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Abstract 

For an undirected graph G = (V,E) let A.'(G) be the largest d for which there exists an 
oriented matroid M on V of co rank d such that for each nonzero vector (x +, x-) of M, x + is 
nonempty and induces a connected subgraph of G. 

We show that X(G) is monotone under taking minors and clique sums. Moreover, we show 
that .1.' ( G) ~ 3 if and only if G has no K 5 - or V8 -minor; that is, if and only if G arises from planar 
graphs by taking clique sums and subgraphs. 

1. Introduction 

In [5] the following invariant A.(G) for a graph G = (V,E) was introduced: 11.(G) is 
equal to the largest dimension of any linear subspace X of !Rv with the property that 
for any nonzero x EX the graph <supp+(x)) induced by supp+(x) is nonempty and 
connected. (Here supp + (x) denotes the positive support of x; that is, the set 
{ v E VI x(v) > O}. Similarly, supp_(x) denotes the negative support of x; that is, the set 
{ v E VI x(v) < O}. Moreover, for any U f; V, < U > denotes the subgraph of G induced 
by U; that is, the subgraph with vertex set U and edges all edges of G contained in U. 
In this paper, all graphs are assumed to be simple.) 

This graph parameter can be easily seen to be monotone under taking minors. That 
is, if G is a minor of H, then A.(G):::;; A.(H). So for each natural number d the class of 
graphs G with A.(G):::;; dis closed under taking minors. 
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In [5] it is also shown that I.( G) = max {A(G i), le( G2 )} if G is a clique sum of G1 and 
G 2 (that is, arises by identifying two cliques of equal size in G1 and G2 ). It was shown 
that 

(i) A.( G) ;;::; 1 if and only if G is a forest; 
(ii) A.( G) ;;::; 2 if and only if G is series-parallel; 

(iii) A.(G);;::; 3 if and only if G arises by taking subgraphs and clique sums 
from planar graphs. (1) 

The function }.(G) was motivated by the graph invariant µ(G) introduced by Colin 
de Verdiere [2] (cf. [3]), although we do not know a relation between the two 
numbers. (It might be that ).(G);;::; µ(G) holds for each graph G.) 

In the discussion after presenting the results above at the 5eme Colloque Interna­
tional Graphes et Combinatoire in Marseille Luminy (September 1995), the first author 
of the present paper raised the question of extending these results to oriented 
matroids. The present paper shows that indeed most results of [5] are maintained 
under such an extension. 

We first give the definition of oriented matroid (see [1] for background). To this end 
it is convenient to introduce, for any ordered pair x = (a, b), the notation x + := a and 
x- :=b. 

Let M = ( V, X) be an oriented matroid, where X is the set of 'vectors' of M. That is, 
X is a collection of ordered pairs x = (x +, x-) of subsets of V satisfying 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

for each x EX, x + nx- = 0; 
0 := (0,0) EX; 
if x E X then - x : = (x - , x +) E X; 
if x,y EX, then x · y := (x+ u(y+ \x-), x- u(y-\x+)) EX; 
if x, y EX and u Ex+ n y-, then there exists a z EX such that 
uef:z+ uz-, (x+\y-)u(y+\x-) !;;:::: z+ !;;:::: x+ uy+, and (x-\y+)u 
(y-\x+)!;;z- !;;x-uy-. (2) 

The elements of X are called the vectors of the oriented matroid (0 is the zero). Any 
linear subspace Y of rr;gv gives an oriented matroid (V,X), by taking X := { (supp+(x), 
supp-(x))lxE Y}. 

For any oriented matroid M = (V, X), the minimal nonempty subsets of 
{ x + u x - I x E X} form the circuit collection of a matroid, again denoted by M. Thus 
matroid terminology applies to oriented matroids. We give the concepts we need 
below, expressed in terms of the circuits of M. 

The rank of a subset U of Vis the size of a largest subset U' of U not containing 
a circuit of M. The rank rank(M) of M is the rank of V. 

A cobase is a base of the dual matroid M*; that is, it is an inclusionwise minimal 
subset intersecting each circuit of M. The cospan cospan(U) of a subset U of V is the 
set of elements v E V such that there is no circuit containing v and not intersecting 
U (so U s; cospan(U)). The corank corank(U) of a subset U of V is the size 
of a minimal subset U' of U such that U !;;:::: cospan(U'). A basic matroid theory 
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formula is 

corank(U) =I UI + rank(V\ U) - rank(V). (3) 

The corank corank(M) of Mis equal to corank(V), which is equal to I VI - rank(V). 

Finally, we denote the deletion and contraction of U by M\ U and M/U, respective­

ly. In terms of oriented matroids, if M = ( V, X) is an oriented matroid and U c;: V, 

then M\ U is the oriented matroid (V\ U, X') with X' := {x EX I (x+ ux-)11 U = 0}, 
and M/U is the oriented matroid (V\ U, X") with X" := { (x+ \ U, x- \ U) Ix EX}. 

We next describe our graph parameter based on oriented matroids. Let G = ( V, E) 
be an undirected graph. A valid representation for G is any oriented matroid 

M = ( V, X) with the property that for each nonzero x EX, the subgraph <x+) of 

G induced by x+ is nonempty and connected. Let /,'(G) be the largest corank of any 

valid representation for G. 

As each subspace of IR v gives an oriented matroid, with corank equal to the 

dimension of the subspace, we have for each graph G 

/c(G) ~ ;,'(G). (4) 

One of the consequences of this paper is that there are no graphs with /,(G) :;;; 3 and 

),(G) < /c'(G). In fact, we do not know any graph G with strict inequality in (4). 

2. )c' is minor-monotone 

We now first show: 

Theorem 1. If G is a minor ofH then /c'(G) ~ A,'(H). 

Proof. Let M = (V,X) be a valid representation of G = (V,E) with corank(M) = 
),'(G).If G arises from H by deleting an edge of G, then Mis also a valid representation 

for H. So ),'(H) ~ corank(M) = A'(G). 

If G arises from H by contracting an edge e = uv of H to vertex w of G, then 

replacing in any xEX, x+ by (x+\{w})u{u,v} if wEx+, and similarly, x-· by 

(x- \ { w} )u {u, v} if w Ex - , gives a valid representation M' for H, with corank(M') = 

corank(M) = ),'(G). D 

This theorem implies, by Robertson and Seymour's theorem [ 4], that for each fixed 

n there is a finite class Yin of graphs with the property that for any graph G: Jc' ( G) ~ n if 

and only if G has no minor in §',,. 

We note that for the complete graph Kn one has 

Theorem 2. lc'(Kn) = n - 1. 

Proof. Let M = (V,X) be a valid representation for Kn. If corank(M) = n, then 

rank(M) = 0, and therefore {v} is a circuit for each v E V. So {v} contains x+ ux-
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for some nonzero x EX. This contradicts the fact that both x + and x- are non­
empty. 

On the other hand, the set X of all pairs ( U, W) with U = 0 = W or U =fa 0 =fa W 
and Un W = 0, gives a valid representation for Kn of corank n - 1. D 

So Hadwiger's conjecture implies the conjecture that y(G) ~ /c'(G) + 1 for each 
graph G, where 1(G) is the chromatic number of G. (Hadwiger's conjecture states that 
/'( G) ~ n if G does not have any K. + 1 -minor.) 

It is useful to note: 

Theorem 3. If graph G' arises from graph G by deleting one vertex, then ).' ( G) ~ 
).'(G') + 1. 

Proof. Let M = (V,X) be a valid representation for G = (V,E), ofcorank J.'(G). Let 
G' arise from G by deleting vertex v. Then the matroid M' := M \ { v} obtained from 
M by deleting vis a valid representation for G'. Moreover rank(M') ~ rank(M), and 
hence corank(M') =!VI - l - rank(M');?; I VI - 1 - rank(M) = ),'(G) - 1. D 

3. Clique sums 

In this section we show that the function A.'(G) does not increase by taking clique 
sums, and from this we directly derive characterizations of the classes of graphs 
G satisfying ),'(G) ~ 1 and A'(G) ~ 2. We first prove a lemma on oriented matroids. 

Lemma l. Let M = (V,X) be an oriented matroid and let x,y EX with 0 =fax+ ~ y­
and x =F -y. Then there is a nonzero z EX such that z+ s y+ and x+ <;/;. z-. 

Proof. Choose a nonzero zEX such that (i) x+ $.z-, (ii) z+ s;;;x+uy+, (iii) 
x-\y+ £ z £ x-uy-, and (iv) IY+ uz+ I as small as possible. Such a z exists, since 
z = x satisfies (i) -(iii). 

Assume z + 't y +, and choose u E z + \y +. So u E x +, and hence u E y-. Therefore, 
applying (2)(v) to y,z, there is a z'EX such that urf=z'+uz'-, z'+ s;;;y+uz+, 
z' £ y uz . (y+\z-)u(z+\y-) £ z'+, and (z-\y+)u(y-\z+) £ z'-. Then 
x + 't z' - (as u r/= z - ). z' + £ y + u z + £ x + v y +, x - \ y + £ z - \ y + s z' - £ y- u z - s 

x · v J". and y+ v z' + c y+ uz+ (as u r/= y+ vz'+ ). Since IY+ v z+ I is minimal it follows 
that z' = 0. Hence y+ s z-, z+ £ y-, z- £ y+, and y- s;;; z+. So z = -y, and there­
fore y- £ x+ and y+ s x·. Moreover, x-\y+ s y+, and hence x- s;;; y+. Sox= -y, 
contradicting our assumption. D 

The lemma is used to prove 

Theorem 4. Let M = ( V, X) be a valid re presentation for G = (V, E) and let y, z EX. If 
y =F - z then < y + v z + > is connected. 
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Proof. Suppose y =F -z and <Y+ uz+ >is disconnected. Soy and z are nonzero and 
y+ nz+ = </J. Consider z· y = (z+ u(y+ \z-),z- u(y-\z+)). Since (z+ u(y+ \z-)) is 
connected, y + \ z - = </J, that is, y + £ z-. This implies by Lemma 1 that there is 
a nonzero w EX such that w+ £ z+ and y+ <f. w-. Consider w· y = (w+ u(y+ \w-), 
w-u(y-\w+)). Then w+ is a nonempty subset of z+ and y+\w- is a nonempty 
subset of y +, contradicting the fact that < w + u (y + \ w-) > is connected. D 

This theorem does not apply if y = - z. This case can be described as follows. 

Theorem 5. Let M = (V,X) be a valid representation for G = (V,E). Then for ally EX 

with <Y+ u y-) not connected, there exist corank(M) pairwise openly vertex-disjoint 
paths connecting y+ and y-, except ifcorank(M) = 1 and y+ and y- are contained in 
different components of G. 

Proof. Suppose not. Then by Menger's theorem there exists a subset U of V such that 
y+ and y- are contained in different components of G - U and such that 
I UI < corank(M). By Theorem 4, y+ u y- is the unique circuit of M contained in 
V\ U. (Indeed, by Theorem 4, for any nonzero x EX and x+ ux- £ V\ U one has 
x E {y, -y}.) Therefore rank(V\ V) =IV\ UI - 1. 

If U = </J then rank(M) = IV I - 1, and hence corank(M) = 1. If U :/= </J, we can 
choose some ue V. Let xeX be such that x+ux- ~(V\V)u{u}. If u~x+ then 
x E {y, - y} (by Theorem 4). Similarly, if u 1: x- then again x E { y, - y }. Concluding, 
y+uy- is the unique circuit contained in (V\V)u{u} and hence rank(V\V)u 
{u}) = IV\ VI. Hence rank(M) ~ rank((V\ V)u {u}) = IV\ V\. This contradicts the 
fact that rank(M) =I VI - corank(M) = IVI - d <IV\ VI. D 

We use Theorems 4 and 5 to investigate the behaviour of A.'(G) upon taking a 'clique 
sum', which is defined as follows. Let G = (V, E) be a graph and let Vi and V2 be 
subsets of V such that V = V1 u V2 , K := Vi n V2 is a clique in G and such that there is 
no edge connecting Vi\ K and V2 \ K. Then G is called a clique sum of G 1 := <Vi> and 

G1 := <V2). 

Theorem 6. lfG is a clique sum ofG 1 and G2 then ).'(G) = max{A'(G1).).'(G2)}, except 

if G = K2. 

Proof. Since G1 and G2 are subgraphs ofG, we have A'(G) ~ max{A'(G1),A'(G2)}. So 
it suffices to show that ).'(G) = ).'(Gd for i = 1 or 2. Assume that A.'(G) > 
max{).'(Gi),A'(G2)}. Let d := A'(G), G = (V,E), Gi = (Vi,Ei), G1 = (Vz,E2), 
K :=Vi n V2 , and t := IKI. We may assume that we have chosen this counterexample 

so that t is as small as possible. 
Then <Vi\ K) has a component L such that each vertex in K is adjacent to at least 

one vertex in L. Otherwise G would be a repeated clique sum of subgraphs of Gi and 
G2 with common clique sum smaller than t. In that case ).'(G) = max{).'(G1),A.'(G2)} 
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would follow by the minimality oft. Concluding, G1 has a K 1+ 1-minor, and therefore 
).'(Gi) ~ t. Hence ).'(G) > t. 

Let M = ( V, X) be a valid representation for G with corank(M) =d. There exists 
a nonzero y EX such that y+ u y- s;;; V\K (otherwise rank(M) ~I V\KI, contradic­
ting the fact that d > t). 

By Theorem 5 both y+ and y- are contained in the same component of G - K. 
Hence we may assume that y+ u y- s;;; Vi \K. Hence by Theorem 4 we have that there 

is no nonzero x EX with x+ s;;; Vi \K. So M/(V1 \K) has corank equal to corank(M). 
Moreover, for each nonzero x EX, x+ n V2 induces a nonempty connected subgraph 
of G2 . Hence /.'(G2 ) ~ corank(M) = A.'(G), contradicting our assumption that 
},'(G2) <d. 0 

This theorem directly implies characterizations of those graphs G satisfying 
A'(G)::::; 1 and A.'(G) ~ 2. 

Corollary 6a. For any graph G, A'(G)::::; 1 if and only if G does not have a K 3 -minor; 
that is, if and only if G is a forest. 

Proof. If ).'(G) ~ l then G has no K 3 -minor, as A.'(K 3 ) = 2. Conversely, if G is a forest, 
then G arises by taking clique sums and subgraphs from the graph K 2 • As A.'(K 2 ) = 1, 
Theorem 6 gives the corollary. D 

Corollary 6b. For any graph G, A'(G) ::::; 2 if and only if G does not have a K4 -minor; 
that is, if and only if G is a series-parallel graph. 

Proof. If A.'(G) ~ 2 then G has no K 4 -minor, as A.'(K4 ) = 3. Conversely, if G is 
a series-parallel graph, then G arises by taking clique sums and subgraphs from the 
graph K 3 . As A.'(K3 ) = 2, Theorem 6 gives the corollary. D 

4. Graphs satisfying l'(G)::::; 3 

We characterize in this section the graphs G satisfying A'(G)::::; 3. The main step 
consists in proving that le' ( G) ::::; 3 if G is planar. 

Theorem 7. If G is planar then A'(G) ~ 3. 

Proof. Suppose G = (V,E) is a planar graph with A.'(G) ~ 4 and I VI minimal. We 
assume that we have an embedding of Gin the sphere. For each face/of G let V1 be the 
set of vertices incident with/ Note that G is 4-connected, since otherwise it would be 
a subgraph of clique sums of smaller planar graphs, and hence we would have 
J.'(G) ::::; 3 by Theorem 6. 
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Let M = (V,X) be a valid representation for G with corank(M)?: 4. Then 
co rank( { u}) = 1 for each u E V; that is, u is contained in at least one circuit of M. 
Otherwise, we can delete u from G and M. 

We may assume that, for each edge uv, corank( { u, v}) = 2; that is, there is a circuit 
containing u but not v. Otherwise, either for each x EX one has u Ex+ <=> v Ex-, in 
which case we can delete the edge {u,v} from G, or for each xeX one has 
u Ex+ <o> v E x +, in which case we can contract the edge { u, v} in G and identify 
elements u and v in M. 

Note that this implies that if f and f' are adjacent faces (that is, have an edge in 
common) and corank(VJ) = 2 = corank(Vr), then cospan(Vf) = cospan(Vr)· 

Fixing V we choose E maximal under the condition that corank( {u, v}) = 2 for each 
edge { u, v}. Then co rank( VI) E { 2, 3} for each face f Indeed, co rank( VJ) ?: 2, as each 
edge e has corank(e) ?: 2. Moreover, if co rank( VJ) ?: 4, Vf contains at least two 
nonadjacent vertices u, v with corank( {u, v}) = 2. This contradicts the maximality of E. 

For x EX let ffx be the set of faces f for which VJ n x + # 0 and VI n x- # 0. Then: 

Let f and f' be two faces with co rank( VJ u Vr) ?: 4. 
Then there is an x EX with f,f' E ffx· (5) 

As corank(VJ)?: 2, corank(Vr)?: 2, and corank(Vfu Vr)?: 4, there exist u, v E VJ, 
u', v' E Vr with corank( { u, v, u', v'}) = 4. Therefore, we can find x E X such that 
u, u' Ex+ and v, v' Ex-. So f,f' E ffx, proving (5). 

For x EX let Wx := U {VJ If E ffx}. We show: 

corank(Wx) ~ 3 for all x EX. ( 6) 

Note that (6) implies an immediate contradiction with (5), as corank(V)?: 4. 
We show that (6) holds. It suffices to show the result for x EX such that 

x+ux- = V. (Indeed, if there exists u~x+ux-, let yeX with uEy+ and set 
z := x · y. Then, z + 2 x + u { u}, z- 2 x- and Wz 2 Wx· Hence validity of the result for 

z will imply validity for x.) 
Let x EX with x+ ux- = V be given. Observe that if f and f' are faces with 

corank(VJ) = corank(Vr) = 2 and having a common edge, e say, then cospan(Vf) = 
cospan(Vr), as it is equal to cospan(e). Similarly, cospan(VJ) c::; cospan(Vrl if 
corank(Vf) = 2, corank(Vr) = 3 and JJ' share a common edge. 

As both (x +)and (x-) are connected, the cut b(x+) corresponds in the dual graph 
of G to a circuit C which traverses exactly two edges in each face f E ffx· 

Suppose, to obtain a contradiction, that corank(Wxl ?: 4. Then there exist 
faces f,f' E ffx with corank(Vf) = corank(Vr) = 3 and such that cospan(Vf) =I= 

cospan(Vr ). They correspond to two nodes on C. Denote by fi. ... ,fr the faces 
between f and f' when traveling from f to f' along C (in a given direction). Then we 
may assume that corank(Vf,) = 2 for all i = 1, ... , t. For i = 0, 1, ... , t, let u;v; be the 
edge common to the faces f; and f;+ 1 , setting f~ := f and f;+ 1 := f'. So each u;v; 
belongs to 6(x+) (as G is 4-connected). We may assume that u; Ex+ and v; Ex- for 

each i. 
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Now choose wEV1 \cospan(Vrl and w'EVr\cospan(V1 ). Then the set 
{ u0 , v0 , w, w'} has co rank 4. Hence, there exists y EX such that w, w' E y + and u, v !/: 
y+ u y-. Hence, the set y+ u y- contains none of the vertices on the faces f1, ... ,f; 
(since vf,£;cospan({uo,Vo}l for all i= l,. .. ,t). In particular, Uj,V;f/:y+uy- for 
i = 1, ... , t. By connectivity of (y +>there exists a path P from w tow' which is entirely 
contained in y +. 

Consider the region R := U :: ~ f; (where faces are assumed to be topologically 
closed). As P joins two nodes on the boundary of R, Ru P partitions the rest of the 
sphere into two regions R1 and R2 . We choose indices such that R 1 has the vertices 
u0 , • . ., u, on its boundary, while R2 has the vertices v0 ,. . ., v, on its boundary. 

By the connectivity of< y- ), y- is contained either in .R. 1 or in .R.2 . Suppose first 
that v- is contained in .R. 1 . Consider the element z := y · x of X. Then, z- 2 {Vo, ... , v,} 
u y-, while u0 , • •• , u1 E z+. Then there is no path joining v0 and y- which is entirely 
contained in z-, contradicting the connectivity of (z- ). 

Suppose next that y- is contained in R2 . Set z := y · ( -x). Then we arrive similarly 
at a contradiction. D 

We can now characterize the graphs G satisfying ;\,'(G) < 3. It follows from 
Theorems 6 and 7 that A'(G) < 3 if G can be obtained from planar graphs by taking 
clique sums and subgraphs. On the other hand, it follows from a result by Wagner [6] 
that the graphs that can be obtained from planar graphs by taking clique sums and 
subgraphs are precisely the graphs with no K 5 - or V8-minor. (V8 is the graph with 
vertices vh .. ., v8, where v; and vj are adjacent if and only if Ii - jl E {1,4, 7}.) It is 
shown in [5] that ),(V8 ) = 4. Hence A.'{V8 ) ~ 4. As deleting any vertex of V8 gives 
a planar graph, Theorem 3 implies that A'{V8 ) = 4. Moreover, by Theorem 2 
X(K 5 ) = 4. Therefore, 

Theorem 8. A graph G satisfies X(G) < 3 if and only if G has no K 5- or V8 -minor; that 
is, if and only if G can be obtained from planar graphs by taking clique sums and 
subgraphs. 
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