. 

discoveryttl 

monetdbd publishes locally available databases to others periodically. The interval used 
here, defined in seconds, depends on the time-to-live of the databases before they need to get 
refreshed. The default is 600 seconds (10 minutes), which should keep traffic in your 
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network fairly low. Additions and removals are processed immediately regardless of this 
timeout. If you are in a network environment where physical network links disappear often, 
you may want to decrease this value to more quickly remove no longer reachable databases. 

exittimeout 

mservers that were started by the MonetDB Database Server are shut down when 
monetdbd is shut down. Setting the exittimeout property to a positive non-zero value will 
shut down each running mserver with the given time-out in seconds. If the time-out expires, 
the mserver process is killed using the SIGKILL signal. A time-out value of 0 means no 
mservers will be shut down, and hence they will continue to run after monetdbd has shut 
down. Note that this particular configuration is extremely inconvenient. The default time-out 
is 60 seconds. If your databases are rather large and find your databases consistently being 
killed by monetdbd upon shutdown, you may want to increase this time-out. Changing this 
property takes effect immediately at runtime. 

forward 

monetdbd has two ways in which it can “attach” a connecting client to the target database. 
The first method, redirect, uses a redirect sent to the client with the responsible mserver 
process. The second method, proxy, proxies the client to the mserver over monetdbd. 
While redirect is more efficient, it requires the connecting client to be able to connect to the 
mserver. In many settings this may be undesirable or even impossible, since a wide range of 
open ports and routing are necessary for this. In such case the proxy technique of 
monetdbd is a good solution, which also allows a monetdbd instance on the border of a 
network to serve requests to nodes in the local (unreachable) network. Note that for local 
databases, the proxy method uses a UNIX domain socket feature to pass file-descriptors to 
the local mserver. This effectively is as efficient as the redirect approach, but still hides 
away the mservers properly behind monetdbd. Hence, in practice it is only relevant for 
connections to remote databases to use redirects instead of proxies. Changing this property 
takes effect immediately at runtime. 

SIGNALS  

monetdbd acts upon a number of signals as is common for a daemon.  

SIGINT, SIGTERM, SIGQUIT 

Any of these signals make monetdbd enter the shutdown sequence. This sequence involves 
cleanly shutting down listener sockets, shutting down all started databases and finally 
terminating itself. 

SIGHUP 

When this signal is received by monetdbd it will reopen the logfile as pointed to by the 
logfile setting. Before it reopens the logfile, it will re-read the properties file from the 
dbfarm, which might result in opening a different file to continue logging. 

RETURN VALUE  

monetdbd returns exit code 0 if it was able to successfully perform the requested action, e.g. start, 
stop, etc. When an error occurs during the action, that prevents monetdbd from successfully 
performing the action, the exit code 1 is returned. 

SEE ALSO  

monetdb(1) mserver5(1) 
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Appendix II The monetdb man-page 

NAME 

monetdb − control a MonetDB Database Server instance 

SYNOPSIS  
monetdb [monetdb_options] command [command_options] [command_args] 

DESCRIPTION  

monetdb allows an administrator of the MonetDB Database Server to perform various operations 
on the databases in the server. It relies on monetdbd(1) running in the background for all 
operations. 

OPTIONS  

monetdb_options affect all commands and control the general behaviour of monetdb. 

−q 

Supresses all standard progress messages, only writing output to stderr if an error 
occurred. 
−h hostname 

Connect to hostname instead of attempting a connection over the local UNIX socket. This 
allows monetdb to connect to a remote monetdbd(1). The use of this option requires −P 
(see below). 

−p port 

Connects to the given port number instead of the default (50000). Requires −h to be given as 
option too. 

−P passphrase 

Specifies the passphrase necessary to login to a remote monetdbd(1). This option requires 
−h to be given as well. A bad passphrase causes monetdb to fail to login, and hence fail to 
perform any remote action. 

−v 

Show version, equal to monetdb version. 

COMMANDS  

The commands for the monetdb utility are create, destroy, lock, release, status, 
start, stop, kill, set, get, inherit, discover, help and version. The commands 
facilitate adding, removing, maintaining, starting and stopping a database inside the MonetDB 
Database Server. 

For all commands, database arguments can be glob-like expressions. This allows to do wildcard 
matches. For details on the syntax, see EXPRESSIONS.  
create [−m pattern] database [database ...] 

Initialises a new database in the MonetDB Database Server. A database created with this 
command makes it available under its database name, but not yet for use by clients, as the 
database is put into maintenance mode. This allows the database administrator to perform 
initialisation steps before releasing it to users. See also monetdb lock. The name of the 
database must match the expression [A−Za−z0−9−_]+. 

−m pattern 

With the −m flag, instead of creating a database, a multiplex-funnel is created. See section 
MULTIPLEX-FUNNEL in monetdbd(1). The pattern argument is not fully the same as a 
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pattern for connecting or discovery. Each parallel target for the multiplex-funnel is given as 
username+password@pattern sequence, separated by commas. Here the pattern is an 
ordinary pattern as would be used for connecting to a database, and can hence also be just 
the name of a database. 

destroy [−f] database [database ...] 

Removes the given database, including all its data and logfiles. Once destroy has completed, 
all data is lost. Be careful when using this command. 

−f 

By default, a confirmation question is asked, however the −f option, when provided, 
suppresses this question and removal is executed right away. Note that you cannot destroy a 
running database, bring it down first using the stop command. 

lock database [database ...] 

Puts the given database in maintenance mode. A database under maintenance can only be 
connected to by an administrator account (by default the “monetdb” account). A database 
which is under maintenance is not started automatically by monetdbd(1), the MonetDB 
Database Server, when clients request for it. Use the release command to bring the 
database back for normal usage. To start a database which is under maintenance for 
administrator access, the start command can be used. 

release database [database ...] 

Brings back a database from maintenance mode. A released database is available again for 
normal use by any client, and is started on demand. Use the lock command to take a 
database under maintenance. 

status [−lc] [−s states] [database ...] 

Shows the state of the given database, or, when none given, all known databases. Three 
modes control the level of detail in the displayed output. By default a condensed one-line 
output per database format is used. This output resembles pretty much the output of various 
xxxstat programs, and is ideal for quickly gaining an overview of the system state. 

−c 

The −c flag shows the most used properties of a database. This includes the state of the 
database (running, crashed, stopped), whether it is under maintenance or not, the crash 
averages and uptime statistics. The crash average is the number of times the database has 
crashed over the last 1, 15 or 30 starts. The lower the average, the healthier the database is. 

−l 

Triggered by the −l flag, a long listing is used. This listing spans many rows with on each 
row one property and its value separated by a colon (‘:’). The long listing includes all 
information that is available. 

−s 

The −s flag controls which databases are being shown, matching their state. The required 
argument to this flag can be a combination of any of the following characters. Note that the 
order in which they are put also controls the order in which the databases are printed. r, s, c 
and l are used to print a started (running), stopped, crashed and locked database 
respectively. The default order which is used when the −s flag is absent, is rscl. 

start [−a] database [database ...]  

stop [−a] database [database ...]  

kill [−a] database [database ...] 
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Starts, stops or kills the given database, or, when −a is supplied, all known databases. The 
kill command immediately sends a SIGKILL and should only be used as last resort for a 
database that doesn’t respond any more. Killing a database may result in (partial) data loss. 
It is more common to use the stop command to stop a database. It will first attempt to stop 
the database, waiting for mero_exittimeout seconds and if that fails, kill the database. 
When using the start command, monetdb(1) will output diagnostic messages if the 
requested action failed. When encountering an error, one should always consult the logfile of 
monetdbd(1) for more details. For the kill command a diagnostic message indicating the 
database has crashed is always emitted, due to the nature of that command. Note that in 
combination with −a the return code of monetdb(1) indicates failure if one of the 
databases had a failure, even though the operation on other databases was successful. 

get <all | property[,property[,..]]> [database ...] 

Prints the requested properties, or all known properties, for the given database. For each 
property its source and value are printed. Source indicates where the current value comes 
from, e.g. the configuration file, or a local override. 

set property=value database [database ...] 

Sets property to value for the given database. For a list of properties, run monetdb get 
all. Most properties require the database to be stopped when set. 

shared=<yes|no|tag> 

Defines if and how the database is being announced to other monetdbds or not. If not set to 
yes or no the database is simply announced or not. Using a string, called tag the database is 
shared using that tag, allowing for more sophisticated usage. For information about the tag 
format and use, see section REMOTE DATABASES in the monetdbd(1) manpage. Note 
that this property can be set for a running database, and that a change takes immediate effect 
in the network. 

nthreads=<number> 

Defines how many worker threads the server should use to perform main processing. 
Normally, this number equals the number of available CPU cores in the system. Reducing 
this number forces the server to use less parallelism when executing queries, or none at all if 
set to 1. 

optpipe=<string> 

Each server operates with a given optimiser pipeline. While the default usually is the best 
setting, for some experimental uses the pipeline can be changed. See the mserver5(1) 
manpage for available pipelines. Changing this setting is discouraged at all times. 

readonly=<yes|no> 

Defines if the database has to be started in read-only mode. Updates are rejected in this 
mode, and the server employs some read-only optimisations that can lead to improved 
performance. 

nclients=<number> 

Sets the maximum amount of clients that can connect to this database at the same time. 
Setting this to a high value is discouraged. A multiplex-funnel may be more performant, see 
MULTIPLEX-FUNNEL below. 

inherit property database [database ...] 

Like set, but unsets the database-local value, and reverts to inherit from the default again. 
discover [expression] 

Returns a list of remote monetdbds and database URIs that were discovered by 
monetdbd(1). All databases listed can be connected to via the local MonetDB Database 
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Server as if it were local databases using their database name. The connection is redirected 
or proxied based on configuration settings. If expression is given, only those discovered 
databases are returned for which their URI matches the expression. The expression syntax is 
described in the section EXPRESSIONS. Next to database URIs the hostnames and ports for 
monetdbds that allow to be controlled remotely can be found in the discover list masked 
with an asterisk. These entries can easily be filtered out using an expression (e.g. 
“mapi:monetdb:*”) if desired. The control entries come in handy when one wants to get an 
overview of available monetdbds in e.g. a local cluster. Note that for monetdbd to 
announce its control port, the mero_controlport setting for that monetdbd must be 
enabled in the configuration file. 

−h 

help [command] 

Shows general help, or short help for a given command. 
−v 

version 

Shows the version of the monetdb utility. 

EXPRESSIONS  

For various options, typically database names, expressions can be used. These expressions are 
limited shell-globbing like, where the * in any position is expanded to an arbitrary string. The * can 
occur multiple times in the expression, allowing for more advanced matches. Note that the empty 
string also matches the *, hence “de*mo” can return “demo” as match. To match the literal ‘*’ 
character, one has to escape it using a backslash, e.g. “\*”. 

RETURN VALUE  

The monetdb utility returns exit code 0 if it successfully performed the requested command. An 
error caused by user input or database state is indicated by exit code 1. If an internal error in the 
utility occurs, exit code 2 is returned. 

SEE ALSO  

monetdbd(1) mserver5(1) 
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Appendix III The mserver5 man-page 

NAME 

mserver5 − the MonetDB server version 5 

DESCRIPTION  

mserver5 is the current MonetDB server that performs all processing on request of clients for a 
certain database. 

Note that while mserver5 is the process that does the actual work, it is usually more common to 
start, monitor and connect to the mserver5 process through monetdbd(1). 

This man-page describes the options that mserver5 understands. It is intended for people who 
really need to work with mserver5 itself. In regular cases, the programs monetdbd(1) and 
monetdb(1) control the many options, and allow to adjust them to appropriate values where 
sensible. For normal usage, it is preferred to apply any configuration through these programs. 

OPERATION  

When the build-time configuration did not disable this, an mserver5 process presents the user with 
a console prompt. On this prompt, MAL commands can be executed. The architecture is setup to 
handle multiple streams of requests. The first thread started represents the server, which is the 
console prompt, reading from standard input and writing to standard output. 

The server thread started remains in existence until all other threads die. The server is stopped by 
Ctrl-D on its console, typing \q or by sending it a termination signal (SIGINT, SIGTERM, 
SIGQUIT). 

MSERVER5 OPTIONS  

mserver5 can be started with options and scripts as arguments. The MAL scripts will be executed 
directly after startup on the console, which eases e.g. testing of MAL scripts directly, without 
starting a client.  
--dbfarm=<path> 

Path where mserver5 should find a database. Shorthand for option gdk_dbfarm. 
Default value: @localstatedir@/monetdb5/dbfarm. 

--dbname=<name> 

Database name to start, within the dbfarm. Shorthand for option gdk_dbname. Default 
value: demo. 

--dbinit=<stmt> 

MAL statement to execute as part of the startup of the server. 
--config=<file> 

Config file to read options from. This file can contain all options as can be set with the  
--set flag. See CONFIG FILE FORMAT. 

--daemon=<yes|no> 

Disable the console prompt, do not read commands from standard input. Default: no 

--set <option>=<value> 

Set individual configuration option. For possible options, see PARAMETERS sections. 
--help 

Print list of options. 
--version 
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Print version and compile configuration. 

GDK PARAMETERS  

GDK (Goblin Database Kernel) is the current columnar storage kernel engine of the MonetDB 5 
database. It is the component that manages and performs operations on BATs (Binary Association 
Tables), single columns. The parameters here affect the behaviour of GDK which may nagatively 
impact performance if set wrongly. The kernel tries to choose the values for optimal performance. 
Changing these parameters is discouraged.  
gdk_mem_bigsize 

Memory chunks of size >= gdk_mem_bigsize (in bytes) will be mmaped anonymously. 
Default: 1<<20 == 1024576 == 1 MiB 

gdk_vmtrim 

Enable or disable the vmtrim thread which tries to unload memory that is not in use. 
Default: yes 

gdk_alloc_map 

This parameter is mainly for debugging with valgrind. Also, you need to tell valgrind 
to use 8-byte alignment, hence: “valgrind --alignment=8 mserver5 --set 
gdk_alloc_map=no ...” This feature should better be disabled for normal use. 
Default: no 

gdk_debug 

You can enable debug output for specific kernel operations. By default debug is switched off 
for obvious reasons. The value of gdk_debug is an integer, which value can be (a 
combination of): 

          1 = thread-specific debug output 

          2 = CHECKMASK    = property enforcing on new BATs 

          4 = MEMMASK      = memory allocation 

          8 = PROPMASK     = property checking on all values: 

                             tells about wrongly set properties 

         16 = IOMASK       = major IO activity 

         32 = BATMASK      = BAT handling 

         64 = PARSEMASK    = parser debugging 

        128 = PARMASK      = Thread management 

        256 = TRGMASK      = Event management 

        512 = TMMASK       = Transaction management 

       1024 = TEMMASK      = Locks and Triggers 

       2048 = DLMASK       = Dynamic loading 

       4096 = PERFMASK     = BBP Performance (?) 

       8192 = DELTAMASK    = Delta debugging (?) 

      16384 = LOADMASK     = Module loading 

      32768 = YACCMASK     = Yacc specific error messages 

    2097152 = ALGOMASK     = show join/select algorithm chosen 

    4194304 = ESTIMASK     = show result size estimations 

                             (for join, select) 
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    8388608 = XPROPMASK    = extended property checking: 

                             tells also about not set properties 

   16777216 = JOINPROPMASK = disable property checking with  

                             join & outerjoin (e.g., for  

                             performance measurements) 

   33554432 = DEADBEEFMASK = disable "cleaning" of freed memory 

                             in GDKfree() (e.g., for performance  

                             measurements) 

   67108864 = ALLOCMASK    = exhaustive GDK malloc & free tracing 

                             for debugging (GDK developers, only) 

  134217728 = OPTMASK      = trace the actions, decisions and 

                             effects of MAL optimizers 

  268435456 = EXTENDMASK   = trace/debug HEAPextend; 

                             used only for development & debugging 

 536870912 = FORCEMITOMASK = forcefully activate mitosis even on 

                             small tables, i.e., split small tables 

                             in as many (tiny) pieces as there are 

                             cores (threads) available; 

                             this allows us to test mitosis 

                             functionality without requiring large 

                             data sets (--- at the expense of a 

                             potentially significant interpretation 

                             overhead for unnecessary large plans); 

                             used only for development & testing; 

                             set automatically by Mtest.py 

Note that mserver5 recognizes a series of command line options that sets one or more of 
these debug flags as well: 

--threads       (1 | PARMASK) 

--memory        (MEMMASK) 

--properties    (CHECKMASK | PROPMASK | BATMASK) 

--io            (IOMASK | PERFMASK) 

--transactions  (TMMASK | DELTAMASK | TEMMASK) 

--modules       (DLMASK | LOADMASK) 

--algorithms    (ALGOMASK | ESTIMASK) 

--xproperties   (XPROPMASK ) 

--performance   (JOINPROPMASK | DEADBEEFMASK) 

--optimizers    (OPTMASK) 

--forcemito     (FORCEMITOMASK) 

Default: 0 
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MSERVER5 PARAMETERS  

mserver5 instructs the GDK kernel through the MAL (MonetDB Assembler Language) language. 
MonetDB 5 contains an extensive optimiser framework to transform MAL plans into more optimal 
or functional (e.g. distributed) plans. These parameters control behaviour on the MAL level.  
mal_listing 

You can enable the server listing the parsed MAL program for any script parsed on the 
command line. The value of mal_listing is an integer that has the following possible 
values: 

 0 = Disable 

 1 = List the original input 

 2 = List the MAL instruction 

 4 = List the MAL type information 

 8 = List the MAL UDF type 

16 = List the MAL properties 

32 = List the hidden details 

64 = List the bat tuple count 

Default: 0 
monet_vault_key 

The authorisation tables inside mserver5 can be encrypted with a key, such that reading the 
BATs does not directly disclose any credentials. The monet_vault_key setting points to 
a file that stores a secret key to unlock the password vault. It can contain anything. The file 
is read up to the first null-byte (‘ ’), hence it can be padded to any length with trailing null-
bytes to obfuscate the key length. Generating a key can be done for example by using a tool 
such as pwgen and adding a few of the passwords generated. Make sure not to choose a too 
small key. Note that on absence of a vault key file, some default key is used to encrypt the 
authorisation tables. Changing this setting (effectively changing the key) for an existing 
database makes that database unusable, as no one is any longer able to login. If you use 
monetdbd(1), a per-database vault key is set. 

max_clients 

Controls how many client slots are allocated for clients to connect. This setting limits the 
maximum number of connected clients at the same time. Note that MonetDB is not designed 
to handle massive amounts of connected clients. The funnel capability from monetdbd(1) 
might be a more suitable solution for such workloads. 

Default 64. 

SQL PARAMETERS  

The SQL component of MonetDB 5 runs on top of the MAL environment. It has its own SQL-level 
specific settings.  
sql_debug 

Enable debugging using a mask. This option should normally be disabled (0). Default: 0 
sql_optimizer 

The default SQL optimizer pipeline can be set per server. See the optpipe setting in 
monetdb(1) when using monetdbd. During SQL initialization, the optimizer pipeline is 
checked against the dependency information maintained in the optimizer library to ensure 
there are no conflicts and at least the pre-requisite optimizers are used. The setting of 
sql_optimizer can be either the list of optimizers to run, or one or more variables 
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containing the optimizer pipeline to run. The latter is provided for readability purposes only. 
Default: default_pipe 

The following are possible pipes to use:  
minimal_pipe 

The minimal pipeline necessary by the server to operate correctly.  
minimal_pipe=inline,remap,deadcode,multiplex,garbageCollector 

default_pipe 

The default pipeline contains as of Feb2010 mitosis-mergetable-reorder, aimed at large 
tables and improved access locality.  
default_pipe=inline,remap,evaluate,costModel,coercions,emptySet,aliases,mitosis,merge
table,deadcode,commonTerms,joinPath,reorder,deadcode,reduce,dataflow,history,multiple
x,garbageCollector 

no_mitosis_pipe 

The no_mitosis pipeline is identical to the default pipeline, except that optimizer mitosis 
is omitted. It is used mainly to make some tests work deterministically, and to check/debug 
whether "unexpected" problems are related to mitosis (and/or mergetable). 
no_mitosis_pipe=inline,remap,evaluate,costModel,coercions,emptySet,aliases,mergetable
,deadcode,commonTerms,joinPath,reorder,deadcode,reduce,dataflow,history,multiplex,gar
bageCollector 

sequential_pipe 

The sequential pipeline is identical to the default pipeline, except that optimizers mitosis & 
dataflow are omitted. It is use mainly to make some tests work deterministically, i.e., avoid 
ambigious output, by avoiding parallelism.  
sequential_pipe=inline,remap,evaluate,costModel,coercions,emptySet,aliases,mergetable
,deadcode,commonTerms,joinPath,reorder,deadcode,reduce,history,multiplex,garbageColle
ctor 

nov2009_pipe 

The default pipeline used in the November 2009 release.  
nov2009_pipe=inline,remap,evaluate,costModel,coercions,emptySet,aliases,mergetable,de
adcode,constants,commonTerms,joinPath,deadcode,reduce,dataflow,history,multiplex,garb
ageCollector 

Debugging the optimizer pipeline: the best way is to use mdb (MAL debugger) and inspect the 
information gathered during the optimization phase. Several optimizers produce more intermediate 
information, which may shed light on the details. The opt_debug bitvector controls their output. It 
can be set to a pipeline or a comma-separated list of optimizers you would like to trace. It is a server 
wide property and cannot be set dynamically, as it is intended for internal use. 

CONFIG FILE FORMAT  

The conf-file readable by mserver5 consists of parameters of the form "name=value". 

The file is line-based, each newline-terminated line represents either a comment or a parameter. 

Only the first equals sign in a parameter is significant. Whitespace before or after the first equals 
sign is not stripped. Trailing whitespace in a parameter value is retained verbatim. 

Any line beginning with a hash (#) is ignored, as are lines containing only whitespace. 

The values following the equals sign in parameters are all a string where quotes are not needed, and 
if written be part of the string. 

SEE ALSO  

monetdbd(1), monetdb(1), mclient(1) 
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Appendix IV The mclient man-page 

NAME  

mclient − the MonetDB command-line tool 

SYNOPSIS  
mclient [ options ] [ file or database [ file ... ] ]  

mclient −−help 

DESCRIPTION  

MonetDB is a database management system that is developed from a main-memory perspective with 
use of a fully decomposed storage model, automatic index management, extensibility of data types 
and search accelerators, SQL- and XML- frontends. 

mclient is the command-line interface to the MonetDB server. 

If the −−statement=query (−s query) option is given, the query is executed. If any files 
are listed after the options, queries are read from the files and executed. The special filename − 
refers to standard input. Note that if there is both a −−statement option and filename arguments, 
the query given with −−statement is executed first. If no −−statement option is given and no 
files are specified on the command line, mclient reads queries from standard input. 

When reading from standard input, if standard input is a terminal or if the −−interactive (−i) 
option is given, mclient interprets lines starting with ‘\’ (backslash) specially. See the section 
BACKSLASH COMMANDS below. 

Before mclient starts parsing command line options, it reads a .monetdb file. If the environment 
variable DOTMONETDBFILE is set, it reads the file pointed to by that variable instead. When unset, 
mclient searches for a .monetdb file in the current working directory, and if that doesn’t exist, in 
the current user’s home directory. This file can contain defaults for the flags user, password, 
language, save_history, format and width. For example, an entry in a .monetdb file that 
sets the default language for mclient to mal looks like this: language=mal. To disable 
reading the .monetdb file, set the variable DOTMONETDBFILE to the empty string in the 
environment. 

OPTIONS  

General Options  
−−help (−?) 

Print usage information and exit. 
−−encoding=encoding (−E encoding) 

Specify the character encoding of the input. The option applies to both the standard input of 
mclient and to the argument of the −−statement (−s) option but not to the contents 
of files specified on the command line (except for − which refers to standard input) or files 
specified using the \< command (those must be encoded using UTF-8). The default 
encoding is taken from the locale. 

−−language=language (−l language) 

Specify the query language. The following languages are recognized: mal and sql. A 
unique prefix suffices. When the −−language option is omitted, the default of sql is 
assumed. 

−−database=database (−d database) 
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Specify the name of the database to connect to. The -d can be omitted if an equally named 
file does not exist in the current directory. As such, the first non-option argument will be 
interpreted as database to connect to if the argument does not exist as file. 

−−host=hostname (−h hostname) 

Specify the name of the host on which the server runs (default: localhost). When the 
argument starts with a forward slash (/), host is assumed to be the directory where the 
UNIX sockets are stored for platforms where these are supported. 

−−port=portnr (−p portnr) 

Specify the portnumber of the server (default: 50000). 
−−interactive[=timermode] (−i[timermode]) 

When reading from standard input, interpret lines starting with \ (backslash) specially. See 
the section BACKSLASH COMMANDS below. This is the default if standard input is a 
terminal. The optional timermode argument controls the format of the time reported for 
queries. Note that no space is allowed between −i and timermode. The default mode is 
human which adjusts the time precision to the measured value. The modes ms, s and m 
force millisecond, second and minute + second precision respectively. 

−−user=user (−u user) 

Specify the user to connect as. If this flag is absent, the client will ask for a user name, 
unless a default was found in .monetdb file. Note that user must follow immediately after the 
option. 

−−format=format (−f format) 

Specify the output format. The possible values are sql, csv, tab, raw, and xml. csv is 
comma-separated values, tab is tab-separated values, raw is no special formatting (data is 
dumped the way the server sends it to the client), sql is a pretty format which is meant for 
human consumption, and xml is a valid (in the XML sense) document. In addition to plain 
csv, two other forms are possible. csv=c uses c as column separator; csv+c uses c as 
column separator and produces a single header line in addition to the data. 

−−echo (−e) 

Echo the query. Note that using this option slows down processing. 
−−history (−H) 

Load and save the command line history (default off). 
−−log=logfile (−L logfile) 

Save client/server interaction in the specified file. 
−−statement=stmt (−s stmt) 

Execute the specified query. The query is run before any queries from files specified on the 
command line are run. 

−−timezone (−z) 

Do not tell the client’s timezone to the server. 
−−Xdebug (−X) 

Trace network interaction between mclient and the server. 

−−pager=cmd (−| cmd) 

Send query output through the specified cmd. One cmd is started for each query. Note that 
the | will have to be quoted or else the shell will interpret it. 

SQL Options  
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−−null=nullstr (−n nullstr) 

Set the string to be used as NULL representation when using the sql, csv, or tab output 
formats. If not used, NULL values are represented by the string "null" in the sql output 
format, and as the empty string in the csv and tab output formats. Note that an argument is 
required, so in order to use the empty string, use −n "" (with the space) or −−null=. 

−−autocommit (−a) 

Switch autocommit mode off. By default, autocommit mode is on. 

−−rows=nr (−r nr) 

If specified, query results will be paged by an internal pager at the specified number of lines. 
−−width=nr (−w nr) 

Specify the width of the screen. The default is the (initial) width of the terminal. 
−−dump (−D) 

Create an SQL dump. 
−−inserts (−N) 

Use INSERT INTO statements instead of COPY INTO + CSV values when dumping the 
data of a table. This option can be used when trying to load data from MonetDB into another 
database, or when e.g. JDBC applications are used to reload the dump. 

BACKSLASH COMMANDS  

General Commands 
\? 

Show a help message explaining the backslash commands. 
\q 

Exit mclient. 

\< file 

Read input from the named file. 

\> file 

Write output to the named file. If no file is specified, write to standard output. 

\| command 

Pipe output to the given command. Each query is piped to a new invocation of the command. If no 
command is given, revert to writing output to standard output. 

\h 

Show the readline(3) history. 

\L file 

Log client/server interaction in the given file. If no file is specified, stop logging information. 

\X 

Trace what mclient is doing. This is mostly for debugging purposes. 

\e 

Echo the query in SQL formatting mode. 
\f format 
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Use the specified format mode to format the output. Possible modes the same as for the 
−−format (−f) option. 

\w width 

Set the maximum page width for rendering in the sql formatting mode. If width is −1, the page width 
is unlimited, when width is 0, use the terminal width. If width is greater than 0, use the given width. 

\r rows 

Use an internal pager using rows per page. If rows is −1, stop using the internal pager. 

SQL Commands 
\D 

Dump the complete database. This is equivalent to using the program msqldump(1). 

\D table 

Dump the given table. 

\d 

Alias for \dvt. 

\d[Stvsfn]+ 

List database objects of the given type. Multiple type specifiers can be used at the same time. The 
specifiers S, t, v, s, f and n stand for System, table, view, sequence, function and schema 
respectively. Note that S simply switches on viewing system catalog objects, which is orthogonal 
on the other specifiers. 

\d[Stvsfn]+ object 

Describe the given object in the database using SQL statements that reconstruct the object. The 
same specifiers as above can be used, following the same rules. When no specifiers are given, vt is 
assumed. The object can be given with or without a schema, separated by a dot. The object name can 
contain the wildcard characters * and _ that represent zero or more, and exactly one character 
respectively. An object name is converted to lowercase, unless the object name is quoted by double 
quotes ("). Examples of this, are e.g. *.mytable, tabletype* or “myschema.FOO”. Note that wildcard 
characters do not work in quoted objects. Quoting follows SQL quoting rules. Arbitrary parts can be 
quoted, and two quotes following each other in a quoted string represent the quote itself. 

\A 

Enable auto commit mode. 
\a 

Disable auto commit mode. 

EXAMPLES  

Efficiently import data from a CSV (comma-separated values) file into a table. The file must be 
readable by the server. $file is the absolute path name of the file, $table is the name of the table, $db 
is the name of the database. 
mclient -d $db -s “COPY INTO $table FROM ‘$file’ USING DELIMITERS ‘,’,’\\n’,’\”’” 

Efficiently import data from a CSV file into a table when the file is to be read by mclient (e.g. the 
server has no access to the file). $file is the (absolute or relative) path name of the file, $table is the 
name of the table, $db is the name of the database. 
mclient -d $db -s “COPY INTO $table FROM STDIN USING DELIMITERS ‘,’,’\\n’,’\”’” - < $file 

Note that in this latter case, if a count of records is supplied, it should be at least as large as the 
number of records actually present in the CSV file. This, because otherwise the remainder of the file 
will be interpreted as SQL queries. 
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See http://www.monetdb.org/Documentation/Manuals/SQLreference/CopyInto for more information 
about the COPY INTO query. 

SEE ALSO  

msqldump(1) 

 


