Finding Disjoint Trees in Planar Graphs in Linear Time

B.A. REED

N. ROBERTSON
A. SCHRIJVER
P.D. SEYMOUR

Abstract

We show that for each fixed k there exists a linear-time algorithm for the problem: given: an undirected plane graph $G=(V, E)$ and subsets X_{1}, \ldots, X_{p} of V with $\left|X_{1} \cup \cdots \cup X_{p}\right| \leq k$; find: pairwise vertex-disjoint trees T_{1}, \ldots, T_{p} in G such that T_{i} covers $X_{i}(i=1, \ldots, p)$.

1. Introduction

Consider the following disjoint trees problem:
given: an undirected graph $G=(V, E)$ and subsets X_{1}, \ldots, X_{p} of V;
find: pairwise vertex-disjoint trees T_{1}, \ldots, T_{p} in G such that T_{i} covers $X_{i}(i=1, \ldots, p)$.
(We say that tree T_{i} covers X_{i} if each vertex in X_{i} is a vertex of T_{i}.)
Robertson and Seymour [5] gave an algorithm for this problem that runs, for each fixed k, in time $O\left(|V|^{3}\right)$ for inputs satisfying $\left|X_{1} \cup \cdots \cup X_{p}\right| \leq k$. (Recently, Reed gave an improved version with running time $O\left(|V|^{2} \log |V|\right)$.) In this paper we show that if we moreover restrict the input graphs to planar graphs there exists a linear-time algorithm:

Theorem. There exists an algorithm for the disjoint trees problem for planar graphs that runs, for each fixed k, in time $O(|V|)$ for inputs satisfying

[^0]$\left|X_{1} \cup \cdots \cup X_{p}\right| \leq k$.
If we do not fix an upper bound k on $\left|X_{1} \cup \cdots \cup X_{p}\right|$, the disjoint trees problem is NP-hard (D.E. Knuth, see [1]), even when we restrict ourselves to planar graphs and each X_{i} is a pair of vertices (Lynch [2]).

Our result extends a result of Suzuki, Akama, and Nishizeki [7] stating that the disjoint trees problem is solvable in linear time for planar graphs for each fixed upper bound k on $\left|X_{1} \cup \cdots \cup X_{p}\right|$, when
(1) there exist two faces f_{1} and f_{2} such that each vertex in $X_{1} \cup \cdots \cup X_{p}$ is incident with at least one of f_{1} and f_{2}.
(In fact, they showed more strongly that the problem (for nonfixed k) is solvable in time $O(k|V|)$. Indeed, recently Ripphausen, Wagner, and Weihe [4] showed that it is solvable in time $O(|V|)$.)

Equivalent to a linear-time algorithm for the disjoint trees problem (for fixed $k)$ is one for the following "realization problem". Let $G=(V, E)$ be a graph and let $X \subseteq V$. For any $E^{\prime} \subseteq E$ let $\Pi\left(E^{\prime}\right)$ be the partition $\{K \cap X \mid K$ is a component of the graph $\left(V, E^{\prime}\right)$ with $\left.K \cap X \neq \emptyset\right\}$ of X. We say that E^{\prime} realizes Π if $\Pi=\Pi\left(E^{\prime}\right)$. We call a partition of X realizable in G if it is realized by at least one subset E^{\prime} of E. Now the realization problem is:
given: a graph $G=(V, E)$ and a subset X of V;
find: subsets E_{1}, \ldots, E_{N} of E such that each realizable partition of X is realized by at least one of E_{1}, \ldots, E_{N}.

We give an algorithm for the realization problem for planar graphs that runs, for each fixed k, in time $O(|V|)$ for inputs satisfying $|X| \leq k$. In [3] we extend this result to graphs embedded on any fixed compact surface.

2. Realizable partitions

We will use the following lemma of Robertson and Seymour [6], saying that any vertex that is "far away" from X and also is not on any "short" curve separating X, is irrelevant for the realization problem and can be left out from the graph.

Let $G=(V, E)$ be a plane graph (that is, a graph embedded in the plane \mathcal{R}^{2}). For any curve C on \mathcal{R}^{2}, the length length (C) of C is the number of times C meets G (counting multiplicities). We say that a curve C separates a subset X of \mathcal{R}^{2} if X is contained in none of the components of $\mathcal{R}^{2} \backslash C$. (So C separates X if C intersects X.)

Lemma. There exists a computable function $g: \mathcal{N} \longrightarrow \mathcal{N}$ with the following property. Let $G=(V, E)$ be a plane graph, let $X \subseteq V$ and let $v \in V$ be such that each closed curve C traversing v and separating X satisfies length $(C) \geq g(|X|)$; then each partition of X realizable in G is also realizable in $G-v$.
[$G-v$ is the graph obtained from G by deleting v and all edges incident with v.]

Moreover, we use the following easy proposition, enabling us to reduce the realization problem to smaller problems.

Proposition 1. Let $G=(V, E)$ be an undirected graph and let $X \subseteq V$. Moreover, let V_{1}, \ldots, V_{n}, Y be subsets of V such that
(2) (i) each edge of G is contained in at least one of V_{1}, \ldots, V_{n};
(ii) $X \subseteq Y$ and $V_{i} \cap V_{j} \subseteq Y$ for each $i, j \in\{1, \ldots, t\}$ with $i \neq j$.

Let $E_{i, 1}, \ldots, E_{i, N_{i}}$ form a solution for the realization problem with input $\left\langle V_{i}\right\rangle, V_{i} \cap$ $Y(i=1, \ldots, n)$. Then the sets $E_{1, j_{1}} \cup \cdots \cup E_{n, j_{n}}$, where j_{i} ranges over $1, \ldots, N_{i}$ (for $i=1, \ldots, n$), form a solution for the realization problem with input G, X.
[$\langle W\rangle$ denotes the subgraph of G induced by W.]

3. Proof of the theorem

We show that, for each fixed k, there exists a linear-time algorithm for the realization problem for plane graphs $G=(V, E)$ and subsets X of V with $|X| \leq$ k. We may assume that G is connected.
For any subset W of V let $\delta(W)$ be the set of vertices in W that are adjacent to at least one vertex in $V \backslash W$. Let $W^{o}:=W \backslash \delta(W)$.
Let H be the graph with vertex set V, where two vertices v, v^{\prime} are adjacent if and only if there exists a face of G that is incident with both v and v^{\prime}. For any subset W of V, let $\kappa(W)$ denote the number of components of the subgraph of H induced by W. Note that $\kappa(W)$ can be computed in linear time.
We say that W is linked if $\kappa(W)=1$. Observe that if $W \neq \emptyset$ then
(3) $\quad W$ is linked if and only if G does not contain a circuit C splitting W.

Here we say that C splits W if C does not intersect W and $\emptyset \neq W \cap \operatorname{int} C \neq W$, where int C denotes the (open) area of \mathcal{R}^{2} enclosed by C.
We apply induction on $\kappa(X)$. If $\kappa(X) \leq 2$, the problem can be reduced to one satisfying (1). Indeed, if $\kappa(X)=2$ we can find in linear time a collection F of faces of G such that the subspace $X \cup \bigcup_{f \in F} f$ of \mathcal{R}^{2} has two connected components and such that $|F| \leq|X|$. Choose two faces $f, f^{\prime} \in F$ and a vertex $v \in X$ incident with both f and f^{\prime}. "Open" the graph at v, by splitting v into two new vertices, joining f and f^{\prime} to form one new face. After this is repeated $|F|-3$ times, the faces in F are replaced by two faces f_{1} and f_{2} and the vertices in X are split (or not) to a set X^{\prime} of $|X|+|F|-2$ vertices, such that each vertex in X^{\prime} is incident with f_{1} or f_{2}. By the result of Suzuki, Akama, and Nishizeki [7] we can solve the realization problem for the new graph and X^{\prime} in linear time. This directly gives a solution for the realization problem for the original realization problem. We proceed similarly if $\kappa(X)=1$.
If $\kappa(X)>2$ we proceed as follows. Let X_{1}, \ldots, X_{t} be the components of the subgraph of H induced by X. (So $t=\kappa(X) \leq k$.) We may assume that $\delta\left(X_{i}\right)=X_{i}$ for each $i=1, \ldots, t$ (by attaching to each vertex in X_{i} a new vertex
of valency 1). Let p be a nonnegative integer. A p-neighbourhood is a collection W_{1}, \ldots, W_{t} of pairwise disjoint linked subsets of V with the following properties:
(i) for $i=1, \ldots, t, W_{i} \supseteq X_{i}$, and if $W_{i} \neq X_{i}$ then $\left|\delta\left(W_{i}\right)\right|=p$
(ii) for all distinct $i, j \in\{1, \ldots, t\}$, there are p vertex-disjoint paths in G between W_{i} and W_{j}.

We note:
Proposition 2. Let W_{1}, \ldots, W_{t} be a p-neighbourhood. Let $i, j \in\{1, \ldots, t\}$ be distinct, and let T be a set of vertices intersecting each path from W_{i} to W_{j} such that $|T|=p$. Then T is linked.

Proof. Suppose not. Let C be a circuit in G splitting T. Let U_{i} and U_{j} be the sets of vertices that can be reached from W_{i} and W_{j}, respectively, without intersecting T. So $U_{i} \cap U_{j}=\emptyset$. Then $U_{i} \cap C=\emptyset$ or $U_{j} \cap C=\emptyset$, since otherwise all vertices in C belong both to U_{i} and U_{j}. We may assume that $U_{i} \cap C=\emptyset$. Hence we may assume moreover that U_{i} is contained in $\operatorname{int} C$ (as U_{i} is linked). Then each path from W_{i} to W_{j} intersects $T \cap \operatorname{int} C$, contradicting the facts that there exist p disjoint such paths and that $|T \cap \operatorname{int} C|<|T|=p$.

In particular, $\delta\left(W_{i}\right)$ is linked for all i. (If $W_{i}=X_{i}$ then $\delta\left(W_{i}\right)=\delta\left(X_{i}\right)={ }^{\text {* }} X_{i}$.)
Call a p-neighbourhood W_{1}, \ldots, W_{t} maximal if for each $i=1, \ldots, t$ and for each linked U satisfying $W_{i} \subset U \subseteq V \backslash \bigcup_{j \neq i} W_{j}$ one has $|\delta(U)|>p$.

First we describe an algorithm which, given a p-neighbourhood W_{1}, \ldots, W_{t}, finds a maximal p-neighbourhood:

1. Choose $i \in\{1, \ldots, t\}$. Determine an inclusionwise maximal set U satisfying $W_{i} \subseteq U \subseteq V \backslash \bigcup_{j \neq i} W_{j}$ and $|\delta(U)|=p$. Replace W_{i} by U. If no such U exists, we leave W_{i} unchanged.
2. Repeat for all $i \in\{1, \ldots, t\}$ in turn. This gives a maximal p neighbourhood.

Note that by Proposition 2, $\delta(U)$ in Step 1 is linked, and hence U is linked. Note moreover that Step 1 can be performed in time $O(p|V|)$ with the FordFulkerson augmenting path method (one augmenting path can be found in time $O(|V|))$. See also [4].
Second we give an algorithm which, given a maximal p-neighbourhood, finds either a $p+1$-neighbourhood or a reduction for the realization problem:

1. If there exist $i \neq j$ and a vertex v such that both $W_{i} \cup\{v\}$ and $W_{j} \cup\{v\}$ are linked, apply Proposition 1 to $V_{1}:=W_{i} \cup\{v\}, V_{2}:=$ $W_{j} \cup\{v\}, V_{3}:=V \backslash\left(W_{i}^{o} \cup W_{j}^{o}\right)$ and $Y:=X \cup \delta\left(W_{i}\right) \cup \delta\left(W_{j}\right) \cup\{v\}$.
Otherwise, for each $i=1, \ldots, t$ with $\left|\delta\left(W_{i}\right)\right|=p$, choose a vertex $v_{i} \in V \backslash W_{i}$ such that $W_{i} \cup\left\{v_{i}\right\}$ is linked, and let $U_{i}:=W_{i} \cup\left\{v_{i}\right\}$; for all other i let $U_{i}:=W_{i}$.
2. If there exist $i \neq j$ such that there do not exist $p+1$ disjoint paths connecting U_{i} and U_{j}, find a subset U of V such that $U_{i} \subseteq$ $U, U_{j} \subseteq U^{\prime}:=V \backslash U^{o}$ and $|\delta(U)|=p$. Apply Proposition 1 to $V_{1}:=W_{1}, \ldots, V_{t}:=W_{t}, V_{t+1}:=\left(U \backslash\left(W_{1}^{o} \cup \cdots \cup W_{t}^{o}\right)\right) \cup \delta(U), V_{t+2}:=$ $\left(U^{\prime} \backslash\left(W_{1}^{o} \cup \cdots \cup W_{t}^{o}\right)\right) \cup \delta(U)$ and $Y:=X \cup \delta\left(W_{1}\right) \cup \cdots \cup \delta\left(W_{t}\right) \cup \delta(U)$.
3. Otherwise, U_{1}, \ldots, U_{t} form a $p+1$-neighbourhood.

Proposition 3. In Step 1, if there exist i and j as stated, then $\kappa\left(V_{h} \cap Y\right)<t$ for $h=1,2,3$.

Proof. Without loss of generality, $i=1$ and $j=2$. We have $\kappa\left(V_{1} \cap Y\right)=$ $\kappa\left(X_{1} \cup \delta\left(W_{1}\right) \cup\{v\}\right) \leq 2<t$, since both X_{1} and $\delta\left(W_{1}\right) \cup\{v\}$ are linked. Similarly, $\kappa\left(V_{2} \cap Y\right) \leq 2<t$.

Finally, $\kappa\left(V_{3} \cap Y\right)<t$, since $V_{3} \cap Y=X_{3} \cup \cdots \cup X_{t} \cup \delta\left(W_{1}\right) \cup \delta\left(W_{2}\right) \cup\{v\}$, where X_{3}, \ldots, X_{t} and $\delta\left(W_{1}\right) \cup \delta\left(W_{2}\right) \cup\{v\}$ are linked (as $\delta\left(W_{1}\right) \cup\{v\}$ and $\delta\left(W_{2}\right) \cup\{v\}$ are linked).

Proposition 4. Let $A, B \subseteq V$ such that $\delta(A)$ and $\delta(B)$ are linked, and such that $B \nsubseteq A^{\circ}$ and $A^{o} \cup B^{\circ} \neq V G$. Then $\delta(A) \cup(A \cap \delta(B))$ is linked.

Proof. Suppose $\delta(A) \cup(A \cap \delta(B))$ is not linked. Let C be a circuit in G splitting $\delta(A) \cup(A \cap \delta(B))$. Since $\delta(A)$ is linked, we may assume that $\delta(A) \subset \operatorname{int} C$. Since C splits $\delta(A) \cup(A \cap \delta(B))$, we know that there are vertices in $A \cap \delta(B)$ that are in the exterior of C.

Since G is connected, there exists a path in G from a vertex in A in the exterior of C to a vertex of C disjoint from $\delta(A)$, and hence C intersects A. Therefore, $V C \subseteq A$. Hence every vertex of G in the exterior of C belongs to A. As $\delta(B)$ is linked and as $\delta(B)$ does not intersect C (because $A \cap \delta(B)$ does not intersect C), we have that $\delta(B)$ is contained in the exterior of C. As $B \nsubseteq A^{\circ}$ this implies that each vertex in $\operatorname{int} C$ is contained in B. So $A^{o} \cup B^{o}=V G$, contradicting the assumption.

Proposition 5. In Step 2, if there exist i and j as stated, then $\kappa\left(V_{h} \cap Y\right)<t$ for $h=1, \ldots, t+2$.

Proof. Without loss of generality, $i=1$ and $j=2$. By the maximality of W_{1} we know that U intersects at least one of $W_{2}, W_{3} \ldots, W_{t}$. So U intersects at least two of W_{1}, \ldots, W_{t}. Similarly, U^{\prime} intersects at least two of W_{1}, \ldots, W_{t}.

For each $h=1, \ldots, t$ we have $\kappa\left(V_{h} \cap Y\right) \leq 2<t$, since $V_{h} \cap Y=X_{h} \cup \delta\left(W_{h}\right) \cup$ ($\left.W_{h} \cap \delta(U)\right)$ and since $\delta\left(W_{h}\right) \cup\left(W_{h} \cap \delta(U)\right)$ is linked by Proposition 4. (Note that $U \nsubseteq W_{h}^{o}$ since U intersects at least two of W_{1}, \ldots, W_{t}, and that $U^{o} \cup W_{h}^{o} \neq V G$ since U^{\prime} intersects at least two of W_{1}, \ldots, W_{t}.)
Next we show $\kappa\left(V_{t+1} \cap Y\right)<t$. Note that $V_{t+1} \cap Y=\delta(U) \cup\left(U \cap\left(\delta\left(W_{1}\right) \cup\right.\right.$ $\left.\cdots \cup \delta\left(W_{t}\right)\right)$). Since U^{\prime} intersects at least two of W_{1}, \ldots, W_{t}, it suffices to show that if U^{\prime} intersects W_{h} then $\delta(U) \cup\left(U \cap \delta\left(W_{h}\right)\right)$ is linked.

Suppose U^{\prime} intersects W_{h} and $\delta(U) \cup\left(U \cap \delta\left(W_{h}\right)\right)$ is not linked. As $\delta(U)$ and $\delta\left(W_{h}\right)$ are linked (by Proposition 2), Proposition 4 implies that $W_{h} \subseteq U^{0}$ or $W_{h}^{o} \cup U^{o}=V G$. However, $W_{h} \subseteq U^{\circ}$ contradicts the fact that W_{h} intersects U^{\prime}. Moreover, $W_{h}^{o} \cup U^{o}=V G$ contradicts the fact that there is another $W_{h^{\prime}}$ intersecting U^{\prime}.

This shows $\kappa\left(V_{t+1} \cap Y\right)<t$. Similarly, $\kappa\left(V_{t+2} \cap Y\right)<t$.
Finally we give the algorithm which finds a reduction:
Starting with the 0 -neighbourhood X_{1}, \ldots, X_{t}, for $p=0,1, . ., 2 g(k)-$ 1 apply the above algorithms to find a reduction or a $2 g(k)$-neighbourhood.
If we find a $2 g(k)$-neighbourhood W_{1}, \ldots, W_{t}, then for all distinct $i, j \in\{1, \ldots, t\}$, find a shortest path $P_{i, j}$ in H between W_{i} and W_{j}. Among all $P_{i, j}$ choose one, $P:=P_{1,2}$ say, of minimum length.
If length $(P)>2 g(k)$, delete from G all vertices of P except the first $g(k)$ and the last $g(k)$. If length $(P) \leq 2 g(k)$ leave G unchanged. Call the new graph G^{\prime}.
Let R be the set of vertices in P that are not deleted. Apply Proposition 1 to G^{\prime} and $V_{1}:=W_{1}, V_{2}:=W_{2}, V_{3}:=V \backslash\left(W_{1}^{o} \cup W_{2}^{o}\right)$ and $Y:=X \cup \delta\left(W_{1}\right) \cup \delta\left(W_{2}\right) \cup R$.

Proposition 6. In $G^{\prime}, \kappa\left(V_{h} \cap Y\right)<t$ for $h=1,2,3$.
Proof. $\kappa\left(V_{1} \cap Y\right)=\kappa\left(X_{1} \cup \delta\left(W_{1}\right)\right) \leq 2<t$. Similarly, $\kappa\left(V_{2} \cap Y\right)<t$. Finally, $\kappa\left(V_{3} \cap Y\right)=\kappa\left(X_{3} \cup \cdots \cup X_{t} \cup \delta\left(W_{1}\right) \cup \delta\left(W_{2}\right) \cup R\right)<t$ since $\delta\left(W_{1}\right) \cup \delta\left(W_{2}\right) \cup R$ is linked.

Proposition 7. Deleting the vertices does not affect realizability.
Proof. Let Q be the set of vertices deleted. We must show that for any vertex $v \in Q$, any closed curve C traversing v and separating X has at least $g(k)$ intersections with $G-(Q \backslash\{v\})$ (since it means by the lemma that we can delete v, even after having deleted all other vertices in Q). In other words, any closed curve in \mathcal{R}^{2} intersecting Q and separating X should have at least $g(k)-1$ intersections with $G-Q$.
Let C be a closed curve intersecting Q and separating X, having a minimum number p of intersections with $G-Q$. We may assume that C intersects G only in vertices of G. Suppose $p \leq g(k)-2$. It is not difficult to see that, by the minimality of p, there exist $x, y \in Q$ on C (possibly $x=y$) such that, if we denote by K and K^{\prime} the two (closed) $x-y$ parts of C, then one of these parts, K say, intersects G only in Q, while K^{\prime} intersects Q only in the end points x and y of K^{\prime}. We may assume that K is part of P. Hence as P is a shortest path, length $(K) \leq$ length $\left(K^{\prime}\right)=p+2$. So length $(C)=$ length $(K)+$ length $\left(K^{\prime}\right)-2 \leq$ $2 p+2 \leq 2 g(k)-2$.

Hence C does not intersect any face incident with any point in any W_{i}, since otherwise C would contain a curve of length at most $g(k)-1$ connecting Q and W_{i}, contradicting the minimality of P. As C separates X, there exist $i \neq j$ such that W_{i} and W_{j} are in different components of $\mathcal{R}^{2} \backslash C$. This contradicts the facts that there exist $2 g(k)$ pairwise disjoint paths from W_{i} to W_{j} and that length $(C)<2 g(k)$.
Acknowledgement. We are grateful to a referee for giving several helpful suggestions improving the presentation of our results.

References

1. R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68.
2. J.F. Lynch, The equivalence of theorem proving and the interconnection problem, (ACM) SIGDA Newsletter 5 (1975) 3:31-36.
3. B.A. Reed, N. Robertson, A. Schrijver, and P.D. Seymour, Finding disjoint trees in graphs on surfaces in linear time, preprint, 1992.
4. H. Ripphausen, D. Wagner, and K. Weihe, The vertex-disjoint Menger problem in planar graphs, preprint, 1992.
5. N. Robertson and P.D. Seymour, Graph Minors XIII. The disjoint paths problem, 1986, submitted.
6. N. Robertson and P.D. Seymour, Graph Minors XXII. Irrelevant vertices in linkage problems, preprint, 1992.
7. H. Suzuki, T. Akama, and T. Nishiseki, An algorithm for finding a forest in a planar graph - case in which a net may have terminals on the two specified face boundaries (in Japanese), Denshi Joho Tsushin Gakkai Ronbunshi 71-A (1988) 1897-1905 (English translation: Electron. Comm. Japan Part III Fund. Electron. Sci. 72 (1989) 10:68-79).

Department of Computer Science, Université du Québec À Montréal, Montréal, Québec, Canada
E-mail addresses: breed@watserv1.uwaterloo.ca, breed@mipsmath.uqam.ca
Department of Mathematics, Ohio State University, Columbus, Ohio 43210, U.S.A.

E-mail address: robertso@function.mps.ohio-state.edu
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands,
AND
Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail address: lex@cwi.nl
Bellcore, 445 South St., Morristown, New Jersey 07962, U.S.A.
E-mail address: pds@breeze.bellcore.com

[^0]: 1991 Mathematics Subject Classification: Primary 05C10, 05C38, 05C85; secondary 68Q25, 68R10
 This paper is in final form and no version of it will be submitted for publication elsewhere.

