
Peak Performance – Remote Memory Revisited

Hannes Mühleisen
CWI, Amsterdam
The Netherlands

hannes@cwi.nl

Romulo Gonçalves
∗

IBM Research
USA

goncalves@us.ibm.com

Martin Kersten
CWI, Amsterdam
The Netherlands

mk@cwi.nl

ABSTRACT
Many database systems share a need for large amounts of
fast storage. However, economies of scale limit the utility
of extending a single machine with an arbitrary amount
of memory. The recent broad availability of the zero-copy
data transfer protocol RDMA over low-latency and high-
throughput network connections such as InfiniBand prompts
us to revisit the long-proposed usage of memory provided
by remote machines. In this paper, we present a solution
to make use of remote memory without manipulation of the
operating system, and investigate the impact on database
performance.

1. INTRODUCTION
Database systems are using many resources on the computing
machinery they run on. Constant disk accesses to guarantee
transactional properties and to load persistent data, large
amounts of main memory for intermediate result or tem-
porary tables, and moving all data relevant to the query
through a CPU all contribute to the usage pattern. Both the
amount of data that can be stored in a database (”capacity”)
as well as the number of queries that can be handled in
a time interval (”throughput”) are limited by the physical
properties of a machine, e.g. the amount of disk space, the
size of main memory or the number and speed of available
CPUs.

Distributed databases try to solve all these problems at once
by distributing both stored data and query execution to
multiple machines. Network infrastructure is then used to
coordinate these tasks. Similarly, virtual machines (VMs)
now have the capability of not only dividing resources of
a host computer into many virtual machines, but also to
aggregate many physical computers into one large virtual
machine. However, data and task placement decisions in
these systems always implicate specific weak points, and are
thus not fit for every use case [15].

∗Most of the research work was done during his PhD at CWI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DaMoN’13 June 24 2013, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM 978-1-4503-2196-9/13/06 ...$15.00

Each of the three resources disk space, main memory and
CPU have already enjoyed separate attention with regards
to their distribution. For example, the limitations on disk
storage space available on a single machine have been over-
come by distributed file systems or RAID setups. Similarly,
sharing main memory between machines has been proposed
frequently for some time now [7]. Considering remote mem-
ory is obvious whenever memory is the most scarce resource
in a particular system for a particular use case. For ex-
ample, the recent uptake in main-memory databases with
their column-oriented bulk processing paradigm require more
memory as the amount of data to be handled grows. For
these systems, extending the amount of available memory
greatly increases their capabilities.

Using remote memory is only justifiable if performance is
competitive with local resources. In particular, remote mem-
ory that is slower than the next caching level (typically hard
disks) defeats the purpose. However, the recent advent of
standardized high-performance network interconnects such
as InfiniBand has the potential of profoundly changing this
situation. In particular, some of these new interconnects
support Remote Direct Memory Access (RDMA) technology,
which allows direct access to the main memory of remote
machines without involving the CPU or network protocol
stack [14]. It is the broad availability of these high-speed
interconnects that prompts this revisit of remote memory
for databases. In this application area, database queries are
often I/O bound, and lower latency and higher throughput
have the potential of increasing both query response time as
well as overall throughput.

In this paper, we discuss remote memory and its potential
benefit to databases. We investigate our main research ques-
tion whether the broad availability and standardization of
RDMA technology can enable usage of remote memory for
databases with significant performance benefits. We present
a novel solution to make use of remote memory solely based
on standard components of the Linux kernel in Section 2.
Then, we present a set of experiments from the database
perspective to investigate the question of how competitive
remote memory is today in Section 3. Furthermore, we dis-
cuss the state of the art in using remote memory in Section 4.
Finally, we conclude this paper in Section 5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301643803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. DATABASES AND REMOTE MEMORY
Modern operating systems typically over-commit their phys-
ical memory. The memory addresses used by applications
refer to virtual memory. If the total amount of virtual mem-
ory used by all applications outgrows the physical amount
of memory in the system, the operating system choses mem-
ory pages to be “swapped out” to the hard disk. In most
cases, a variant of the least-recently-used (LRU) heuristic is
used to decide which pages should be removed. Whenever
an application tries to read from an address for which the
corresponding page has been swapped out, the operating
system will intercept this, read this page from disk again,
put it into memory, and the application happily continues.
However, there are typically three or four orders of magni-
tude in difference between disk and memory access latencies.
Therefore, if the amount of memory frequently read exceeds
the amount of physical memory, “thrashing” will occur, where
the system is mostly occupied with swapping pages in and
out of memory. This has serious impacts on overall system
performance. Therefore, most database systems try to avoid
this situation. For example, available memory is frequently
used in query optimization cost models to determine the
expected execution costs for a query [11].

In relational databases, the amount of memory required to
process a single query is also dependent on the processing
model used. In the case of an iterator-based approach, only
single tuples are processed at a time. High demand for mem-
ory can however still occur for example when building hash
tables or when temporary tables are being created. Contrary,
in the bulk processing model, all intermediate results of op-
erators are materialized in memory. This is done in order to
allow high performance in operator execution due to a high
probability of CPU cache locality. The advantages of this
processing model are particularly apparent when executing
OLAP-style queries that require reading a considerable part
of the stored data in order to calculate their result. Here,
using classical B-Trees to limit the amount of data that has
to be loaded from disk into memory is less effective. Further-
more, intermediate results in this class of queries can become
very large and even outgrow the size of the explicitly stored
data.

Hence, the availability of more memory – or in more general
terms, more fast temporary storage – is expected to be
beneficial to database performance. However, adding more
memory to a single computer quickly loses utility through
increasing hardware costs. It is not impossible to order a
machine with one Petabyte of main memory, but due to
the economies of scale, it is more cost-efficient to purchase
a number of smaller machines instead and then enable the
computer running the database to make use of the main
memory on the other machines. Assuming one is either
unable or unwilling to make changes or rewrite applications
to distributed operations, one has three main options:

1. Manipulations to the operating system’s virtual mem-
ory mechanisms, such that pages being swapped out are
not sent to local storage, but instead to remote memory.
We will discuss previous approaches in Section 4.

2. Since most operating systems allow to specify the lo-
cation of the area in the file system where pages are

swapped out to, one could redirect these to a remote file
system using a well-known technology such as NFS and
then placing the remote file system in remote memory.

3. If the application actively avoids using the operating
system’s swap facilities, as it is the case with many
databases, one could also redirect their temporary stor-
age areas to the remote memory exported as a file
system.

When accessing remote memory through a network interface,
it is safe to assume that the memory interface on both sides
will not be the limiting factor to access throughput and
latency. Moreover, this speed is limited by the throughput
and latency of the network interface as well as the device bus
speed. This has one important implication: When accessing
remote memory through a network interface, the number
of remote machines that provide memory is not important.
Each remote machine is able to saturate the network and
bus bandwidth with data read directly from its memory.
Hence, unlike in classical RAID scenarios with slower disks,
we can expect full performance regardless of the number of
remote machines that are used. Furthermore, comparable
to the recent uptake in SSD-based storage solutions due
to their negligible performance penalties when performing
random access or stride reads, remote memory does not
involve moving parts and is thus also expected to excel in
this dimension, which is crucial for database operations.

2.1 New Hardware: InfiniBand & RDMA
InfiniBand (IB) is widely used in high-performance comput-
ing environments because of higher bandwidth capabilities
than Ethernet. Bandwidths of up to 300Gb/s have been
specified so far. Furthermore, InfiniBand supports a technol-
ogy named Remote Direct Memory Access (RDMA). RDMA
enables direct access to the main memory of a remote host
(read and write). The most apparent benefit of using RDMA
is a reduction in CPU load thanks to the aforementioned
direct data placement (avoid intermediate data copies) and
OS bypassing techniques (reduced context switch rate) [1].

A second effect is less obvious: RDMA also significantly
reduces the memory bus load as the data is directly DMAed
to/from its location in main-memory. Therefore, the data
crosses the memory bus only once per transfer. The kernel
TCP/IP stack on the other hand requires several such cross-
ings. This may lead to noticeable contention on the memory
bus under high network I/O. Thus, adding additional CPU
cores to the system is not a replacement for RDMA.

The RDMA interface is quite different from a conventional
TCP socket transfer operations which allows overlapping of
communication and computation thereby hiding the network
delay. However, RDMA performs best when large chunks of
data are transferred. With small transfer units as they occur,
e.g., in a tuple-by-tuple transmission, only a small fraction
of the available bandwidth can be used. In [5], the authors
have shown that, for a single connection, only transfer units
of > 4 KB or higher were able to saturate the network link.
However, large transfer units come at a price with regards
to latency. Hence, a compromise transfer unit of 2 MB is
typically used [3].

2.2 Remote Memory for Temporary Files
Instead of manipulating core system services, we have chosen
a different approach. Most databases including MonetDB,
PostgreSQL and many others allow the database administra-
tor to specify a temporary working directory. In the case of
row-oriented databases, this is typically used to materialize
temporary tables too large to fit in memory. In the case of
MonetDB intermediate results are materialized to allow for
bulk processing at every step of the query execution. Here,
the temporary directory is also used to hold intermediate
results too large for main memory. It is precisely this fea-
ture of databases that allows us to take advantage of remote
memory without changing core operating system services:
Remote access to file systems is a very mature technology, the
Network File System (NFS) is a common method to achieve
remote file access. We can now piece together a solution for
allowing a database to make use of remote memory using
RDMA technology as follows:

The nodes providing memory (“Provider”) create a Ramdisk.
A Ramdisk is a virtual file system which is not backed by disk
sectors, but instead an area in main memory. To force alloca-
tion and allow a later step, we now create a zeroed Blockfile
that fills the Ramdisk to capacity. Then, the Ramdisk file
system is exported using a NFS Server. Since NFS sup-
ports the RDMA transport protocol, it is this step where
we exploit RDMA’s advantages as described above. Keep in
mind that the number of providers is expected to be larger
than one and essentially unlimited, which allows for immense
memory-backed file systems.

Re
qu
es
te
r

Database

File System

Volume Manager

NFS Ct
RDMA

Loopback

Ramdisk

NFS Sv
RDMA

BlockfilePr
ov
id
er
s

Ramdisk

NFS Sv
RDMA

Blockfile

NFS Ct
RDMA

Loopback

Figure 1: Remote Memory as Local File System

Once this process has been completed on all Providers, the
node that likes to use the remote memory (“Requester”)
now performs the following process: From each Provider, it
mounts the NFS share using the NFS client with of course
the RDMA transport. Then, a Loopback device is set up for
each of the Blockfiles on the Providers. This allows us to treat
the remote Blockfiles that reside in a in-memory file system
as a local block device. The set of loopback devices (one for
each provider) is now aggregated into a single file system
using a Volume Manager. In practice, one can either use the
Linux Logical Volume Manager (LVM), the Linux Software

RAID functionality (mdadm), or the multi-volume features of
the recent BTRFS file system. In the first two cases, a larger
logical volume is created, which can then be formatted with a
File system (e.g. ext4), the latter case does not require this
additional layer of indirection and is thus preferred. Finally,
the aggregated volume is mounted into the file system, where
it can now be used as a temporary directory for a database.
This process is visualized in Figure 1. We can see how the
database uses the file system to write data to a volume. This
volume however is backed by a number of loopback devices,
which in turn point to a file on a remote machine, where it
resides in a Ramdisk.

While this approach to remote memory might appear cum-
bersome and slow at first, its huge advantage is not requiring
any changes to the operating system, and most recent Linux
installations can directly create such a setup “out of the box”.
Furthermore, an almost arbitrary number of remote machines
can be used to provide memory, but through the aggregation
in the volume manager, they will appear as a single large file
system to the database. Unfortunately, an increasing number
of nodes will increase the chance of one of these nodes failing,
which would destroy the virtual file system. However, some
volume managers support the creation of aggregated volumes
with RAID semantics in software, which allows to replace
failed nodes and rebuild the virtual volume, even while being
in use.

We have created setup scripts for both Providers and Re-
quester, they are available on-line1. In the subsequent section,
we will investigate on the performance of this approach and
see how close it comes to its theoretical performance goal,
the raw network interface speed.

3. EXPERIMENTAL RESULTS
We have described our approach in making use of remote
memory for fast temporary file storage. Databases, in partic-
ular databases that use the bulk processing model and are
forced to materialize intermediate results, can draw immense
benefits from such a fast file system. Our methodology for
our experiments is thus twofold: We first perform baseline
throughput and latency tests on the aggregated remote mem-
ory. Second, we assess the benefit of remote memory for
OLAP database query processing.

All experiments were run on a cluster of 14 machines. Each
machine was equipped with 16 GB of main memory, a Intel
Core i7 processor clocked at 3.4 Ghz, and a QDR InfiniBand
Network card with a theoretical throughput of 40Gb(it)/s.
The operating system used was Fedora Linux 16, Kernel
version 3.3.4. Of these 14 nodes, 13 were used to provide
memory to the 14th. The total amount of aggregated memory
on the requester was 182 GB. Keep in mind, that apart from
the InfiniBand network these are desktop-class machines.

The technique we have chosen has one crucial advantage: It
does not require changes to the Linux kernel. The disadvan-
tage is the rather large number of intermediate components
and translations. Even though they all run inside the kernel,
they might have such a large performance impact that makes
using it impractical. Therefore, we are interested in how

1http://www.cwi.nl/~hannes/rram

http://www.cwi.nl/~hannes/rram

close our method comes towards the theoretical speed limit,
which is limited by the speed of the InfiniBand network.

In the second part, we present an experiment where we
compare the performance of MonetDB with and without
remote memory for temporary storage. As a data set and
query workload, we use TPC-H’s full set of 22 analytical
SQL queries.

3.1 Cluster bandwidth
The cluster is equipped with QDR InfiniBand, i.e., a theo-
retical 40 Gb/s transfer bandwidth. We have used the qperf
benchmark to determine the realistic uni- and bi- directional
bandwidth. For our hardware, we were able to reach a
bandwidth of 3.21 GB/s uni-directional and 4.37 GB/s bi-
directional. To our surprise, the bi-directional bandwidth is
not twice the uni-directional bandwidth. The nodes compos-
ing our cluster are commodity desktops which have PCI-16x
slots to support graphic cards. Such slots have asymmetric
bandwidth contrary to the 8x slots used for servers, which
explains the discrepancy. The bi- and uni-directional band-
width for the two independent servers is an indication that,
even with proper slots, the PCI bus rather than the QDR
network link is the bottleneck for remote data access. The
expected results are 3.8 GB/sec uni-directional bandwidth
and 7.6 GB/sec bi-directional bandwidth. Such values are
only possible with a PCI 3.0 bus.

0

1

2

3

H
D

D

S
S

D

iS
C

S
I/E

T
H

iS
C

S
I/E

oI
B

iS
C

S
I/R

D
M

A

N
F

S
/E

T
H

N
F

S
/E

oI
B

N
F

S
/R

D
M

A

N
F

S
/R

D
M

A
/R

A
ID

0

N
F

S
/R

D
M

A
/R

A
ID

5

T
hr

ou
gh

pu
t (

G
B

/s
)

Write
Read

Figure 2: Baseline Performance – Throughput

3.2 Baseline Performance
We have presented a solution for access to remote memory
through the file system using NFS and RDMA. In this base-
line performance comparison experiment, we have compared
our approach to several others with regards to the two main
I/O performance indicators throughput and latency: While
RDMA promises the highest performance in data transfer
compared to IP-bound solutions, we are still interested in
how NFS access to remote memory performs when using gi-
gabit Ethernet (ETH) and Ethernet-over-InfiniBand (EoIB).
Furthermore, there is another option, the Internet Small Com-
puter System Interface (iSCSI) over RDMA [10]. Contrary
to NFS, iSCSI exports block devices and not file systems.
Nevertheless, the Linux kernel comes with iSCSI support
over Ethernet and RDMA transports. Finally, we compare
the performance of our approach when using either RAID0
(striping) or RAID5 (block-level striping with distributed

parity) on the volume manager level. As discussed above, we
are able to handle failing memory provider nodes with the
RAID5 solution, but expect a negative performance impact
on writing due to the calculation and writing of the parity
blocks. Finally, we introduce control tests where applicable
with a local hard disk (HDD), a local Solid State Disk (SSD)
and a local Ramdisk. For our RDMA transports, previous
work has shown that a message size of 2 MB provides the
best compromise between throughput and delay on QDR
connections [3]. Hence, this value was used as the block size
for our RDMA-backed file systems. For the iSCSI setups,
the default message size of 512 bytes was used. For the
iSCSI/RDMA setup, the recommended message size of 64 K
was configured. The control tests used a Seagate SV35 hard
disk and a OCZ Vertex Turbo solid state disk. Both disks
were connected using a SATA 2.0 interface.

In order to measure throughput, we have written a 100 GB
file to the remote memory volume and measured the time
taken. Afterwards, we cleared the file system cache and
read the file that was just written again. From this, we
can calculate the average throughput rate in Gigabytes per
second (GB/s), both for read and write operations. These
results can be seen in Figure 2. In addition, this graph shows
the measured top throughput of the InfiniBand interface
speed as a red horizontal line. We can see how NFS/RDMA
clearly outperforms all other solutions in read speed, even
with RAID5 redundancy. For writing, NFS over RDMA and
iSCSI are similar in performance, and we can also see the huge
impact of the parity block writing in the RAID5 setup. Most
interesting, the difference between the InfiniBand interface
speed and the performance achieved by our approach in
reading is rather small, considering the amount of protocol
translation involved.

We can observe a similar distribution for the access latency
in Figure 3. Here, we have measured the average amount of
time to read a block of data from the different file systems.
Again, we can observe how RDMA-backed NFS clearly out-
performs iSCSI setups and even the local SSD. The difference
between the NFS/RDMA setup and the RAID0 array on
top of NFS/RDMA are attributed to the software RAID
layer, where the O_DIRECT flag that disables caching struc-
tures had no effect, and requests were thus served out of
memory-resident caches.

0

200

400

600

S
S

D

R
A

M

iS
C

S
I/E

T
H

iS
C

S
I/E

oI
B

iS
C

S
I/R

D
M

A

N
F

S
/E

T
H

N
F

S
/E

oI
B

N
F

S
/R

D
M

A

N
F

S
/R

D
M

A
/R

A
ID

0

N
F

S
/R

D
M

A
/R

A
ID

5

La
te

nc
y

(µ
s)

Figure 3: Baseline Performance – Latency

Query Read (GB) Write (GB)
q01 13.50 49.44
q18 5.35 28.36
q21 6.74 9.14
q03 5.62 5.96
q13 2.38 6.56

Table 1: Intermediate Traffic - Top 5 Queries

3.3 TPC-H Performance
As discussed in our introduction, memory shortages when
storing intermediate results are most serious during ana-
lytical query processing within a database. Moreover, in
databases using the bulk processing scheme, intermediate
results have to be materialized, and if they do not fit into
main memory, they are typically moved to the hard disk. In
this experiment, we intend to show the relationship between
the speed of the temporary storage area in the file system
and the query performance. We have chosen the well-known
TPC-H benchmark for this purpose. The database under
test is MonetDB, which fits well into the described class of
systems. MonetDB was extended with a new configuration
setting to specify the location for temporary files.

We have set the TPC-H data generator’s “scaling factor”
to 100, which resulted in a database size of 107 GB. This
entire dataset cannot be loaded into the node’s 16 GB of
main memory. Also, some of these complex queries produce
large intermediate results, which do not fit into memory as
well. Therefore, they are well suited to show the potential
benefits of using remote memory over RDMA for databases.
In a preliminary step, we have also measured the amount
of temporary data that is written to and read from the
temporary storage space for each query. The five queries
with the highest amount of temporary I/O are shown in
Table 1. From this, we expect the top queries to show the
speed differences for the temporary storage area most clearly.
The discrepancies between data written and data read in this
table stem from the particular implementation of MonetDB,
which uses memory-mapped files. Here, the operating system
decides when and which changed data is written back to disk.

10

1000

q0
1

q0
2

q0
3

q0
4

q0
5

q0
6

q0
7

q0
8

q0
9

q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

q1
8

q1
9

q2
0

q2
1

q2
2

Query

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Experiment
HDD
RRAM

Figure 4: Remote Memory – TPC-H Query Timings

We have run the query workload of 22 queries five times
in two environments: “HDD”, where the temporary storage
area is located on a normal hard disk, and “RRAM”, where

we have put temporary storage onto a volume backed by
the combined memory of our 13 provider nodes using the
NFS/RDMA/RAID0 method that showed the best perfor-
mance in our baseline experiments. The timings reported
are cold runs, where the database server has been restarted
between queries. For each query run, we have measured the
time required to calculate the result as well as the traffic
over the InfiniBand interface where applicable.

The timing results from this experiment – averaged over the
five runs on a logarithmic scale – are shown in Figure 4.
Error bars show the standard error of the average execution
time. We can see how the remote memory setup vastly
outperforms the baseline HDD performance. Overall, it took
about one hour to run all queries with the temporary files
being stored on a HDD, but only 15 minutes with the remote
memory. If we compare these results again to the temporary
storage traffic from Table 1, we can see for example how
query 01, which showed the highest temporary storage traffic
also shows a large difference in execution times. However,
even queries without huge result sets such as 17 showed much
improvement. At the same time, the error bars also indicate
a lower variance in execution times for the RRAM scenario,
which is little surprising since random access is no issue for
memory.

0.0

0.5

1.0

1.5

0 5 10 15 20
Time (s)

Tr
af

fic
 (

G
B

/s
)

Direction
Read
Write

Figure 5: TPC-H q01 Network Traffic

As mentioned, we have also sampled the throughput for
the InfiniBand network interface during query executions.
Figure 5 shows the interface throughput during execution of
Query q01 for both directions. We can see how actual data
access by the database reaches a top speed of 1.5 Gigabytes
per second, and is sustained for longer periods of time at
about one GB/s. While these figures are lower than the
bulk throughput rate shown in Figure 2, they are still vastly
superior to the throughput achievable on HDDs or SSDs
without striping.

4. LOOKING BACK TO LOOK FORWARD
The concept of using to remote memories and high speed
networks to improve performance is not recent. Twenty
years ago, they were exploited to improve distributed query
performance for OLTP systems [7, 4]. In the same line,
RAMcloud [13] exploits the fact that remote memory access
is becoming more efficient than disk access, i.e., it has lower
latency and higher bandwidth.

They observed typical contemporary storage system architec-
tures, like SATA300 and SAS, provide a theoretical maximum
IO performance of 3000 Mb/sec (375 MB/sec). Such effective
bandwidth is further degraded by additional hardware over-
head, e.g., the seek time, operating system software time,

and especially the random access time. Hence, since remote
memory does not suffer from seek and rotational delays, ac-
cess to remote memories is orders of magnitude lower than
to the local disk [13].

In the context of distributed file systems, authors in [12] had
benchmarked NFS over InfiniBand using RDMA and over
Ethernet. The performance results for reading and write
were crucial to motivate the study of the RDMA benefits for
Hadoop Distributed file system [8] and its further exploitation
by HBase [6]. In both cases, due to the architecture of both
systems and the use of Java sockets, an extension was required
for transparent communication layer. Furthermore, they did
not exploit the use of remote memory for storage.

Authors in [2] used a memory based back-end file system
for a distributed file system to study, at small scale, the
performance and scalability of parallel NFS (pNFS) with
PVFS2 as the back-end file system. The idea is to decouple
the data and metadata paths and distribute data to multiple
storage servers and allow clients to access storage servers in
parallel. At the same time, facilitate interoperability, this
is, it supports three types of data layouts: blocks, files, and
objects.

Standing on the shoulders of this previous work, we plan to
explore the use of pNFS and memory based back-end file
systems to build a large scale cache for intermediates. Similar
to the sunflowerconcept, several DBMSs will sit around the
large cache connected through the pNFS-RDMA. Intermedi-
ates of one DBMS are re-used to boost the performance of
queries settled in the other DBMSs. The concept has been
successfully tested for single DBMS and small local cache [9].

5. CONCLUDING REMARKS
Over the course of this paper, we have discussed new uses
for remote memory from a database perspective. We have
argued for a non-intrusive solution to making remote memory
available to a database. We have described our approach,
which is based on volume managers, loopback devices, and –
most importantly – novel low-latency and high throughput
InfiniBand network hardware and the zero-copy RDMA re-
mote memory access protocol. In our experiments, we have
seen this solution to come very close to the maximum in net-
work interface speed. Furthermore, in running the standard
database benchmark TPC-H on the relational database Mon-
etDB, we were able to see tremendous performance increases.

From our perspective, remote memory through RDMA and
mounted into the file system is a great opportunity for speed-
ing up unmodified applications such as databases, which
write and read large temporary files to a configurable loca-
tion in the file system. Our solution can be seen as an“add-on
booster” to previous database installations, particularly those
that are plagued by lack of memory or the inability to further
extend the same. We provide the necessary scripts to set this
up in other RDMA-enabled environments with the Linux
operating system, and hope to have encouraged the reader
to also try our approach.

For now, we manually assign memory providers to a requester.
However, due to the immense flexibility of today’s volume
managers, there are multiple possibilities for future work in

this area. For example, one could start with a comparably
small volume for temporary file storage by a database, and
then periodically monitor this volume with regards to its us-
age. If the volume usage would cross a certain threshold, one
could automatically request a provider node from a prede-
fined pool, connect to it over NFS/RDMA, add the provided
Ramdisk to the volume manager, and expand the temporary
storage volume on-demand. This solution would also not
require any changes to the operating system. Furthermore,
nodes could without any issue act as both requester and
provider at the same time. A pool of machines could then
dynamically share their combined memory, possibly again
steered purely by demand. We would expect such a setup to
behave particularly well whenever the memory demand on
the machines is non-uniform. This approach would also make
use of the computing resources on the memory providers.

Another area of future work is swapping to the volume created
from remote Ramdisks. We have performed some preliminary
experiments on the subject, but have found performance and
stability to be non-satisfactory. However, future changes
to the Linux swapping mechanism could make this solution
viable again. If so, even applications that are not using
temporary files for intermediate could directly make use of
remote memory.

A valid point of criticism are the current costs of the pro-
posed setup. Infiniband network cards and (more impor-
tantly) matching switches are currently very expensive when
compared to regular networking hardware. Moreover, the
performance figures we have presented could also potentially
be reached by combining several solid state drives into a
RAID setup. For example, to beat the throughput of around
2.5 GB/s that we have seen in our setup, one would have to
combine at least six of the latest solid state drives, which can
provide data at a speed of around 500 MB/s (2013-05). Also,
a high-price RAID controller capable of operating at these
speeds would be required. A different direction of extending
the capabilities of a single server would be to extend a single
server with more main memory. However, the amount of
memory that can be put into a single server is limited by the
economies of scale, where only mass-produced main board,
processors and memory modules are cost-effective. For ex-
ample, it is currently not economically viable to purchase
servers with much more than 1 TB of main memory, because
the ratio between added memory and system price sharply
increases after this point.

However, RDMA technology has recently been standard-
ized [14], and there are a number of physical transports
already that support RDMA already available, including
Ethernet. Hence, there is some indication that the prices
for RDMA hardware could drop soon, opening up a new
window into fast caches for database operations. Also, high-
performance network interconnects also have major advan-
tages for other distributed applications.

Acknowledgments
We would like to thank Arjen de Rijke for rebooting our test-
ing machines whenever we crashed them, Stefan Manegold
for help on MonetDB profiling and benchmarking, Holger
Pirk for suggesting the “standard system tools” approach and
Sjoerd Mullender for his work on MonetDB internals. We
also thank the anonymous reviewers for their time and valu-
able comments. H. Mühleisen is supported by the COMMIT/
project funded by NWO.

6. REFERENCES
[1] P. Balaji. Sockets vs RDMA interface over 10-gigabit

networks: An in-depth analysis of the memory traffic
bottleneck. In In RAIT workshop ’04, 2004.

[2] L. Chai, X. Ouyang, R. Noronha, and D. K. Panda.
pNFS/PVFS2 over InfiniBand: early experiences. In
PDSW, pages 5–11, 2007.

[3] A. Cohen. A performance analysis of 4x infiniband data
transfer operations. In Parallel and Distributed
Processing Symposium, 2003. Proceedings.
International, pages 7 pp.–, 2003.

[4] M. D. Flouris and E. P. Markatos. The network
ramdisk: Using remote memory on heterogeneous nows.
Cluster Computing, 2(4):281–293, Oct. 1999.

[5] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner.
A spinning join that does not get dizzy. In Proceedings
of the 2010 IEEE 30th International Conference on
Distributed Computing Systems, ICDCS ’10, pages
283–292, Washington, DC, USA, 2010. IEEE Computer
Society.

[6] J. Huang, X. Ouyang, J. Jose, M. W. ur Rahman,
H. Wang, M. Luo, H. Subramoni, C. Murthy, and D. K.
Panda. High-performance design of HBase with RDMA
over InfiniBand. Parallel and Distributed Processing
Symposium, International, pages 774–785, 2012.

[7] S. Ioannidis, E. P. Markatos, and J. Sevaslidou. On
using network memory to improve the performance of
transaction-based systems. In In International

Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ’98, 1997.

[8] N. S. Islam, M. W. Rahman, J. Jose,
R. Rajachandrasekar, H. Wang, H. Subramoni,
C. Murthy, and D. K. Panda. High performance
RDMA-based design of HDFS over InfiniBand. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, pages 1–35. IEEE Computer Society Press,
2012.

[9] M. Ivanova, M. Kersten, N. Nes, and R. Goncalves. An
architecture for recycling intermediates in a
column-store. ACM Transactions on Database Systems,
35(4), 2010.

[10] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur, H. Shah,
and P. Thaler. Internet Small Computer System
Interface (iSCSI) Extensions for Remote Direct
Memory Access (RDMA). RFC 5046 (Proposed
Standard), Oct. 2007.

[11] S. Manegold, P. Boncz, and M. L. Kersten. Generic
database cost models for hierarchical memory systems.
In Proceedings of the 28th international conference on
Very Large Data Bases, VLDB ’02, pages 191–202.
VLDB Endowment, 2002.

[12] R. Noronha, L. Chai, S. Shepler, and D. K. Panda.
Enhancing the performance of NFSv4 with RDMA. In
Proceedings of the Fourth International Workshop on
Storage Network Architecture and Parallel I/Os, SNAPI
’07, pages 90–96. IEEE Computer Society, 2007.

[13] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan, et al.
The Case for RAMClouds: Scalable High-Performance
Storage Entirely in DRAM. Stanford University, 2010.

[14] R. Recio, B. Metzler, P. Culley, J. Hilland, and
D. Garcia. A Remote Direct Memory Access Protocol
Specification. RFC 5040 (Proposed Standard), Oct.
2007.

[15] M. T. Özsu and P. Valduriez. Distributed database
systems: Where are we now. IEEE Computer, 24:68–78,
1991.

	Introduction
	Databases and Remote Memory
	New Hardware: InfiniBand & RDMA
	Remote Memory for Temporary Files

	Experimental Results
	Cluster bandwidth
	Baseline Performance
	TPC-H Performance

	Looking back to look forward
	Concluding Remarks
	References

