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Let G=()"E) be an Eulerian graph embedded on a triangulizable surface S.
We show that E can be decomposed into closed curves €. ... C; such that
miner( G, D) =3*_ mincr(C,, D) for each closed curve D on S. Here miner(G. D)
denotes the minimum number of intersections of G and D' (counting multiplicities).
where D' ranges over all closed curves D' frecly homotopic to D and not intersect-
ing ¥, Moreover. mincr( (. D) denotes the minimum number of intersections of ¢
and D' (counting multiplicities). where (" and D’ range over all closed curves
freely homotopic to € and D, respectively. Decomposing the edges means that
C\, ... C, are closed curves in G such that each edge is traversed exactly once by
Cy e €. So each vertex o is traversed exactly §deg () times, where deg (r) is the
degree of . This result was shown by Lins for the projective plane and by Schrijver
for compact orientable surfaces. The present paper gives a shorter proof than the
one given for compact orientable surfuces. We derive the following fractional pack-
ing result for closed curves of given homotopies in a graph G = (}, E) on a compact
surface S. Let Cy....C, be closed curves on S. Then there exist circulations
fiv e J1 € BE homotopic to ), ... ¢, respectively such that file)+ - + file) <1
for each edge ¢ if and only if miner(G. D)= 4 miner(C,, D) for each closed
curve D on S. Here a circulution homotopic to a closed curve C is any convex com-
bination of functions tr- e R”, where Cis a closed curve in G freely homotopic to
Cy, and where tr(¢) is the number of times C traverses ¢. ¢ 1997 Academic Press
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1. INTRODUCTION

Let S be a surface. (In this paper a surface is a triangulizable (equiv-
alently, metrizable) surface.) A closed curve on S is a continuous function
C:S'— S, where S' is the unit circle in C. Two closed curves C and (" are
called freely homotopic, in notation C~ C’, if there exists a continuoys
function bringing C to ('. (That is, a continuous function @:S§'x
[0,1] = S such that &(z,0)=C(z) and &(z, 1) = C'(z) for each zeS",)

For any pair of closed curves C, D on S, cr(C, D) denotes the number of
intersections of C and D, counting multiplicities. That is,

cr(C, D):=1{(w,z)eS'xS" | C(w)=D(2)}|. (1)

Moreover, mincr(C, D) denotes the minimum of cr(C’, D') where C’" and I
range over closed curves freely homotopic to C and D, respectively. That s,

mincr(C, D) :=min{cr(C', D')| C' ~C, D' ~ D}. ()

Let G=(V, E) be an undirected graph embedded on S. (In this paper, a
graph has a finite number of vertices and edges. We identify G with its
embedding on S.) For any closed curve D on S, cr(G, D) denotes the
number of intersections of G and D (counting multiplicities):

cr(G, D) :=|{zeS' | D(z) e G}|. (3)

Moreover, mincr(G, D) denotes the minimum of cr(G, D') where D' ranges
over all closed curves freely homotopic to D and not intersecting V-

mincr(G, D) :=min{cr(G, D') | D'~ D, D'(S"')n V=J}. (4)

(It would seem more consistent with definition (2) if we would also allow
shifting G so as to obtain G', D’ in minimizing cr(G’, D'), where G'is
possibly not one-to-one mapped in S. However, the following theorem
implies that this would not change the minimum value.)

We show the following theorem. It was proved for the projective plane
by Lins [2] and for compact orientable surfaces by Schrijver [3]. (Our
present proof is much simpler than that in [ 3], but uses a lemma on mini
mizing intersections of closed curves proved in [1].)

TueOREM. Let G=(V, E) be an Eulerian graph embedded on a tit

angulizable surface S. Then the edges of G can be decomposed into closed
curves C,, ..., Cy such that

%
mincr(G, D)= ), miner(C,, D) (3
IR

Jfor each closed curve D on S.
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Here a graph is Eulerian if each vertex has even degree. (We do not
assume connectedness of the graph.) Moreover, decomposing the edges into
Ci, .., C;, means that each edge is traversed by exactly one C,, and by that
C,; exactly once.

Note that the inequality > in (5) trivially holds, for any decomposition
of the edges into closed curves C, .., C;: by definition of mincr(G, D),
there exists a closed curve D'~D in S\V such that miner(G, D)=
cr(G, D'), and hence

k k
mincr(G, D) =cr(G, D')= ) cr(C;, D')= Y. mincr(C,, D). (6)

i=1 i=1

The content of the theorem is that there exists a decomposition attaining
equality.

In Section 3 we give a proof of the Theorem, and in Sections 4 and 5 we
derive applications, including a ‘homotopic circulation theorem’.

2. MAKING CURVES MINIMALLY CROSSING BY
REIDEMEISTER MOVES

The basic tool in our proof is the following result of de Graaf and
Schrijver [1]. Denote by cr(C) the number of self-intersections of C. That
is,

cr(C) =41 (w,2)eS' xS | Cw)=Cl(z), w#z}]. (7)

Moreover, mincr( C) denotes the minimum of cr(C’) where C' ranges over
all closed curves freely homotopic to C:

mincr(C) :=min{cr(C’) | "'~ C}. (8)

Let C,, .., C, be a system of closed curves on S. We call C,, ..., Cy mini-
mally crossing if

(1) Icr( C,)=mincr(C,) foreach i=1,..,k; ()
(ii) er(C;, C;) =miner(C,, C)) forall i j=1,..k with 7%/

We call C,, ..., C, regular if C,. ..., C; have only a finite number of (self-)
intersections, each being a crossing of only two curve parts. (That is, each
point of S traversed twice by the C,, .., C, has a disk-neighbourhood on
which the curve parts are topologically two crossing straight lines.)
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In [1] we showed:

Any regular system of closed curves on a triangulizable sur-
face S can be transformed to a minimally crossing system by
a series of “Reidemeister moves™ replacing Q- by O~

(type 0); replacing Q by ™ (type I); replacing >=X by
> (type 1I); replacing /% by %/ (type III). (10)

The pictures in (10) represent the intersection of the union of Cy, .., C;
with a closed disk on S. So no other curve parts than the ones shown inter-
sect such a disk.

It is important to note that in (10) we do not allow to apply the opera-
tions in the reverse direction—otherwise the result would follow quite
straightforwardly with the techniques of simplicial approximation.

3. PROOF OF THE THEOREM

I. We may assume that each vertex v of G has degree at most 4. If
v would have a degree larger than 4, we can replace G in a neighbourhood
of v like

by

This modification does not change the value of mincr(G, D) for any D.
Moreover, closed curves decomposing the edges of the modified graph
satisfying (5), directly yield closed curves decomposing the edges of the
original graph satisfying (5).

II. For any graph G embedded on S with each vertex having
degree 2 or 4, we define the straight decomposition of G as the regular
system of closed curves C,,.., C, such that G=C, u --- U C,. So each
vertex of G of degree 4 represents a (self-)crossing of C,. ..., C;.

Up to some trivial operations, such a decomposition is unique, and con-
versely, it uniquely describes G. Moreover, any Reidemeister move applied

to C,,...C, carries over a modification of G. So we can speak of
Reidemeister moves applied to G.
Note that:

if G’ arises from G by one Reidemeister move of type III,
then mincr(G’, D) = mincr(G, D) for each closed curve D. (1

III. We call any graph G= (V. E) that is a counterexample to the
theorem with each vertex having degree at most 4 and with a minimal
number of faces, a minimal counterexample.
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From (11) it directly follows that:

if G' arises from a minimal counterexample G by one
Reidemeister move of type III, then G’ is a minimal counter-
example again. (12)

Moreover one has:

if G is a minimal counterexample, then no Reidemeister move
of type 0, I or II can be applied to G. (13)

For suppose that a Reidemeister move of type II can be applied to G. Then
G contains the following subconfiguration:

XX
=X

would give a smaller counterexample (since the function mincr(G, D)
does not change by this operation), contradicting the minimality of G.

One similarly sees that no Reidemeister move of type 0 or I can be
applied.

Replacing this by:

IV. We finish the proof by showing that the straight decomposition
C,, ..., C, of any minimal counterexample G satisties (5)—which is a
contradiction to the fact that we have a counterexample.

Choose a closed curve D. We may assume that D, C,, .., C, form a
regular system. By (10) we can apply Reidemeister moves so as to obtain
a minimally crossing system D', ', ..., C}.

By (12) and (13) we did not apply Reidemeister moves of type 0, 1 or 11
to Cy,..,C,. Hence by (11) for the graph G’ obtained from the final
(', ... C,, we have mincr(G', D)=mincr(G, D). So

A
mincr(G, D) = miner(G', D) <cer(G', D)= Y cr(C, D)
i
A k
= Y mincr(C}, D')= ) mincr(C,, D). (14)

i i=1

Since the converse inequality holds by (6), we have (5). [
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4. A COROLLARY ON LENGTHS OF CLOSED CURVES

Using surface duality we obtain as in [3] the following. If G is a graph
embedded on a surface S and Cis a closed curve in G, then minlength;(C)
denotes the minimum length of any closed curve C' ~ C in G. (The length
of C' is the number of edges traversed by C’, counting multiplicities.)

COROLLARY 1. Let G=(V, E) be a bipartite graph embedded on a com-
pact surface S and let C,, .., C, be closed curves in G. Then there exist
closed curves D, .., D, on S\V such that each edge of G is crossed by
exactly one D; and by this D, only once and such that

minlength,(C,)= )Y mincr(C,, D)) (15)
j=1
for each i=1, .. k.

Proof. Let
d:=max{minlength,(C,) | i=1, ., k}. (16)

We can extend G to a bipartite graph L embedded on S, so that each face
of L is an open disk. By inserting d new vertices on each edge of L not
occurring in G, we obtain a bipartite graph H satisfying minlength,(C,) =
minlength;(C,) for each i=1, ..., k.

Consider a surface dual graph H* of H. Since H is bipartite, H* is
Eulerian. Hence by the Theorem, the edges of H* can be decomposed into
closed curves Dy, ..., D, such that

mincr(H*, C)= Y mincr(D,, C) (17)

i=1

for each closed curve C. Now for each i=1,.. k, mincr(H* C,)=
minlength ,,( C;) = minlength(C,), and (15) follows. |

In [3] an example is given showing that we cannot replace C,, ..., C, by
the set of all closed curves occurring in G. However, the proof above also
gives that we can replace C,, .., C, by the set of all closed curves if G is
cellularly embedded (i.e., each face is an open disk)-—in that case we do not
need to extend G to L and H.

5. A HOMOTOPIC CIRCULATION THEOREM

By linear programming duality (Farkas’ lemma) we derive from
Corollary 1 the following *homotopic circulation theorem’—a fractional
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packing theorem for cycles of given homotopies in a graph on a compact
surface.

Let G=(V, E) be a graph embedded on a compact surface S. For any
closed curve C in G and any edge e of G let tr (¢) denote the number of
times C traverses e. So tr,. € R

Call a function f: E— R a circulation (of value 1) if fis a convex com-
bination of functions tr.. We say that f is freely homotopic to a closed
curve C, if we can take each C freely homotopic to C,.

Note that if f is a circulation freely homotopic to C,, then for each
closed curve D on S\V one has (denoting by cr(e, D) the number of times
D intersects edge ¢):

> fle)er(e, D) = mincer(C,, D). (18)

cell

This follows from the fact that (18) holds for f:=tr . for each C freely
homotopic to C, (as > .. . tr(e) cr(e, D)= cr(C, D) > mincr(C,, D)), and
hence also for any convex combination of such functions.

CoroLLARY 2 (Homotopic Circulation Theorem). Let G=(V, E) be an
undirected graph embedded on a compact surface S and let C,, ..., C, be
closed curves on S. Then there exist circulations f, ..., f;. such that f; is freely
homotopic to Ci(i=1, .., k) and such that Y% | f.(e)< 1 for each edge e, if
and only if for each closed curve D on S\V one has

k
cr(G, D)= Y mincer(C,, D). (19)

i=1

Proof:  Necessity. Suppose there exist circulations f|, ..., f; as required.
Let D be a closed curve on S\ V. Then by (18):

cr(G, D)= ) cr(e, D)

ce Il

k
> ) cr(e, D) ), file)

cel i=1

k

= Y. Jide)cr(e, D)

i=1 cek

k
> miner(C,, D). (20)

=
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Sufficiency. Suppose (19) is satistied for each closed curve D on S\V.
Let I:={1,...k}, and let K be the convex cone in R’xR" generated by
the vectors

(g;5tr ) (iel; C closed curve in G with C~ C,); )1
(21)
(05 ¢.) (ee E).

Here ¢, denotes the ith unit basis vector in R’ and ¢, denotes the eth unit
basis vector in R*. Moreover, 0, denotes the all-zero vector in R,

Although generally there are infinitely many vectors (21), K is finitely
generated. This can be seen by observing that we can restrict the vectors
(¢;;tr) in the first line of (21) to those that are minimal with respect to
the usual partial order < on Z’/, xZ" (with (x, y)<(x', ))<= x,< x| for
all iel and y, <y for all e€ E). They form an ‘antichain’ in Z', xZ%
(ie., a set of pairwise incomparable vectors), and since each antichain in
Z' x 7" is finite, K is finitely generated.

We must show that the vector (1,;1,) belongs to K. Here 1, and 1,
denote the all-one sectors in R’ and R*, respectively. By Farkas’ lemma, it
suffices to show that each vector (d; /) e @' x @” having nonnegative inner
product with each of the vectors (21), also has nonnegative inner product
with (1,; 1,). Thus let (d; /) e @’ x @* have nonnegative inner product with
each vector among (21). This is equivalent to:

(i) d+ Y lteytr(e)=0 (iel: C closed curve in G with C~ C)); 22)
ce l L
(11) lley=0 (e€E).

Suppose now that (d;/)" (1,;1,)<0. By increasing / slightly, we may
assume that /(e¢) >0 for each e¢e E. Next, by blowing up (d;/) we may
assume that each entry in (d; /) is an even integer.

Let G’ be the graph arising from G by replacing each edge ¢ of G by a
path of length /(e¢). That is, we insert /(¢)—1 new vertices on e. Then by
(22)(1),

—d,;<minlength.(C,) (23)
for each iel Since G’ is bipartite, by Corollary 1 there exist closed curves

D,, ... D, not intersecting any vertex of G’ such that each edge of G’ is
intersected by exactly one D, and only once by that D, and such that

minlength,(C,)= Y mincr(C,, D;) (24)

j=1
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for each ie I So

r

ley= Y, cr(e. D) (25)

j=1

for each edge ¢ of G. Hence (19), (23) and (24) give

Y. le)

Y Y cr(e. D))

ce l j=1 cek
4 ’ A
=) cr(G, D)=y 3 miner(C,. D,
je j=1 Q=1
k !
=3 % miner(C,, D))
i=1 =1

A
Y minlength,(C;) >

i= i1

So(d: 1) (1,:1,)=0. |

|
™

(26)

In [37 it is shown that generally we cannot take the f; 0. 1-valued, even
not if certain “parity conditions” hold.
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