# On a Minor-Monotone Graph Invariant 

Hein van der Holst
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Monique Laurent*
LIENS, Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France
AND

## Alexander Schrijver

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Received December 8, 1994


#### Abstract

For any undirected graph $G=(V, E)$ let $\lambda(G)$ be the largest $d$ for which there exists a $d$-dimensional subspace $X$ of $\mathbb{R}^{\sqrt{V}}$ with the property that for each nonzero $x \in X$, the positive support of $x$ induces a nonempty connected subgraph of $G$. (Here the positive support of $x$ is the set of vertices $v$ with $x(v)>0$.) We show that $\dot{\lambda}(G)$ is monotone under taking minors and clique sums. Moreover, we show that $i(G) \leqslant 3$ if and only if $G$ has no $K_{5}$ - or $V_{8}$-minor; that is, if and only if $G$ arises from planar graphs by taking clique sums and subgraphs. © 1995 Academic Press, Inc.


## 1. Introduction

In this paper we study a graph invariant $\lambda(G) \in \mathbb{N}$, defined for any undirected graph $G=(V, E)$ as follows: $\lambda(G)$ is the largest $d$ for which there exists a $d$-dimensional subspace $X$ of $\mathbb{R}^{V}$ such that:
for each nonzero $x \in X,\left\langle\operatorname{supp}_{+}(x)\right\rangle$ is a nonempty connected graph.

Here $\operatorname{supp}_{+}(x)$ denotes the positive support of $x$; that is, the set $\{v \in V \mid$ $x(v)>0\}$. Moreover, for any $U \subseteq V,\langle U\rangle$ denotes the subgraph of $G$ induced by $U$; that is, the subgraph with vertex set $U$ and edges all edges of $G$ contained in $U$. In this paper, all graphs are assumed to be simple.

Clearly, (1) implies that also the negative support supp _( $x$ ) of any nonzero $x \in X$ induces a nonempty connected subgraph of $G$ (where $\operatorname{supp}-(x):=\{v \in V \mid x(v)<0\})$.

* Research done while visiting CWI.

The function $\lambda(G)$ was motivated by the graph invariant $\mu(G)$ introduced by Colin de Verdière [3] (cf. [4]), although we do not know a relation between the two numbers. (It might be that $\lambda(G) \leqslant \mu(G)$ holds for each graph $G$.)

There is a direct equivalent characterization of $\lambda(G)$. Let $G=(V, E)$ be a graph and let $d \in \mathbb{N}$. Call a function $\phi: V \rightarrow \mathbb{R}^{d}$ a valid representation if
for each halfspace $H$ of $\mathbb{R}^{d}$, the set $\phi^{-1}(H)$ is nonempty and induces a connected subgraph of $G$.

In this paper, a subset $H$ of $\mathbb{R}^{d}$ is called a halfspace if $H=\left\{x \in \mathbb{R}^{d} \mid c^{T} x>0\right\}$ for some nonzero $c \in R^{d}$. Note that if $\phi: V \rightarrow \mathbb{R}^{d}$ is a valid representation, then the vectors $\phi(v)(v \in V)$ span $\mathbb{R}^{d}$ (since otherwise there would exist a halfspace $H$ with $\phi^{-1}(H)=\varnothing$ ).

Now $\lambda(G)$ is equal to the largest $d$ for which there is a valid representation $\phi: V \rightarrow \mathbb{R}^{d}$. This is easy to see. Suppose $X$ is a $d$-dimensional subspace of $\mathbb{R}^{V}$ satisfying (1). Let $x_{1}, \ldots, x_{d}$ form a basis of $X$. Define $\phi(v):=$ $\left(x_{1}(v), \ldots, x_{d}(v)\right)$ for each $v \in V$. This gives a valid representation.

Conversely, let $\phi: V \rightarrow \mathbb{R}^{d}$ be a valid representation. Define for any $c \in \mathbb{R}^{d}$ the function $x_{c} \in \mathbb{R}^{V}$ by: $x_{c}(v):=c^{T} \phi(v)$ for $v \in V$. Then $X:=\left\{x_{c} \mid c \in \mathbb{R}^{d}\right\}$ satisfies (1).

It is easy to show that the function $\lambda(G)$ is monotone under taking minors. (A minor of a graph arises by a series of deletions and contractions of edges and deletions of isolated vertices, suppressing multiple edges and loops.) That is:

Theorem 1. If $G^{\prime}$ is a minor of $G$ then $\lambda\left(G^{\prime}\right) \leqslant \lambda(G)$.
Proof. If $G^{\prime}$ arises from $G$ by deleting an isolated vertex $v_{0}$, the inequality $\lambda\left(G^{\prime}\right) \leqslant \lambda(G)$ is easy: if $\phi: V\left(G^{\prime}\right) \rightarrow \mathbb{R}^{d}$ is a valid representation for $G^{\prime}$ with $d=\lambda\left(G^{\prime}\right)$, then defining $\phi\left(v_{0}\right):=0$ gives a valid representation for $G$.

So we may assume that $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ arises from $G=(V, E)$ by deleting or contracting one edge $e=u w$. Let $\phi^{\prime}: V^{\prime} \rightarrow \mathbb{R}^{d}$ be a valid representation for $G^{\prime}$ with $d=\lambda\left(G^{\prime}\right)$. If $G^{\prime}$ arises from $G$ by deleting $e$, then $V=V^{\prime}$, and $\phi^{\prime}$ is also a valid representation for $G$. Hence $\lambda(G) \geqslant d=\lambda\left(G^{\prime}\right)$.

If $G^{\prime}$ arises from $G$ by contracting $e$, let $v_{0}$ be the vertex of $G^{\prime}$ which arised by contracting $e$. Define $\phi(u):=\phi(w):=\phi^{\prime}\left(v_{0}\right)$, and define $\phi(v):=$ $\phi^{\prime}(v)$ for all other vertices $v$ of $G$. Then $\phi$ is a valid representation of $G$.

Having Theorem 1, one can derive from the work of Robertson and Seymour [8] that for each fixed $n$ there is a finite class $\mathscr{G}_{n}$ of graphs such that for any graph $G: \lambda(G) \geqslant n$ if and only if $G$ contains a graph in $\mathscr{G}_{n}$ as a minor.

We observe that trivially $\lambda(G)=0$ if and only if $G$ has exactly one vertex. So $\mathscr{G}_{1}$ consists only of the graph $\overline{K_{2}}$.

For the complete graph one has:

Theorem 2. $\quad \lambda\left(K_{n}\right)=n-1$.
Proof. Let $V$ be the vertex set of $K_{n}$. To see $\lambda\left(K_{n}\right)<n$, suppose $X$ is a subspace of $\mathbb{R}^{V}$ satisfying (1) of dimension $n$. Then $X=\mathbb{R}^{V}$, and hence the function $x(v)=-1(v \in V)$ belongs to $X$, contradicting (1).

On the other hand, $\lambda\left(K_{n}\right) \geqslant n-1$, since the set $X$ of functions $x \in \mathbb{R}^{\nu}$ with $\sum_{v \in V} x(v)=0$ satisfies (1).

It is easy to see that if $n \geqslant 3$, each proper minor $G^{\prime}$ of $K_{n}$ satisfies $\lambda(G) \leqslant$ $n-2$. So if $n \geqslant 3, K_{n}$ belongs to $\mathscr{G}_{n-1}$. (This is not true for $n=2$, since the graph $G$ with two isolated vertices also satisfies $\lambda(G)=1$ ).

Theorem 2 gives that Hadwiger's conjecture implies that $\gamma(G) \leqslant$ $\lambda(G)+1$, where $\gamma(G)$ denotes the (vertex-) chromatic number of $G$. So by the results of Appel and Haken [1]. Appel, Haken, and Koch [2] (the four-colour theorem), and Robertson, Seymour, and Thomas [11], the inequality $\gamma(G) \leqslant \lambda(G)+1$ holds if $\lambda(G) \leqslant 4$.

It is easy to see that if $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ arises from $G=(V, E)$ by deleting a vertex $u$ of $G$, then $\lambda(G) \leqslant \lambda\left(G^{\prime}\right)+1$. Indeed, let $X$ be a $d$-dimensional subspace of $\mathbb{R}^{V}$ satisfying (1), where $d:=\lambda(G)$. Then $X^{\prime}:=\left\{x \in \mathbb{R}^{V} \mid x(u)=0\right\}$ has dimension at least $d-1$. Deleting coordinate $u$ gives a subspace of $\mathbb{R}^{V^{\prime}}$ (satisfying (1) with respect to $G^{\prime}$ ) of dimension at least $d-1=\lambda(G)-1$.

This implies that contracting or deleting any edge $u w$ of $G$ decreases $\lambda(G)$ by at most 1 , as the new graph contains as a subgraph the graph $G^{\prime}$ obtained from $G$ by deleting $u$.

Similarly to the chromatic number, also the function $\lambda(G)$ cannot be increased by "clique sums", as we shall see in Section 2. This directly gives that $\lambda(G) \leqslant 1$ if and only if $G$ has no $K_{3}$-minor, that is, if and only if $G$ is a forest; and that $\lambda(G) \leqslant 2$ if and only if $G$ has no $K_{4}$-minor, that is, if and only if $G$ is a series-parallel graph.

Let $V_{8}$ be the graph with vertices $v_{1}, \ldots, v_{8}$, where $v_{i}$ and $v_{j}$ are adjacent if and only if $|i-j| \in\{1,4,7\}$. In Section 3 we show that $\lambda(G) \leqslant 3$ if and only if $G$ has no $K_{5^{-}}$or $V_{8}$-minor; that is, if and only if $G$ can be obtained from planar graphs by taking clique sums and subgraphs. The kernel of the proof here is to show that $\lambda(G) \leqslant 3$ for any planar graph $G$. Having this, a fundamental decomposition theorem of Wagner [12] then implies the full characterization.

Note that the inequality $\lambda(G) \geqslant 3$ is easy for 3-connected planar graphs: in that case $G$ can be represented as the vertices and edges of a full-dimensional convex polytope in $\mathbb{R}^{3}$. We may assume that this polytope contains
the origin in its interior. Then this embedding of $V$ in $\mathbb{R}^{3}$ is a valid representation.

More generally, if $G$ is the 1 -skeleton of a $d$-dimensional convex polytope, then $\lambda(G) \geqslant d$. (The 1 -skeleton of a convex polytope $P$ is the graph made by the vertices and edges of $P$.) However, in general one can have $\lambda(G)>d$, since Gale [5] showed that for each $n \geqslant 5, K_{n}$ is the 1-skeleton of a 4-dimensional polytope.

In Section 4 we give a few observations concerning the class of graphs $G$ with $\lambda(G) \leqslant 4$.

Finally in Section 5 we study a related graph invariant $\kappa(G)$ for connected graphs $G=(V, E)$. This is the largest $d$ for which there exists a function $\phi: V \rightarrow \mathbb{R}^{d}$ such that $\phi(V)$ affinely spans a full-dimensional affine space and such that for each affine halfspace $H$ the set $\phi^{-1}(H)$ induces a connected subgraph of $G$ (possibly empty). (Here an affine halfspace is a subset of $\mathbb{R}^{d}$ of the form $\left\{x \in \mathbb{R}^{d} \mid c^{T} x>\delta\right\}$ for some nonzero $c \in \mathbb{R}^{d}$ and some $\delta \in \mathbb{R}$.)

Again it is easy to show that $\kappa(G)$ is monotone under taking minors. Moreover, one has $\kappa(G) \leqslant \lambda(G)$. In Section 5 we show that $\kappa(G) \leqslant d$ if and only if $G$ does not have a $K_{d+2}$-minor. So for this invariant the class of forbidden minors is exactly known for each $d$.

## 2. Clique Sums

In this section we show that the function $\lambda(G)$ does not increase by taking clique sums, and from this we derive characterizations of the classes of graphs $G$ satisfying $\lambda(G) \leqslant 1$ and $\lambda(G) \leqslant 2$.

We first give an auxiliary result. For any finite subset $Z$ of $\mathbb{R}^{d}$ let cone $(Z)$ denote the smallest nonempty convex cone containing $Z$; that is, it is the intersection of all closed halfspaces $\left\{x \in \mathbb{R}^{d} \mid c^{T} x \geqslant 0\right\}$ containing $Z$. (Thus $\operatorname{cone}(\varnothing)=\{0\}$, while $\operatorname{cone}(Z)=\mathbb{R}^{d}$ if there are no halfspaces containing $Z$.)

THEOREM 3. Let $\phi: V \rightarrow \mathbb{R}^{d}$ be a valid representation of a graph $G=(V, E)$ and let $U \subseteq V$. Assume that cone $(\phi(U))$ is not a hyperplane in $\mathbb{R}^{d}$. Then there is at most one component $K$ of $G-U$ for which the inclusion $\phi(K) \subseteq \operatorname{cone}(\phi(U))$ does not hold.

Proof. We may assume that $\operatorname{cone}(\phi(U)) \neq \mathbb{R}^{d}$. Since cone $(\phi(U))$ is not a hyperplane in $\mathbb{R}^{d}$, the set

$$
\begin{equation*}
C:=\left\{c \in \mathbb{R}^{d} \mid c \neq 0, c^{T} \phi(v) \leqslant 0 \text { for each } v \in U\right\} \tag{3}
\end{equation*}
$$

is nonempty and topologically connected (as the polar cone $C \cup\{0\}$ of cone $(\phi(U))$ is not a line). For $c \in \mathbb{R}^{d}$, let $H_{c}:=\left\{x \in \mathbb{R}^{d} \mid c^{T} x>0\right\}$. Let $K_{1}, \ldots, K_{t}$ be the components of $G-U$. Let $C_{i}$ be the set of vectors $c \in C$ for which $H_{c}$ intersects $\phi\left(K_{i}\right)$. So if $i \neq j$ then $C_{i} \cap C_{j}=\varnothing$, since if $c \in C$ then $\phi^{-1}\left(H_{c}\right)$ is connected and is disjoint from $U$. As $C_{1} \cup \cdots \cup C_{t}=C$ and since each $C_{i}$ is an open subset of $C$, it follows that $C_{i}=\varnothing$ for all but one $i$. Hence $\phi\left(K_{i}\right) \subseteq \operatorname{cone}(\phi(U))$ for all but one $i$.
Let $G=(V, E)$ be a graph and let $V_{1}$ and $V_{2}$ be subsets of $V$ such that $K:=V_{1} \cap V_{2}$ is a clique in $G$ and such that there is no edge connecting $V_{1} \backslash K$ and $V_{2} \backslash K$. Then $G$ is called a clique sum of the graphs $G_{1}:=\left\langle V_{1}\right\rangle$ and $G_{2}:=\left\langle V_{2}\right\rangle$.

Theorem 4. If $G$ is a clique sum of $G_{1}$ and $G_{2}$ then $\lambda(G)=\max \left\{\lambda\left(G_{1}\right)\right.$, $\left.\lambda\left(G_{2}\right)\right\}$ (except if $G_{1}$ and $G_{2}$ each consist of one vertex and $G$ of two nonadjacent vertices).

Proof. Since $G_{1}$ and $G_{2}$ are subgraphs of $G$, we have $\lambda(G) \geqslant$ $\max \left\{\lambda\left(G_{1}\right), \lambda\left(G_{2}\right)\right\}$. So it suffices to show that $\lambda(G)=\lambda\left(G_{i}\right)$ for some $i=1,2$. Assume that $\lambda(G)>\max \left\{\lambda\left(G_{1}\right), \lambda\left(G_{2}\right)\right\}$. Let $d:=\lambda(G), G=(V, E)$, and $G_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$.

Let $\phi: V \rightarrow \mathbb{R}^{d}$ be a valid representation of $G$. As $d>\lambda\left(G_{i}\right), \phi \mid V_{i}$ is not a valid representation of $G_{i}$ for $i=1$ and $i=2$. Let $K:=V_{1} \cap V_{2}$ and $t:=|K|$. We may assume that we have chosen the counterexample so that $|K|$ is as small as possible.
Then $\left\langle V_{1} \backslash K\right\rangle$ has a component $L$ such that each vertex in $K$ is adjacent to at least one vertex in $L$. Otherwise $G$ would be a repeated clique sum of subgraphs of $G_{1}$ and $G_{2}$ with common clique being smaller than $K$. In that case $\lambda(G)=\max \left\{\lambda\left(G_{1}\right), \lambda\left(G_{2}\right)\right\}$ would follow by the minimality of $K$.

So $G_{1}$ has a $K_{t+1}$-minor. So $\lambda\left(G_{1}\right) \geqslant t$, and hence $\lambda(G)>t=|K|$. Therefore, cone $(\phi(K))$ is not a hyperplane in $\mathbb{R}^{d}$. (Here we use that it is not the case that $K=\varnothing$ and $d=1$.) So by Theorem 3, we may assume that $\phi\left(V_{1}\right) \subseteq \operatorname{cone}(\phi(K))$.

As $d>\lambda\left(G_{2}\right)$, there exists a halfspace $H$ of $\mathbb{R}^{d}$ such that $\left\langle\phi^{-1}(H) \cap V_{2}\right\rangle$ is empty or disconnected. If it is empty, then $\phi(v) \in H$ for some $v \in V_{1} \backslash K$, contradicting the facts that $\phi(v) \in \operatorname{cone}(\phi(K))$ and that $\phi(K) \cap H=\varnothing$. So it is disconnected. But then also $\phi^{-1}(H)$ would induce a disconnected subgraph of $G$, as $K$ is a clique. This is a contradiction.

This theorem directly implies characterizations of those graphs $G$ satisfying $\lambda(G) \leqslant 1$ and $\lambda(G) \leqslant 2$.

Corollary 4a. For any graph $G, \lambda(G) \leqslant 1$ if and only if $G$ does not have a $K_{3}$-minor; that is, if and only if $G$ is a forest.

Proof. If $\lambda(G) \leqslant 1$ then $G$ has no $K_{3}$-minor, as $\lambda\left(K_{3}\right)=2$.
Conversely, if $G$ is a forest, then $G$ arises by taking clique sums and sub. graphs from the graph $K_{2}$. As $\lambda\left(K_{2}\right)=1$, Theorem 4 gives the corollary.

Corollary 4b. For any graph $G, \lambda(G) \leqslant 2$ if and only if $G$ does not have any $K_{4}$-minor; that is, if and only if $G$ is a series-parallel graph.

Proof. If $\lambda(G) \leqslant 2$ then $G$ has no $K_{4}$-minor, as $\lambda\left(K_{4}\right)=3$.
Conversely, if $G$ is a series-parallel graph, then $G$ arises by taking clique sums and subgraphs from the graph $K_{3}$. As $\lambda\left(K_{3}\right)=2$, Theorem 4 gives the corollary.

## 3. Graphs Satisfying $\lambda(G) \leqslant 3$

We next give a characterization of those graphs $G$ satisfying $\lambda(G) \leqslant 3$. To this end we first show:

Theorem 5. If $G$ is planar then $\lambda(G) \leqslant 3$.
Proof. Suppose $G=(V, E)$ is a planar graph with $\lambda(G) \geqslant 4$. Choose $G$ such that $|V|$ is minimal. Then $G$ is 4 -connected, since otherwise it would be a subgraph of a clique sum of two smaller planar graphs, contradicting by Theorem 4 the minimality of $|V|$. (In this paper, graph $H$ is smaller than graph $G$ if $H$ has fewer vertices than $G$.)

Let $\phi: V \rightarrow \mathbb{R}^{4}$ be a valid representation. Let $X \subseteq \mathbb{R}^{V}$ be the 4-dimensional space corresponding to $\phi$; that is, $X=\left\{x_{c} \mid c \in \mathbb{R}^{4}\right\}$, where $x_{c}(v):=c^{T} \phi(v)$ for $v \in V$.

By the minimality of $|V|$ we know that $\phi(v) \neq 0$ for each $v \in V$ (otherwise we can delete $v$ ). So we may assume that $\|\phi(v)\|=1$ for each $v \in V$.

Assume that $E$ has been chosen such that, fixing $V$ and $\phi$,

$$
\begin{equation*}
\sum_{e=u w \in E}(L(\phi(u), \phi(w)))^{2} \tag{4}
\end{equation*}
$$

is as small as possible. (Here $\angle(x, y)$ denotes the angle between vectors $x$ and $y$.)

We assume that $G$ is embedded on the 2 -sphere $S^{2}$. For any face $f$ of $G$. let $V_{f}$ be the set of vertices incident with $f$.

We observe:

$$
\begin{equation*}
\text { for any face } f \text {, if } u, w \in V_{f} \text { then } \phi(u) \neq \phi(w) \text {. } \tag{5}
\end{equation*}
$$

Otherwise, we could identify $u$ and $w$, contradicting the minimality of $|V|$.

Moreover:

$$
\begin{equation*}
\text { if } u \text { and } w \text { are adjacent, then } \phi(u) \neq \pm \phi(w) . \tag{6}
\end{equation*}
$$

Indeed, if $\phi(u)=\phi(w)$ we contradict (5). If $\phi(u)=-\phi(w)$, we can delete the edge $u w$ without violating (2), contradicting the minimality of the sum (4).

Let $L_{f}$ be the linear space generated by $\phi\left(V_{f}\right)$. For $i=1, \ldots, 4$, let $F_{i}$ denote the set of faces $f$ with $\operatorname{dim} L_{f}=i$. Note that (6) implies that $F_{1}=\varnothing$. We next have:
for any face $f$, if $u, v, w \in V_{f}$ and if $u$ and $v$ are adjacent, then $\phi(w) \notin \operatorname{cone}(\{\phi(u), \phi(v)\})$.

Otherwise we could remove edge $u v$ and add edges $u w$ and $v w$ (if they do not already exist), thereby decreasing sum (4).

Next we show:

$$
\begin{equation*}
F_{4}=\varnothing \tag{8}
\end{equation*}
$$

Suppose $f \in F_{4}$. Let $X_{f}:=\left\{x\left|V_{f}\right| x \in X\right\}$. (Here $x \mid V_{f}$ denotes the restriction of $x$ to $V_{f}$. As $\operatorname{dim} L_{f}=4$ we have $\operatorname{dim} X_{f}=4$. Let $X_{f}^{\prime}:=\left\{y \in X_{f} \mid\right.$ $\left.\sum_{v \in V_{f}} y_{v}=0\right\}$. Then $X_{f}^{\prime}$ has dimension at least 3 and for each nonzero $y \in X_{f}^{\prime}$ one has $\operatorname{supp}_{+}(y) \neq \varnothing$. So, as $\left\langle V_{f}\right\rangle$ is a series-parallel graph (indeed, a circuit), by Corollary $4 \mathrm{~b}, X_{f}^{\prime}$ contains a vector $y$ with supp ${ }_{+}(y)$ having at least two components on $V_{f}$. Let $x \in X$ satisfy $y=x \mid V_{f}$, and let $c \in \mathbb{R}^{V}$ be such that $x_{c}=x$ (that is, $x_{v}=c^{T} \phi(v)$ for each $v \in V$ ).

Let $U:=\operatorname{supp}_{+}(x)$. As $c^{T} \phi(v)>0$ for each $v \in U$, cone $(\phi(U))$ is a pointed cone. Now for each $v \in V \backslash \operatorname{supp}_{+}(x)$ we have $c^{T} \phi(v) \leqslant 0$. As $\phi(v) \neq 0$, we have that $\phi(v) \notin \operatorname{cone}(\phi(U))$ for each $v \in V \backslash \operatorname{supp}_{+}(x)$. Therefore, by Theorem $3, G-\operatorname{supp}_{+}(x)$ has only one component. As $G$ is planar, this contradicts the facts that supp ${ }_{+}(y)$ has at least two components on $V_{f}$ and that $\left\langle\operatorname{supp}_{+}(x)\right\rangle$ is connected. So we have proved (8).

Next we show:
Let $f^{\prime}$ and $f^{\prime \prime}$ be two faces having an edge in common, with $\operatorname{dim} L_{f^{\prime}}=\operatorname{dim} L_{f^{\prime \prime}}$. Then $L_{f^{\prime}}=L_{f^{\prime \prime}}$.

If $\operatorname{dim} L_{f^{\prime}}=2$ the statement is trivial, so assume $\operatorname{dim} L_{f^{\prime}}=3$. Let $e=u w$ be the common edge of $f^{\prime}$ and $f^{\prime \prime}$. Suppose $L_{f^{\prime}} \neq L_{f^{\prime \prime \prime}}$. Then we can select $v^{\prime} \in V_{f^{\prime}}$ and $v^{\prime \prime} \in V_{f^{\prime \prime}}$ such that $\phi(u), \phi(w), \phi\left(v^{\prime}\right)$, and $\phi\left(v^{\prime \prime}\right)$ form a basis of $\mathbb{R}^{4}$. Hence there exists a $c \in \mathbb{R}^{4}$ such that $c^{T} \phi(u)=0, c^{T} \phi(w)=0, c^{T} \phi\left(v^{\prime}\right)>0$, and $c^{T} \phi\left(v^{\prime \prime}\right)>0$. Hence for $x:=x_{c} \in X$ one has that $x(u)=0, x(w)=0$, $x\left(v^{\prime}\right)>0$, and $x\left(v^{\prime \prime}\right)>0$. Let $G^{\prime}$ be the subgraph of $G$ induced by $V \backslash \operatorname{supp}_{+}(x)$. Since $\left\langle\operatorname{supp}_{+}(x)\right\rangle$ and $\langle\operatorname{supp} \quad(x)\rangle$ are connected, we may assume that supp $\quad(x)$ is not contained in the same component of $G^{\prime}-e$ as $u$.

Now there exists a $y \in X$ such that $y(u)<0$ and $y(w)=0$. This follows from the fact that $\phi(u) \neq \pm \phi(w)$. Then for small enough $\varepsilon>0$, the function $z:=x+\varepsilon y$ has $\operatorname{supp}_{+}(z) \supseteq \operatorname{supp}_{+}(x)$ and $\operatorname{supp}_{-}(z) \supseteq \operatorname{supp}_{-}(x)$, while $u \in \operatorname{supp} p_{-}(z)$ and $w \notin \operatorname{supp} p_{-}(z)$. This contradicts the connectedness of $\left\langle\operatorname{supp}_{-}(z)\right\rangle$. This proves (9).

This implies more strongly:

Let $f^{\prime}$ and $f^{\prime \prime}$ be two faces having a vertex in common, with $\operatorname{dim} L_{f^{\prime}}=\operatorname{dim} L_{f^{\prime \prime}}=3$. Then $L_{f^{\prime}}=L_{f^{\prime \prime}}$.

Let $v$ be a common vertex of $f^{\prime}$ and $f^{\prime \prime}$. If all faces $f$ incident with $v$ have $\operatorname{dim} L_{f}=3$, the statement directly follows from (9). So we may assume that there is a face $f$ incident with $v$ with $\operatorname{dim} L_{f}=2$. Let $u$ and $w$ be the two vertices in $V_{f}$ incident with $v$, chosen in such a way that $u, w, f^{\prime}, f^{\prime \prime}$ occur in this order cyclically around $v$. Assume $L_{f^{\prime}} \neq L_{f^{\prime \prime}}$. Then there exist vertices $v^{\prime} \in V_{f^{\prime}}$ and $v^{\prime \prime} \in V_{f^{\prime \prime}}$ such that the vectors $\phi(u), \phi(v), \phi\left(v^{\prime}\right)$, and $\phi\left(v^{\prime \prime}\right)$ are linearly independent. Hence there is a $c \in \mathbb{R}^{4}$ such that $c^{T} \phi(u)>0$, $c^{T} \phi(v)=0, c^{T} \phi\left(v^{\prime}\right)>0$, and $c^{T} \phi\left(v^{\prime \prime}\right)<0$. Hence for $x:=x_{c} \in X$ we have $x(u)>0, x(v)=0, x\left(v^{\prime}\right)>0$, and $x\left(v^{\prime \prime}\right)<0$.

We show that $x(w)<0$, that is, $c^{T} \phi(w)<0$. Assume $c^{T} \phi(w) \geqslant 0$. Since $\operatorname{dim} L_{f}=2$, there exist $\lambda$ and $\mu$ such that $\phi(w)=\lambda \phi(u)+\mu \phi(v)$. Hence $c^{T} \phi(w)=\lambda c^{T} \phi(u)+\mu c^{T} \phi(v)=\lambda c^{T} \phi(u)$. As $c^{T} \phi(u)>0$ and $c^{T} \phi(w) \geqslant 0$ one has $\lambda \geqslant 0$. Now $\lambda \neq 0$ since otherwise $v$ and $w$ are linearly dependent, contradicting (6). So $\lambda>0$. However, if $\mu \geqslant 0$ then $\phi(w) \in \operatorname{cone}(\{\phi(u), \phi(v)\})$, contradicting (7); and if $\mu<0$ then $\phi(u) \in \operatorname{cone}(\{\phi(v), \phi(w)\})$, contradicting (7) again.

It follows that $x(w)<0$. This however contradicts the connectedness of the graphs induced by $\operatorname{supp}_{+}(x)$ and supp $(x)$. Thus we have (10).

Now $F_{3} \neq \varnothing$, since otherwise $L_{f}=L_{f^{\prime}}$ for any two faces $f, f^{\prime}$, implying that $\operatorname{dim} \phi(V)=2$. Consider a component $K$ of the space $S:=\bigcup_{f \in F_{3}} \bar{f} .(\bar{f}$ denotes the topological closure of $f$.)

By (10), there is a 3-dimensional subspace $L$ of $\mathbb{R}^{4}$ such that for each vertex $v$ contained in $K$ one has $\phi(v) \in L$. As $\phi(V)$ has dimension 4, there exists a vertex $v_{0}$ such that $\phi\left(v_{0}\right) \notin L$. As $v_{0} \notin K$, there is a simple closed curve $C$ not intersecting vertices of $G$, such that each face traversed by $C$ belongs to $F_{2}$ and such that $C$ separates $K$ and $v_{0}$. So by (9) there exists a 2-dimensional subspace $M$ of $\mathbb{R}^{4}$ such that $\phi\left(V_{f}\right) \subseteq M$ for each face $f$ traversed by $C$.

We may assume that $C$ traverses at least one face that has an edge in common with $K$. Hence $M \subset L$. Let $U$ be the set of all vertices incident with faces traversed by $C$. As $\phi\left(v_{0}\right) \notin L, \phi\left(v_{0}\right) \notin M$. Moreover, since $\operatorname{dim}(\phi(U))=2$ and $\operatorname{dim}(\phi(K))=3$, there is a vertex $v_{1} \in K$ with $\phi\left(v_{1}\right) \notin M$.

So $\phi\left(v_{0}\right) \notin \operatorname{cone}(\phi(U))$ and $\phi\left(v_{1}\right) \notin \operatorname{cone}(\phi(U))$. As $v_{0}$ and $v_{1}$ belong to different components of $G-U$, this contradicts Theorem 3.

Having Theorem 5, Theorem 4 gives that $\lambda(G) \leqslant 3$ also holds for graphs $G$ obtained from planar graphs by taking clique sums and subgraphs. This characterizes the graphs $G$ with $\lambda(G) \leqslant 3$, as follows from the following two results.

Theorem 6. If $G$ has no $K_{5}-$ or $V_{8}$-minor, then $G$ can be obtained by taking clique sums and subgraphs from planar graphs.

Proof. Suppose $G$ is not planar. If $G$ is not 3-connected, then it is easy to see that $G$ is a subgraph of a clique sum of two smaller graphs not having any $K_{5}$ - or $V_{8}$-minor. So we may assume that $G$ is 3 -connected.

Then by Wagner's theorem [12], $G$ can be obtained as a subgraph of a 3-clique sum of two smaller graphs $G_{1}$ and $G_{2}$ both with no $K_{5}$-minor. Let $K$ be the clique.

It suffices to show that $G_{1}$ and $G_{2}$ have no $V_{8}$-minor. Suppose to the contrary that $G_{1}$, say, has a $V_{8}$-minor. As $V_{8}$ does not contain any triangle, the $V_{8}$-minor in $G_{1}$ does not need all three edges of $K$. So $G_{1}-e$ has a $V_{8}$-minor for some edge $e$ in $K$. However, $G_{1}-e$ is a minor of $G$ (by the 3-connectedness of $G$ ), contradicting the fact that $G$ does not have a $V_{8}$-minor.

Theorem 7. $\lambda\left(V_{8}\right)=4$.
Proof. The inequality $\lambda\left(V_{8}\right) \leqslant 4$ follows from the fact that for any vertex $v$ of $V_{8}$, the graph $V_{8}-v$ is planar. Hence $\lambda\left(V_{8}\right) \leqslant \lambda\left(V_{8}-v\right)+1 \leqslant 4$ by Theorem 5.

We next show $\lambda\left(V_{8}\right) \geqslant 4$. Again, represent $V_{8}$ as the graph $G$ with vertex set $V=\left\{v_{1}, \ldots, v_{8}\right\}$, where $v_{i}$ and $v_{j}$ are adjacent if and only if $|i-j|$ is 1 , 4 or 7 . We define $\phi: V \rightarrow \mathbb{R}^{4}$ as follows:

$$
\begin{align*}
& \phi\left(v_{1}\right)=(1,1,1,3), \phi\left(v_{2}\right)=(1,0,0,0), \phi\left(v_{3}\right)=-(1,2,3,6), \\
& \phi\left(v_{4}\right)=(0,1,0,0), \phi\left(v_{5}\right)=(1,3,3,3), \phi\left(v_{6}\right)=(0,0,1,0),  \tag{11}\\
& \phi\left(v_{7}\right)=-(1,2,1,2), \phi\left(v_{8}\right)=(0,0,0,1) .
\end{align*}
$$

We first show that for $i=1, \ldots, 8$

$$
\begin{equation*}
\phi\left(v_{i}\right) \text { belongs to cone }\left(\left\{\phi\left(v_{i-1}\right), \phi\left(v_{i+1}\right), \phi\left(v_{i+4}\right)\right\}\right) \tag{12}
\end{equation*}
$$

(taking indices mod 8). Indeed:

$$
\begin{align*}
(1,1,1,3) & =2(0,0,0,1)+\frac{2}{3}(1,0,0,0)+\frac{1}{3}(1,3,3,3), \\
(1,0,0,0) & =2(1,1,1,3)-(1,2,3,6)+(0,0,1,0), \\
-(1,2,3,6) & =2(1,0,0,0)+4(0,1,0,0)-3(1,2,1,2), \\
(0,1,0,0) & =-(1,2,3,6)+(1,3,3,3)+3(0,0,0,1),  \tag{13}\\
(1,3,3,3) & =2(0,1,0,0)+2(0,0,1,0)+(1,1,1,3), \\
(0,0,1,0) & =\frac{2}{3}(1,3,3,3)-(1,2,1,2)+\frac{1}{3}(1,0,0,0), \\
-(1,2,1,2) & =2(0,0,1,0)+4(0,0,0,1)-(1,2,3,6), \\
(0,0,0,1) & =-(1,2,1,2)+(1,1,1,3)+(0,1,0,0) .
\end{align*}
$$

To show that (2) holds, consider an open halfspace $H$ of $\mathbb{R}^{4}$. Then $W:=\phi^{-1}(H)$ is nonempty, since at least one of $(1,0,0,0),(0,1,0,0)$, $(0,0,1,0),(0,0,0,1)$, and $(-1,-2,-3,-6)$ belongs to $H$.

Assume that $W$ induces a disconnected subgraph of $V_{8}$. Let $U:=V \backslash W$, and let $K_{1}$ and $K_{2}$ be two of the components of $\langle W\rangle$. Then $\left|K_{i}\right| \geqslant 2$, since otherwise $K_{i}$ would consist of one vertex, contradicting (12). So $|U| \leqslant 4$. Since $V_{8}$ is 3 -connected, since each cut set of size 3 consists of the set of vertices adjacent with one vertex $v_{i}$, and since $U$ separates $K_{1}$ and $K_{2}$, it follows that $|U|=4$, and that the subgraph induced by $W$ consists of two disjoint edges.

Now note that for each edge $e=v_{i} v_{i+1}$ of $V_{8}$, each other edge $e^{\prime}$ of $V_{8}$ disjoint from $e$ contains at least one vertex that is adjacent to at least one vertex in $e$. It follows that $W=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ or $W=\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$.

First assume $W=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$. However, $\phi\left(v_{1}\right)$ belongs to cone $\left(\left\{\phi\left(v_{2}\right), \phi\left(v_{4}\right), \phi\left(v_{6}\right), \phi\left(v_{8}\right)\right\}\right)$, contradicting the fact that $\phi\left(v_{1}\right) \in H$ while $\phi\left(v_{i}\right) \notin H$ for $i=2,4,6,8$.

Next assume $W=\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$. Now $\phi\left(v_{2}\right)$ belongs to $\operatorname{cone}\left(\left\{\phi\left(v_{1}\right)\right.\right.$, $\left.\left.\phi\left(v_{3}\right), \phi\left(v_{5}\right), \phi\left(v_{7}\right)\right\}\right)\left(\right.$ as $(1,0,0,0)=3(1,1,1,3)+\frac{3}{2}(-1,-2,-3,-6)+$ $\left.(1,3,3,3)+\frac{3}{2}(-1,-2,-1,-2)\right)$, contradicting the fact that $\phi\left(v_{2}\right) \in H$ while $\phi\left(v_{i}\right) \notin H$ for $i=1,3,5,7$.

Thus we have the following theorem:

Theorem 8. Let $G$ be a graph. Then $\lambda(G) \leqslant 3$ if and only if $G$ has no $K_{5^{-}}$or $V_{8}$-minor; that is, if and only if $G$ arises by taking clique sums and subgraphs from planar graphs.

Proof. Directly from Theorems 2, 4, 5, 6, and 7.
4. Graphs Satisfying $\lambda(G) \leqslant 4$

We do not know a characterization of the class of graphs $G$ satisfying $\lambda(G) \leqslant 4$. By Theorem $2, G=K_{6}$ is a forbidden minor for this class. Any other graph $G$ in the "Petersen family" of graphs however satisfies $\lambda(G) \leqslant 4$. The Petersen family consists of all graphs that can be obtained from $K_{6}$ by a series of $\Delta Y$ - and $Y \Delta$-transformations.
(A $\Delta Y$-transformation consists of choosing a triangle $u v w$ in $G$, deleting the three edges of the triangle, adding a new vertex $r$ to $G$, and adding the three new edges $r u, r v$, and $r w$. A Y $\Delta$-transformation is the converse operation, starting with a vertex of degree 3.)

The Petersen family consists of seven graphs, including the Petersen graph. Robertson, Seymour, and Thomas [9] showed that the Petersen family is exactly the family of forbidden minors for the class of graphs that are linklessly embeddable in $\mathbb{R}^{3}$.

We first observe:

Theorem 9. Let $G$ be in the Petersen family with $G \neq K_{6}$. Then $G$ is obtainable by taking clique sums and subgraphs from $K_{5}$.

Proof. Inspection of the Petersen family (cf. Robertson, Seymour, and Thomas [10]) shows that $G$ is either a subgraph of the graph obtained from $K_{7}$ by deleting the edges of a triangle, and this graph is a clique sum of three $K_{5}$ 's, or $G$ arises from such a subgraph by one or more $\Delta Y$-transformations, that is, it is a subgraph of a clique sum with $K_{4}$ 's.

This immediately implies that $\lambda(G) \leqslant 4$ for each graph $G \neq K_{6}$ in the Petersen family. Moreover, it follows that each such graph is obtainable by taking clique sums and subgraphs from linklessly embeddable graphs.

Linklessly embeddable graphs are good candidates for graphs $G$ satisfying $\lambda(G) \leqslant 4$-and hence, by Theorem 4, so are all graphs obtainable from linklessly embeddable graphs by clique sums and subgraphs. Note that the graph $G$ obtained from $V_{8}$ by adding a new vertex adjacent to all vertices of $V_{8}$, cannot be obtained from linklessly embeddable graphs by taking clique sums and subgraphs; but $G$ does not have a $K_{6}$-minor.

In fact, it follows from the next result that this graph satisfies $\lambda(G)=5$. However it is not minor minimal for the property $\lambda(G) \geqslant 5$.

Let $G_{1}$ denote the graph obtained from $V_{8}$ by adding a new vertex $v_{0}$ adjacent to $v_{2}, v_{4}, v_{6}, v_{7}, v_{8}$. Similarly, let $G_{2}$ denote the graph where the new vertex $v_{0}$ is adjacent to $v_{2}, v_{3}, v_{5}, v_{7}, v_{8}$.

ThEOREM 10. $\quad \lambda\left(G_{1}\right)=\lambda\left(G_{2}\right)=5$.


Proof. It suffices to give a representation in $\mathbb{R}^{5}$ of the graphs $G_{1}$ and $G_{2}$. This representation can be constructed as an extension of the representation $\phi$ of $V_{8}$ given in the proof of Theorem 7. Namely, for $k=1,2$, set $\phi_{k}\left(v_{0}\right)=(0,0,0,0,1)$ and $\phi_{k}\left(v_{i}\right)=\left(\phi\left(v_{i}\right), x_{i}^{k}\right)$ for $i=1, \ldots, 8$, where $x^{1}=(0$, $0,-3,0,0,0,-1,0)$ and $x^{2}=(1,0,-3,0,3,0,-2,0)$. Then, for all $1 \leqslant i \leqslant 8, \phi_{k}\left(v_{i}\right)$ belongs to the cone generated by $\phi_{k}(u)$ for the vertices $u$ adjacent to $v_{i}$ in $G_{k}$. Moreover, $\phi_{k}\left(v_{1}\right)$ belongs to cone $\left(\left\{\phi_{k}\left(v_{0}\right), \phi_{k}\left(v_{2}\right)\right.\right.$, $\left.\left.\phi_{k}\left(v_{4}\right), \phi_{k}\left(v_{6}\right), \phi_{k}\left(v_{8}\right)\right\}\right)$ and $\phi_{k}\left(v_{2}\right)$ belongs to cone $\left(\left\{\phi_{k}\left(v_{0}\right), \phi_{k}\left(v_{1}\right), \phi_{k}\left(v_{3}\right)\right.\right.$, $\left.\phi_{k}\left(v_{5}\right), \phi_{k}\left(v_{7}\right)\right\}$ ). This permits to show that $\phi_{k}$ is a representation of $G_{k}$ in the same way as in the proof of Theorem 7.

The graphs $G_{1}$ and $G_{2}$ are minor minimal for the class of graphs satisfying $\lambda(G) \leqslant 5$. Indeed, every minor $G$ of $G_{1}$ or $G_{2}$ satisfies $\lambda(G) \leqslant 4$. (For this, note that every such $G$ has a node whose deletion produces a graph which is planar or a subgraph of a clique-sum of planar graphs.)

## 5. A Related Graph Invariant

We finally study a graph invariant related to $\lambda(G)$, for which the set of forbidden minors can be precisely characterized. For any connected graph $G=(V, E)$, define $\kappa(G)$ to be the largest $d$ for which there exists a function $\phi: V \rightarrow \mathbb{R}^{d}$ such that:
(i) $\phi(V)$ affinely spans a $d$-dimensional affine space;
(ii) for each affine halfspace $H$ of $\mathbb{R}^{d}, \phi^{-1}(H)$ induces a connected subgraph of $G$ (possibly empty).

Note that such a function $\phi$ does not exist for disconnected graphs; so $k(G)$ would be undefined if $G$ is disconnected.

Observe that if $G$ is the 1 -skeleton of a full-dimensional polytope in $\mathbb{R}^{d}$, then $k(G) \geqslant d$, as the polytope gives the embedding in $\mathbb{R}^{d}$.

By similar arguments as used in the proof of Theorem 1 one shows that if $G^{\prime}$ is a connected minor of $G$ then $\kappa\left(G^{\prime}\right) \leqslant \kappa(G)$. So again for each $d$ there is a finite set of forbidden minors for the class of graphs satisfying $\kappa(G) \leqslant d$. This class of graphs equals $\left\{K_{d+2}\right\}$, as is shown in the next theorem.

First observe that

$$
\begin{equation*}
\kappa(G) \leqslant \lambda(G) \tag{15}
\end{equation*}
$$

holds for each connected graph $G$, since if $\phi: V \rightarrow \mathbb{R}^{d}$ satisfies (14), then we may assume that the origin belongs to the interior of the convex hull of $\phi(V)$. But then trivially $\phi$ is a valid representation for $G$.

Basic in the characterization is the following observation (Grünbaum and Motzkin [7], Grünbaum [6]):

Theorem 11. If $G$ is the 1 -skeleton of $a d$-dimensional polytope $P$, then $G$ contains a $K_{d+1}$-minor.

Proof. By induction on $d$, the case $d=0$ being trivial. If $d>0$, let $F$ be a facet of $P$. By the induction hypothesis, the 1 -skeleton of $F$ can be contracted to $K_{d}$. Moreover, the vertices of $P$ not on $F$ induce a connected subgraph of $G$, and hence can be contracted to one vertex. This yields a contraction of $G$ to $K_{d+1}$, as each vertex of $F$ is adjacent to at least one vertex of $P$ not on $F$.

This gives:
Theorem 12. For each connected graph $G$ and each $d, \kappa(G) \geqslant d$ if and only if $G$ has a $K_{d+1}$-minor.

Proof. Sufficiency. One has $\kappa\left(K_{d+1}\right)=d$ since the vertices of a simplex in $\mathbb{R}^{d}$ give a function $\phi$ satisfying (14). So if $G$ has a $K_{d+1}$-minor, then $\kappa(G) \geqslant d$.

Necessity. Let $G=(V, E)$ be a connected graph and let $d:=\kappa(G)$, such that for each proper connected minor $G^{\prime}$ one has $k\left(G^{\prime}\right)<d$. By Theorem 11 it suffices to show that $G$ is the 1 -skeleton of a $d$-dimensional polytope.

Let $\phi: V \rightarrow \mathbb{R}^{d}$ satisfy (14). Let $P$ be the convex hull of $\phi(V)$. So $P$ is a $d$-dimensional polytope in $\mathbb{R}^{d}$. We show that $G$ is the 1 -skeleton of $P$.

First observe that for each vertex $x$ of $P$, the set $\phi^{-1}(x)$ induces a connected subgraph of $G$, as it is equal to $\phi^{-1}(H)$ for some affine halfspace $H$ of $\mathbb{R}^{d}$. Hence if $\phi^{-1}(x)$ consists of more than one vertex of $G$, then we can contract this subgraph to one vertex, contradicting the minimality of $G$.

Similarly, for each edge $x y$ of $P$, the set $\phi^{-1}(x y)$ induces a connected subgraph of $G$. Hence it contains a path from $\phi^{-1}(x)$ to $\phi^{-1}(y)$.

As this is true for each edge, $G$ contains a subdivision of the 1 -skeleton of $P$ as a subgraph. By the minimality of $G$ this implies that $G$ is equal to the 1 -skeleton of $P$.

So Hadwiger's conjecture is equivalent to $\gamma(G) \leqslant \kappa(G)+1$ for each connected graph $G$.

## Acknowledgment

We thank Laci Lovász and Neil Robertson for helpful conversation on the topic of this paper. Moreover, we thank an anonymous referee for very useful suggestions.

## References

1. K. Appel and W. Haken, Every planar graph is four colorable. Part I. Discharging, Illinois J. Math. 21 (1977), 429-490.
2. K. Appel, W. Haken, and J. Koch, Every planar graph is four colorable. Part II. Reducibility, Illinois J. Math. 21 (1977), 491-567.
3. Y. Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B 50 (1990), 11-21.
4. Y. Colin de Verdière, On a new graph invariant and a criterion for planarity, in "Graph Structure Theory" (N. Robertson and P. Seymour, Eds.), pp. 137-147, Contemporary Mathematics, American Mathematical Society, Providence, RI, 1993.
5. D. Gale, Neigboring vertices on a convex polyhedron, in "Linear Inequalities and Related Systems" (H. W. Kuhn, A. W. Tucker, Eds.), pp. 255-263, Annals of Mathematical Studies 38, Princeton Univ. Press, Princeton, NJ, 1956.
6. B. Grünbaum, On the facial structure of convex polytopes, Bull. Amer. Math. Soc. 71 (1965), 559-560.
7. B. Grünbaum and T. S. Motzkin, On polyhedral graphs, in "Convexity," Proceedings Symposia Pure Math., Vol. 7, pp. 285-290, Amer. Math. Soc., Providence, RI, 1963.
8. N. Robertson and P. D. Seymour, Graph minors. XX. Wagner's conjecture, preprint, 1988.
9. N. Robertson, P. Seymour, and R. Thomas, Sach's linkless embedding conjecture, J. Combin. Theory Ser. B 64 (1995), 185-227.
10. N. Robertson, P. D. Seymour, and R. Thomas, A survey of linkless embeddings, in "Graph Structure Theory" (N. Robertson and P. Seymour, Eds.), pp. 125-136, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 1993.
11. N. Robertson, P. Seymour, and R. Thomas, Hadwiger's conjecture for $K_{6}$-free graphs, Combinatorica 13 (1993), 279-361.
12. K. Wagner, Über eine Eigenschaft der ebene Komplexe, Mathematische Annalen 114 (1937), 570-590.
