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For any undirected graph G = ( V, E) let ,1.( G) be the largest d for which there 
exists ad-dimensional subspace X of 11\i:v with the property that for each nonzero 
x e X, the positive support of x induces a nonempty connected subgraph of G. 
(Here the positive support of x is the set of vertices t' with x(u) > 0.) We show that 
i.( GJ is monotone under taking minors and clique sums. Moreover, we show that 
i.( G),,.;; 3 if and only if G has no K5- or V8-minor; that is, if and only if G arises 
from planar graphs by taking clique sums and subgraphs. <C 1995 Academic Press. Inc. 

1. INTRODUCTION 

In this paper we study a graph invariant A.( G) e N, defined for any 
undirected graph G = ( V, E) as follows: A.( G) is the largest d for which 
there exists a d-dimensional subspace X of IR v such that: 

for each nonzero x e X, ( supp + ( x)) is a nonempty connected graph. 
(1) 

Here supp+(x) denotes the positive support of x; that is, the set {ve VI 
x( v) > 0}. Moreover, for any Us; V, ( U) denotes the subgraph of G 
induced by U; that is, the subgraph with vertex set U and edges all edges 
of G contained in U. In this paper, all graphs are assumed to be simple. 

Clearly, (I) implies that also the negative support supp _(x) of any 
nonzero xeX induces a nonempty connected subgraph of G (where 
supp_(x):={veVJx(v)<O}). 
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The function A( G) was motivated by the graph invariant µ( G) intro­
duced by Colin de Verdiere [ 3] ( cf. [ 4] ), although we do not know a rela­
tion between the two numbers. (It might be that A( G) ~ µ( G) holds for 
each graph G.) 

There is a direct equivalent characterization of A.( G ). Let G = ( V, £) be 
a graph and let d E N. Call a function </J: V--> !Rd a valid representation if 

for each half space H of IR", the set </J - 1 ( H) is nonempty 
and induces a connected subgraph of G. (2) 

In this paper, a subset H of IR" is called a hu(f5pace if H = { x E ~" le Tx > 0 J 
for some nonzero c ER". Note that if </J: V--> !Rd is a valid representation, 
then the vectors </J( v) ( v E V) span !Rd (since otherwise there would exist a 
halfspace H with </J- 1( H) = 0). 

Now A.( G) is equal to the largest d for which there is a valid representa­
tion </;: V---> ~d. This is easy to see. Suppose X is a d-dimensional subspace 
of IRv satisfying(!). Let x 1 , ••. ,xc1 form a basis of X. Define </J(r) := 
( x 1 ( 1' ), ... , xd( v)) for each v E V. This gives a valid representation. 

Conversely, let </J: V---> ~d be a valid representation. Define for any c E :Rd 

the function x,E IRv by: x,(v) :=cT </J(v) for vE V. Then X:= {x" I cE 1Rc1J 
satisfies ( 1 ). 

It is easy to show that the function A.( G) is monotone under taking 
minors. (A minor of a graph arises by a series of deletions and contractions 
of edges and deletions of isolated vertices, suppressing multiple edges and 
loops.) That is: 

THEOREM I. If G' is a minor uf G then ),( G') ~ A( G ). 

Pro4 If G' arises from G by deleting an isolated vertex v0 , the 
inequality ),( G') ~A.( G) is easy: if </J: V( G')--> !Rd is a valid representation 
for G' with d =A( G' ), then defining </J( v0 ) : = 0 gives a valid representation 
for G. 

So we may assume that G' = ( V', E') arises from G = ( V, £) by deleting 
or contracting one edge e = uw. Let </;': V' --> IR" be a valid representation 
for G' with d =Jc( G' ). If G' arises from G by deleting e, then V = V', and 
<f;' is also a valid representation for G. Hence )o( G) ~ d =Jc( G' ). 

If G' arises from G by contracting e, let v0 be the vertex of G' which 
arised by contracting e. Define </J( u) : = </J( w) : = <f;' ( v0 ), and define </J{ v J : = 
</J' ( L') for all other vertices v of G. Then </J is a valid representation of G. I 

Having Theorem 1, one can derive from the work of Robertson and 
Seymour [ 8] that for each fixed n there is a finite class '§,, of graphs such 
that for any graph G: 1( G) ~ n if and only if G contains a graph in '!Jn a~ 
a minor. 
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We observe that trivially ),( G) = 0 if and only if G has exactly one vertex. 
So ~1 consists only of the graph K 2 • 

For the complete graph one has: 

THEOREM 2. A( K,.) = n - 1. 

Proof Let V be the vertex set of Kn. To see },( K,,) < n, suppose X is a 
subspace of IR v satisfying ( l ) of dimension n. Then X = IR v, and hence the 
function x( v) = - I ( v E V) belongs to X, contradicting ( 1 ). 

On the other hand, A.( Kn)?: n - 1, since the set X of functions x E IR v with 
Luevx(v)=O satisfies (1). I 

It is easy to see that if n?: 3, each proper minor G' of K,. satisfies A.( G):::;; 
n - 2. So if n ?: 3, K 11 belongs to ~§,, _ 1 • (This is not true for n = 2, since the 
graph G with two isolated vertices also satisfies A.( G) = 1 ). 

Theorem 2 gives that Hadwiger's conjecture implies that y( G):::;; 
).(G)+ l, where }'(G) denotes the (vertex-)chromatic number of G. So by 
the results of Appel and Haken [ 1 ], Appel, Haken, and Koch [2] (the 
four-colour theorem}, and Robertson, Seymour, and Thomas [ 11 ], the 
inequality y( G) :::;; ),( G) + l holds if A.( G) ~ 4. 

It is easy to see that if G' = ( V', E') arises from G = ( V, E) by deleting a 
vertex u of G, then A.( G) ~ ),( G') + 1. Indeed, let X be a d-dimensional sub­
space of IR v satisfying (1 ), where d: = ),( G ). Then X' := { x E !}{ v I x(u) = 0} 
has dimension at least d - 1. Deleting coordinate u gives a subspace of IR v· 
(satisfying (1) with respect to G') of dimension at least d- 1 =A.( G) -1. 

This implies that contracting or deleting any edge Ull' of G decreases 
},( G) by at most 1, as the new graph contains as a subgraph the graph G' 
obtained from G by deleting u. 

Similarly to the chromatic number, also the function A.( G) cannot be 
increased by "clique sums", as we shall see in Section 2. This directly gives 
that A.( G) :::;; I if and only if G has no K3-minor, that is, if and only if G is 
a forest; and that ),( G):::;; 2 if and only if G has no K4-minor, that is, if and 
only if G is a series-parallel graph. 

Let V8 be the graph with vertices u 1, .•. , v8 , where r, and vi are adjacent 
if and only if Ii - j I E { 1, 4, 7}. In Section 3 we show that ),( G) :%; 3 if and 
only if G has no K5- or V8-minor; that is, if and only if G can be obtained 
from planar graphs by taking clique sums and subgraphs. The kernel of the 
proof here is to show that ),( G) :::;; 3 for any planar graph G. Having this, 
a fundamental decomposition theorem of Wagner [ 12] then implies the 
full characterization. 

Note that the inequality ),( G):;::,: 3 is easy for 3-connected planar graphs: 
in that case G can be represented as the vertices and edges of a full-dimen­
sional convex polytope in IR 3 . We may assume that this polytope contains 
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the origin in its interior. Then this embedding of V in IR 3 is a valid 
representation. 

More generally, if G is the I-skeleton of a d-dimensional convex 
polytope, then A.( G) ~d. (The I-skeleton of a convex poiytope P is the 
graph made by the vertices and edges of P.) However, in general one can 
have A.(G)>d, since Gale [5] showed that for each n~S, Kn is the 
I-skeleton of a 4-dimensional polytope. 

In Section 4 we give a few observations concerning the class of graphs 
G with A.( G)::::; 4. 

Finally in Section 5 we study a related graph invariant K( G) for con­
nected graphs G = ( V, E). This is the largest d for which there exists a func­
tion <fa: V-+ !Rd such that </J( V) affinely spans a full-dimensional affine space 
and such that for each affine half space H the set </J- 1 ( H) induces a con­
nected subgraph of G (possibly empty). (Here an affine halfspace is a sub­
set of IR" of the form { x E !Rd\ cTx > o} for some nonzero c E !Rd and some 
bER) 

Again it is easy to show that K( G) is monotone under taking minors. 
Moreover, one has K( G)::::; A.( G ). In Section 5 we show that K( G) ~ d if and 
only if G does not have a Kd+ 2-minor. So for this invariant the class of 
forbidden minors is exactly known for each d. 

2. CLIQUE SUMS 

In this section we show that the function A.( G) does not increase by 
taking clique sums, and from this we derive characterizations of the classes 
of graphs G satisfying A.( G) ::::; I and A.( G) ::::; 2. 

We first give an auxiliary result. For any finite subset Z of !Rd let 
cone(Z) denote the smallest nonempty convex cone containing Z; that is, 
it is the intersection of all closed half spaces { x E !Rd \ c Tx ~ 0} containing Z. 
(Thus cone( 0) = { 0}, while cone( Z) = IR" if there are no halfspaces 
containing Z.) 

THEOREM 3. Let <fa: V-+ IR" be a valid representation of a graph 
G = ( V, E) and let Us;; V. Assume that cone( <fa( U)) is not a hyperplane in iR". 
Then there is at most one component K of G - U for which the inclusion 
</J(K) ~cone( <fa( U)) does not hold. 

Proof We may assume that cone( </J( U)) # IR". Since cone( </J( U)) is not 
a hyperplane in IR", the set 

C:= {cEIR" I c#O, cT</J(v) ::::;o for each ve U}, (3) 
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is nonempty and topologically connected (as the polar cone Cu { 0} of 
cone(</J(U)) is not a line). For cEIR", let Hc:={xEIRc1lcTx>O}. Let 
K 1, •• ., K, be the components of G - U. Let C; be the set of vectors c EC for 
which He intersects </l(K;). So if ii= j then C;r1 C1 = 0, since if c EC then 
</J- 1 ( H,.) is connected and is disjoint from V. As C 1 u · · · u C 1 = C and 
since each C; is an open subset of C, it follows that C; = 0 for all but one 
i. Hence </J(K;) £cone( </J( U)) for all but one i. I 

Let G = ( V, E) be a graph and let V1 and V2 be subsets of V such that 
K := V1 n V2 is a clique in G and such that there is no edge connecting 
V1\K and V2 \K. Then G is called a clique sum of the graphs G1 := ( V1 ) 

and G2 := ( V2>· 

THEOREM 4. ~f G is a clique sum of G 1 and G2 then A( G) = max {A( G i), 
Jc(G2)} (except if G1 and G2 each consist of one vertex and G of two 
nonadjacent vertices). 

Proof Since G 1 and G2 are subgraphs of G, we have Jc(G) ~ 
max{A(G 1), A.(G2 )}. So it suffices to show that A.(G)=A.(G;) for some 
i = 1, 2. Assume that A.( G) > max{ A.( Gi), A( G2 )}. Let d :=A.( G), G = ( V, E), 
and G;= (V;, E;) for i= 1, 2. 

Let </J: V-+ !Rd be a valid representation of G. As d >A.( G ;), <P I V; is not 
a valid representation of G; for i = 1 and i = 2. Let K := V 1 n V2 and 
t := IKI. We may assume that we have chosen the counterexample so that 
IKI is as small as possible. 

Then ( V1 \K) has a component L such that each vertex in K is adjacent 
to at least one vertex in L. Otherwise G would be a repeated clique sum 
of subgraphs of G1 and G2 with common clique being smaller than K. In 
that case A.(G) =max{A.(Gi), Jc(G2 )} would follow by the minimality of K. 

So G1 has a K1 +i-minor. So A.(Gi)~t, and hence A.(G)>t= IKI. There­
fore, cone(</J(K)) is not a hyperplane in IR". (Here we use that it is not 
the case that K = 0 and d = 1.) So by Theorem 3, we may assume that 
</!( Vi)s;cone(</J(K)). 

As d> ..l.( G2 ), there exists a halfspace Hof IR" such that ( <P- 1(H) n V2 ) 

is empty or disconnected. If it is empty, then </J( v) EH for some v E V1 \K, 
contradicting the facts that </J( v) E cone(</J(K)) and that </J(K) n H = 0. So it 
is disconnected. But then also rp - 1 ( H) would induce a disconnected 
subgraph of G, as K is a clique. This is a contradiction. I 

This theorem directly implies characterizations of those graphs G 
satisfying Jc( G) :( 1 and A.( G) :( 2. 

COROLLARY 4a. For any graph G, Jc(G) :(I if and only if G does not 
have a K3-minor; that is, if and only if G is a forest. 
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Proof If Ji.( G) ~ 1 then G has no K3-minor, as Ji.(K3 ) = 2. 
Conversely, if G is a forest, then G arises by taking clique sums and sub~ 

graphs from the graph K2 • As Ji.(K2 ) = 1, Theorem 4 gives the corollary. I 

COROLLARY 4b. For any graph G, Ji.( G) ~ 2 if and only if G does hot 

have any K 4-minor; that is, if and only if G is a series-parallel graph. 

Proof If Ji.(G)~2 then Ghas no K4-minor, as Ji.(K4 )=3. 
Conversely, if G is a series-parallel graph, then G arises by taking clique 

sums and subgraphs from the graph K 3• As Ji.(K3 ) = 2, Theorem 4 gives the 
corollary. I · 

3. GRAPHS SATISFYING Ji.(G) ~ 3 

We next give a characterization of those graphs G satisfying Ji.( G):::::; 3. l'o 
this end we first show: 

THEOREM 5. If G is planar then Ji.( G):::::; 3. 

Proof Suppose G = ( V, E) is a planar graph with Ji.( G) ~ 4. Choose G 
such that I VI is minimal. Then G is 4-connected, since otherwise it would 
be a subgraph of a clique sum of two smaller planar graphs, contradicting 
by Theorem 4 the minimality of I VI. (In this paper, graph His smaller than 
graph G if H has fewer vertices than G.) 

Let cp: V-+ IR4 be a valid representation. Let X £; IR v be the 4-dimensional 
space corresponding to if>; that is, X = { x .. I c e IR4 }, where x,.(ii) :=err/>( i· J 
for VE V. 

By the minimality of I VI we know that cp( v) =/: 0 for each v e V (otherwise 
we can delete v ). So we may assume that II r/>( v) II = 1 for each ii e V. 

Assume that E has been chosen such that, fixing V and cp, 

L ( L(r/>(u), cp(w))) 2 (4) 
e=uweE 

is as small as possible. (Here L ( x, y) denotes the angle between vectors x 
and y.) 

We assume that G is embedded on the 2-sphere S 2. For any face f of G. 
let Vf be the set of vertices incident with f 

We observe: 

for any face f, if u, w e Vr then cp( u) i= cp( w ). (5) 

Otherwise, we could identify u and w, contradicting the minimality of I VI. 
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Moreover: 

if u and w are adjacent, then r/J( u) =f- ± r/J( w ). (6) 

Indeed, if rjJ( u) = r/J( w) we contradict ( 5 ). If rjJ( u) = -rjJ( II'), we can delete the 
edge uw without violating (2 ), contradicting the minimality of the sum ( 4 ). 

Let Lr be the linear space generated by rjJ( V1 ). For i = l, ... , 4, let F; 
denote the set of faces f with dim L 1 =i. Note that ( 6) implies that F 1 = 0. 
We next have: 

for any face j; if u, v, w E V1 and if u and v are adjacent, 
then </>( w) it cone( { rjJ( u ), rjJ( v)} ). ( 7) 

Otherwise we could remove edge uv and add edges uw and vw (if they do 
not already exist), thereby decreasing sum ( 4 ). 

Next we show: 

(8) 

Suppose f E F4 . Let X1 : = { x I V1 I x E X}. (Here x I V1 denotes the restric­
tion of x to V1. As dim L1 = 4 we have dim X 1 =4. Let X/ := { y E X 1 I 
Liev,J',,=0}. Then X( has dimension at least 3 and for each nonzero 
yEX{ one has supp+(Y) =f-0. So, as ( V1 ) is a series-parallel graph 
(indeed, a circuit), by Corollary 4b, Xj contains a vector y with supp+(Y) 
having at least two components on V1. Let x EX satisfy y = x I V1, and let 
cE !Rv be such that xc=x (that is, x,.=cTrjJ(v) for each vE V) .. 

Let U := supp +(x ). As cT rjJ( v) > 0 for each v E U, cone( r/J( U)) is a pointed 
cone. Now for each v E V\supp + ( x) we have c T if>( v) ~ 0. As </>( v) =f- 0, we 
have that rjJ(v)tj;cone(rjJ(U)) for each VE V\supp+(x). Therefore, by 
Theorem3, G-supp+(x) has only one component. As G is planar, this 
contradicts the facts that supp + ( y) has at least two components on Vj and 
that (supp+(x)) is connected. So we have proved (8). 

Next we show: 

Let f' and /" be two faces having an edge in common, 
with dim Lf' =dim Lr. Then Lr = Lr. ( 9) 

If dim L.1 .. = 2 the statement is trivial, so assume dim Lf' = 3. Let e = uw be 
the common edge off' and f". Suppose L1 . i= Lr. Then we can select 
v' E Vr and v" E Vr such that </>( u ), </>( w ), rjJ( v' ), and r/J( v") form a basis of 
IR: 4 . Hence there exists a c E IR4 such that CT r/J(u) = 0, ('T(p( w) = 0, CT r/J( v') > 0, 
and cTrjJ(v")>O. Hence for x:=x,EX one has that x(u)=O, x(w)=O, 
x( v') > 0, and x( v") > 0. Let G' be the subgraph of G induced by 
V\supp+(x). Since (supp+(x)) and (supp )x)) are connected, we may 
assume that supp _ ( x) is not contained in the same component of G' - e 
as u. 
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Now there exists a y EX such that y( u) < 0 and y( w) = 0. This follows 
from the fact that ef>(u) =I- ±ef>(w). Then for small enough e > 0, the function 
.:::=x+cy has supp+(.:)2supp+(x) and supp_(.::)2supp_{x), while 
uEsupp_(.::) and wrj;supp_(.::). This contradicts the connectedness of 
<supp_(z)>. This proves (9). 

This implies more strongly: 

Let f' and f" be two faces having a vertex in common, 
with dim Lr =dim Lr = 3. Then Lr = Lr. (10) 

Let v be a common vertex off' and f". If all faces f incident with v have 
dim Lr = 3, the statement directly follows from ( 9 ). So we may assume that 
there is a face f incident with v with dim Lf = 2. Let u and w be the two 
vertices in Vr incident with v, chosen in such a way that u, w, f', f" occur 
in this order cyclically around v. Assume Lt' oft L r. Then there exist vertices 
v' E VJ' and v" E Vr such that the vectors c/J( u ), c/J( v ), c/J( ii'), and c/J( v") are 
linearly independent. Hence there is a cE IR 4 such that cT</J(u) >0, 
cT</J(v)=O, cT</J(v')>O, and cTcp(v")<O. Hence for x:=xcEXwe have 
x(u) >0, x(v) = 0, x(v') > 0, and x(v") <0. 

We show that x(w)<O, that is, cTijl(w)<O. Assume cTijl(w)~O. Since 
dimLr=2, there exist A and 11 such that ef>(w)=Aijl(u)+µef>(v). Hence 
cT</>(11;) =).crijl(u) +11cTef>(t') = ).cTef>(u). As cTijl(u) > 0 and crefi(w) ~ 0 one 
has ). ~ 0. Now A. =I- 0 since otherwise v and w are linearly dependent, con­
tradicting (6). So).> 0. However, ifµ~ 0 then cp(w) E cone( { efi(u), c/J(v)} ), 
contradicting (7 ); and if p < 0 then </>( u) E cone( { 1p( v ), ef>( w)} ), contradicting 
(7) again. 

It follows that x( w) < 0. This however contradicts the connectedness of 
the graphs induced by supp + ( x) and supp _ ( x ). Thus we have ( 10 ). 

Now F3 #- 0, since otherwise L1 = Lf' for any two faces j; f', impl~ing_ 
that dim </>( V) = 2. Consider a component K of the space s := u/EFJ f u 
denotes the topological closure off) 

By (10), there is a 3-dimensional subspace L of IR4 such that for each 
vertex v contained in K one has c/J( v) E L. As </J( V) has dimension 4, there 
exists a vertex v0 such that </J( v0 ) rj; L. As v0 rj; K, there is a simple closed 
curve C not intersecting vertices of G, such that each face traversed by C 
belongs to F2 and such that C separates Kand u0 . So by (9) there exists 
a 2-dimensional subspace M of IR4 such that </J( Vr) s M for each face f 
traversed by C. 

We may assume that C traverses at least one face that has an edge in 
common with K. Hence Mc L. Let U be the set of all vertices incident 
with faces traversed by C. As ef>( v0 ) rj; L, cp( v0 ) rj; M. Moreover, since 
dim( ef>( U)) = 2 and dim( </J( K)) = 3, there is a vertex v 1 EK with o/( v 1) ~ .M. 
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So </>(v 0 )f/;cone(</>(U}) and </>(v 1 )r/;cone(</>(U)). As c0 and v1 belong to 
different components of G - U, this contradicts Theorem 3. I 

Having Theorem 5, Theorem 4 gives that ),( G):;:;; 3 also holds for graphs 
G obtained from planar graphs by taking clique sums and subgraphs. This 
characterizes the graphs G with A( G):;:;; 3, as follows from the following two 
results. 

THEOREM 6. If G has no K5- or V8-minvr, then G can be obtained by 
taking clique sums and subgraphs from planar graphs. 

Proof Suppose G is not planar. If G is not 3-connected, then it is easy 
to see that G is a subgraph of a clique sum of two smaller graphs not 
having any K 5- or V8-minor. So we may assume that G is 3-connected. 

Then by Wagner's theorem [ 12], G can be obtained as a subgraph of a 
3-clique sum of two smaller graphs G 1 and G2 both with no K 5-minor. Let 
K be the clique. 

It suffices to show that G 1 and G:. have no V8-minor. Suppose to the 
contrary that G 1 , say, has a V8-minor. As V8 does not contain any triangle, 
the V8-minor in G1 does not need all three edges of K. So G1 - e has a 
V8-minor for some edge e in K. However, G 1 - e is a minor of G (by the 
3-connectedness of G ), contradicting the fact that G does not have a 
Vs-minor. I 

THEOREM 7. A( V8 ) =4. 

Proof The inequality -1( V8 ):;:;; 4 follows from the fact that for any ver­
tex v of V8 , the graph V8 - l' is planar. Hence ).( V8 ):;:;; -1( V8 - v) + 1 :;:;; 4 by 
Theorem 5. 

We next show ).( V8 ) ~ 4. Again, represent V8 as the graph G with vertex 
set V= {v 1, •.. , r 8 }, where l'; and vi are adjacent if and only if Ii-JI is l, 
4 or 7. We define ef>: V-. IFR 4 as follows: 

</>(v 1) =( 1, 1, 1, 3), </>(1• 1 ) = ( 1, 0, 0, 0), </>(u3) = -( 1, 2, 3, 6), 

</>(V4)=(0,l,0,0},ef>(115 )=(1,3,3,3),ef>(v6)=(0,0,l,0), (11) 

r/J(V7)=-(l,2, l,2),</J(v 8 )=(0,0,0, 1). 

We first show that for i = !, ... , 8: 
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(taking indices mod 8 ). Indeed: 

( 1, 1, 1, 3) = 2( 0, 0, 0, 1) + ~ ( 1, 0, 0, 0) + *(l, 3, 3, 3 ), 

(1,0,0,0)= 2(1, 1, 1,3)- (1,2,3,6)+ (0,0, 1,0), 

-(1,2,3,6)= 2(1,0,0,0)+4(0, 1,0,0)-3(l,2, 1,2), 

(0, 1, 0, 0) = -(1, 2, 3, 6) + ( 1, 3, 3, 3) + 3(0, 0, 0, 1), 

{1,3,3,3)= 2(0, l,0,0)+2(0,0, 1,0)+ (1, 1, 1,3), 

(0,0, 1,0)= ~(l,3,3,3)- (1,2, l,2J+hl,0,0,0), 

-(1, 2, l, 2) = 2(0, 0, 1, 0) + 4(0, 0, 0, 1) - (1, 2, 3, 6), 

(0,0,0, l)=-(1,2, 1,2)+ (1, 1, 1,3)+ (0, 1,0,0). 

(13) 

To show that (2) holds, consider an open halfspace H of IR4 . Then 
W:=</J- i(H) is nonempty, since at least one of (1, 0, 0, 0), (0, 1, 0, 0), 
(0,0, 1,0), (0,0,0, 1), and (-1, -2, -3, -6) belongs to H. 

Assume that W induces a disconnected subgraph of V8 . Let U := V\W, 
and let K1 and K2 be two of the components of< W). Then \K;\ ~ 2, since 
otherwise K; would consist of one vertex, contradicting ( 12). So I UI :;;;;4. 
Since V8 is 3-connected, since each cut set of size 3 consists of the set of 
vertices adjacent with one vertex v;, and since U separates Ki and K2 , it 
follows that I VI = 4, and that the subgraph induced by W consists of two 
disjoint edges. 

Now note that for each edge e=v;V;+i of V~, each other edge e' of Vs 
disjoint from e contains at least one vertex that is adjacent to at least one 
vertex in e. It follows that W= {v 1 , v3 , v5 , v7 } or W= {v 2 , v4 , v6 , vg}. 

First assume W={v 1,v3 ,u5 ,v7 }. However, rjJ(v 1) belongs to 
cone({r/J(v2 ), </J(v 4 ), </J(v 6 ), </J(v8 )}), contradicting the fact that </J(vi)EH 
while </J(v;) ~ H for i = 2, 4, 6, 8. 

Next assume W={v 2 ,v4 ,v6 ,vd. Now </J(v 2 ) belongs to cone({</1(01), 
</J(v 3 ), </J(v5 ), r/J(v 7 )}) (as (1,0,0,0)=3(1. l, l,3)+~(-1, -2, -3, -6)+ 
(1, 3, 3, 3) + ~( - 1, - 2, - 1, - 2) ), contradicting the fact that </J( v2 ) EH 
while</J(v;)~Hfori=l,3,5,7. I 

Thus we have the following theorem: 

THEOREM 8. Let G be a graph. Then ,l.( G) :(; 3 (land only if G has no 
K5- or V8-minor; that is, if and only if G arises by taking clique sums and 
subgraphs from planar graphs. 

Proof Directly from Theorems 2, 4, 5, 6, and 7. I 



A MINOR-MONOTONE GRAPH INVARIANT 301 

4. GRAPHS SATISFYING A( G) ~ 4 

We do not know a characterization of the class of graphs G satisfying 
,1.( G) ~ 4. By Theorem 2, G = K6 is a forbidden minor for this class. Any 
other graph G in the "Petersen family" of graphs however satisfies ,1.( G) ~ 4. 
The Petersen family consists of all graphs that can be obtained from K 6 by 
a series of L1 Y- and YA-transformations. 

(A L1 Y-transformation consists of choosing a triangle uvw in G, deleting 
the three edges of the triangle, adding a new vertex r to G, and adding the 
three new edges ru, rv, and rw. A Y L1-tramformation is the converse 
operation, starting with a vertex of degree 3.) 

The Petersen family consists of seven graphs, including the Petersen 
graph. Robertson, Seymour, and Thomas [9] showed that the Petersen 
family is exactly the family of forbidden minors for the class of graphs that 
are linklessly embeddable in IR 3. 

We first observe: 

THEOREM 9. Let G be in the Petersen family with G i= K6 • Then G is 
obtainable by taking clique sums and subgraphs from K 5 • 

Proof Inspection of the Petersen family (cf. Robertson, Seymour, and 
Thomas [ 10]) shows that G is either a subgraph of the graph obtained 
from K7 by deleting the edges of a triangle, and this graph is a clique sum 
of three K5 's, or G arises from such a subgraph by one or more 
L1 Y-transformations, that is, it is a subgraph of a clique sum with K4 's. I 

This immediately implies that ,1.( G) ~ 4 for each graph G i= K6 in the 
Petersen family. Moreover, it follows that each such graph is obtainable by 
taking clique sums and subgraphs from linklessly embeddable graphs. 

Linklessly embeddable graphs are good candidates for graphs G satis­
fying ,1.(G) ~ 4-and hence, by Theorem 4, so are all graphs obtainable 
from linklessly embeddable graphs by clique sums and subgraphs. Note 
that the graph G obtained from V8 by adding a new vertex adjacent to all 
vertices of V8 , cannot be obtained from linklessly embeddable graphs by 
taking clique sums and subgraphs; but G does not have a K6-minor. 

In fact, it follows from the next result that this graph satisfies ,1.( G) = 5. 
However it is not minor minimal for the property ,1.( G);;::: 5. 

Let G1 denote the graph obtained from V8 by adding a new vertex v0 

adjacent to v2 , v4 , v6 , v7 , v8 . Similarly, let G2 denote the graph where the 
new vertex v0 is adjacent to v2 , v3 , v5 , v7 , v8 • 

ti f 11 .1 i •"'l ~ !7 ,' .. 11• --... .. 

\ c.•vr ... r:: i, · · 
~ 
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Proof It suffices to give a representation in IH 5 of the graphs G1 and 
G2 • This representation can be constructed as an extension of the represen­
tation </> of V8 given in the proof of Theorem 7. Namely, for k = 1, 2, set 
</>k( L'0 ) = (0, 0, 0, 0, 1) and </>k(v;) = (</>(vJ, x7) for i = 1,. . ., 8, where x 1 = (0, 
0, -3, 0, 0, 0, -1, 0) and x2 =(1, 0, -3, 0, 3, 0, -2, 0). Then, for all 
1 ~ i ~ 8, </> k( v;) belongs to the cone generated by <f>k( u) for the vertices u 
adjacent to V; in Gk. Moreover, </>k(v 1) belongs to cone( {</>k(v0), </>k(v2), 
</>k(L'4), </>k(v6), cPk(v8)}) and cPk(v2) belongs to cone( { </>k(v0), </>k(vi), </>k(V3), 
</>k(v5), c,hk(v7)} ). This permits to show that cPk is a representation of Gk in 
the same way as in the proof of Theorem 7. I 

The graphs G1 and G2 are minor minimal for the class of graphs satis­
fying A.(G)~5. Indeed, every minor G ofG 1 or G2 satisfies A.(G)~4. (For 
this, note that every such G has a node whose deletion produces a graph 
which is planar or a subgraph of a clique-sum of planar graphs.) 

5. A RELATED GRAPH INVARIANT 

We finally study a graph invariant related to A.( G), for which the set of 
forbidden minors can be precisely characterized. For any connected graph 
G = ( V, E), define K( G) to be the largest d for which there exists a function 
</J: V-+ !Hd such that: 

(i) c,h( V) affinely spans ad-dimensional affine space; 

(ii) for each affine half space Hof 1Ht1, </J - 1 ( H) induces a (14) 

connected subgraph of G (possibly empty). 

Note that such a function c,h does not exist for disconnected graphs; so K( G) 
would be undefined if G is disconnected. 

Observe that if G is the I-skeleton of a full-dimensional polytope in !Hd, 
then K( G) ~ d, as the polytope gives the embedding in !Hd. 

By similar arguments as used in the proof of Theorem 1 one shows that 
if G' is a connected minor of G then K( G') ~ /\( G ). So again for each d there 
is a finite set of forbidden minors for the class of graphs satisfying K( G) ~d. 
This class of graphs equals { Kd + 2 }, as is shown in the next theorem. 

First observe that 

K(G) ~A.(G) ( 151 

holds for each connected graph G, since if </J: V-+ !Hd satisfies ( 14 ), then we 
may assume that the origin belongs to the interior of the convex hull of 
</>( V). But then trivially </> is a valid representation for G. 



A MINOR-MONOTONE GRAPH INVARIANT 303 

Basic in the characterization is the following observation ( Griinbaum 
and Motzkin [7], Griinbaum [ 6] ): 

THEOREM 11. If G is the I-skeleton of a d-dinzensional polytope P, then 
G contains a Kd+ 1-minor. 

Proof By induction on d, the case d = 0 being trivial. If d > 0, let F be 
a facet of P. By the induction hypothesis, the I-skeleton of F can be con­
tracted to Kc1. Moreover, the vertices of P not on F induce a connected 
subgraph of G, and hence can be contracted to one vertex. This yields a 
contraction of G to Kd+ 1 , as each vertex of F is adjacent to at least one 
vertex of P not on F. I 

This gives: 

THEOREM 12. For each connected graph G and each d, K( G) ); d if and 
only if G has a K"+ 1 -minor. 

Proof Sufficiency. One has K( K" + 1 ) = d since the vertices of a simplex 
in ~" give a function rjJ satisfying (l 4 ). So if G has a K" + 1-minor, then 
K( G)); d. 

Necessity. Let G = ( V, E) be a connected graph and let d: = K( G ), such 
that for each proper connected minor G' one has 11:( G') <d. By Theorem 11 
it suffices to show that G is the I-skeleton of a d-dimensional polytope. 

Let rjJ: V--+ !Rd satisfy ( 14 ). Let P be the convex hull of r/J( V). So P is a 
cl-dimensional polytope in rR". We show that G is the I-skeleton of P. 

First observe that for each vertex x of P, the set </>- 1(x) induces a con­
nected subgraph of G, as it is equal to rjJ 1(H) for some affine halfspace H 
of !Rd. Hence if rjJ 1(x) consists of more than one vertex of G, then we can 
contract this subgraph to one vertex, contradicting the minimality of G. 

Similarly, for each edge xy of P, the set rjJ - 1 ( xy) induces a connected 
subgraph of G. Hence it contains a path from r/J- 1(x) to !/J- 1(y). 

As this is true for each edge, G contains a subdivision of the I-skeleton 
of P as a subgraph. By the minimality of G this implies that G is equal to 
the I-skeleton of P. I 

So Hadwiger's conjecture is equivalent to y( G) :( K( G) + I for each 
connected graph G. 
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