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ABSTRACT system [3, 10, 12, 19]. Nevertheless, the pursuit for more efficient

Large scale data warehouses rely heavily on secondary indexes,and succinct mdc_ex_lng st_ructl_Jres remains. .
Indexes are divided intprimary and secondaryaccording to

such as bitmaps and b-trees, to limit access to slow IO devices. heir abili he ol f the d ; ind
However, with the advent of large main memory systems, cache ! era ility tq goyernt ep acemen_t of the ) ata. Primary Indexes
combine navigational structures with physical data clustering to

conscious secondary indexes are needed to improve also the trans=" ", _ . .
fer bandwidth between memory and cpu. In this paper, we intro- achieve fast access. The benefit is that relevant data is placed in

ducecolumn imprinf a simple but efficient cache conscious sec- adjacent pages and thus significantly improving the evaluation of
ondary index. A column imprint is a collection of many small bit "@Nde gueries. However, each additional primary index on the same
vectors, each indexing the data points of a single cacheline. An "élation calls for a complete copy of the data, rendering the storage
imprint is used during query evaluation to limit data access and overhead prohibitive. Similarly, secondary indexes are auxiliary
thus minimize memory traffic. The compression for imprints is Structures that speed up search, but they do not change the order
cpu friendly and exploits the empirical observation that data often of the ‘?'a‘a in the underlying physical storage. Secondary indexes
exhibits local clustering or partial ordering as a side-effect of the 2@ typically much smaller than the referenced data and, therefore,
construction process. Most importantly, column imprint compres- faster to access and query. However, retrieving the relevant data

sion remains effective and robust even in the case of unclusteredTom disk can be a costly operation since it may be scattered over

data, while other state-of-the-art solutions fail. We conducted an Many Pages. As long as the t_|me to scan the secondary_ |_ndex
extensive experimental evaluation to assess the applicability andS significantly less than accessing the data, and the selectivity of

the performance impact of the column imprints. The storage over- ("€ Guery is high, secondary indexes can significantly improve the

head, when experimenting with real world datasets, is just a few qul\e;lry evaluation tm;e. aned for ori i dexi has B
percent over the size of the columns being indexed. The evaluation d%St itruc;tlures esu_:fne b or pr:jmfary n ex:jng, S.ug as B-tree
time for over 40000 range queries of varying selectivity revealed and hash tables, can also be used for secondary indexing. How-

the efficiency of the proposed index compared to zonemaps and®Ven thy are nqt as lightweight as one would Wish' Bitmaps,
bitmaps with WAH compression. or variations of bitmaps, are more often used for this task [21].

Bitmaps work by mapping individual values to an array of bits.

. . . At query time, the bitmap is examined and whenever the bits that
Categories and Subject Descriptors correspond to the query’s predicates are set, the mapped data is re-
trieved for further processing. Bitmaps are traditionally used for at-
tributes with low cardinality [17], although bit-binning techniques
make them suitable for larger domains too [7, 20].

With the introduction of column stores and the shift of the mem-
Keywords ory bottleneck [15], the need for designimgrdware-conscious
secondary indexes becomes more evident. In a main memory DBMS,
the problem of efficiently accessing disk blocks is replaced with
the problem of minimizing cache misses. In addition, algorithms
1. INTRODUCTION require a more careful implementation. There is much less design

Indexes are a vital component of a database system. They allowspace to hide an inefficient implementation behind the latency of
the system to efficiently locate and retrieve data that is relevant to accessing a disk block.
the users’ queries. Despite the large body of research literature, A second paradigm shift concerns the volume and the nature of

just a few solutions have found their respective places in a database¢he data. Most notable of them all are scientific database applica-
tions that stress the limits of modern designs by including hundreds

of attributes in a single relation. In addition, the value domains
are often of double precision, rather than the traditional categorical

H.3 [Information Storage and Retrieval]: Content Analysis and
Indexing
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ory over a long period of time. Nevertheless, fast access, supported



by light-weight indexing structures, remains in demand to improve e \We conduct an extensive comparative experimental evalua-
the interactive scientific exploration process. tion of the imprint index structure using thousands of columns
To address these challenges, we propose a simple but efficient taken from several real-world datasets.
secondary indexing structure, calledlumn imprints A column
imprint is a cache conscious secondary indexing structure suitable The remainder of the paper is organized as follows. In Section 2
for both low and high cardinality columns. Given a column with we detail the ideas and the algorithms for constructing a column
values from domairD, we derive a small sample to approximate imprint. In Section 3 we present the algorithms for querying the
a histogram of a few (typically 64 or less) equal-height bins. The proposed index. Next, we study the different cases of updating
entire column is then scanned, and for every cacheline of data, acolumn imprints in Section 4. Section 5 presents the related work.
bit vector is created. The bits in each vector correspond to the binsIn Section 6 we present an extensive experimental evaluation for
of the histogram. A bit is set if at least one value in the cache- column imprints. We conclude in Section 7.
line falls into the corresponding bin. The resulting bit vector is
animprint of the current cacheline that describes which buckets of
the approximated histogram the values of the cacheline fall into. 2. SECONDARY INDEX WITH IMPRINTS
The collection of all the resulting bit vectors form a uniqee- An imprint index is an efficient and concise secondary index
umn imprint Consequently, by examining an imprint of a column,  for range and point queries. It is designed for columnar databases
the execution engine can decide —in a cacheline granularity— which where multiple memory-resident or memory-mapped columns are
parts of the column data are relevant to the query predicates, andrepeatedly scanned. Imprints provide a coarse-grain filtering over
only then fetch them for further processing. A column imprintis the data, aimed at reducing expensive loading from memory to the
particularly suited for evaluating both range and point queries on cpu cache. Deployment of column imprints is suited for those cases
unsorted data. Contrary to existing work, a column imprint is a where alternative properties do not hold. For example, if a column
non-denséit indexing scheme, i.e., only one bit is set for all equal s already sorted, the proper use of binary search algorithms largely
values in a cacheline, instead of the traditional approach where eachalleviates the overhead of accessing non-relevant memory pages.
data point is always mapped to a different bit. If the data is appended out of order, or the order is disturbed by
To reduce the memory footprint of a column imprint, we intro- ypdates, then column imprints can be considered as a fast access
duce a simple compression scheme based on a run-length encodingnethod to locate relevant data. An efficient column imprint maxi-
of imprints. Consecutive and identical bit vectors are compressed mizes the filtering capabilities with minimal storage overhead.
together and annotated with a counter. Paraphrasing, our compres- Columnar databases decompose a relation into its attributes and
sion schema can be characterized as row-wise, i.e., it compressegequentially store the values of each column. This differs from the
bit vectors horizontally, contrary to the more common column-wise traditional approach of row-stores that place complete tuples in ad-
approach that partitions a bitmap vertically and compress it per col- jacent pages. To enable tuple reconstruction in a column store, an
umn [23]. The horizontal compression exploits our empirical ob- ordered list of(id, value)pairs is maintained, wheids are unique
servation that, in most data warehouses that we explored, data suitand increasing identifiers. Values from different columns, but with
able for secondary indexing exhibits, in the cacheline level, some the samed, belong to the same tuple. Typically, a column is imple-
degree of clustering or partial ordering. These desirable propertiesmented by a single dense array, thds need not be materialized
stem either from the regular and canonical data insertion proce- since they can be easily derived from the position of the values in
dure, or from the production of the data itself, or even indirectly the array.
imposed by the other primary indexed attributes of the same re-  Figure 1 shows a column with 15 integer values in the range of
lation. Column imprints are designed such that any clustering or 1 to 8. The values are unsorted because the column corresponds
partial ordering is naturally exploited without the need for extra to one of the unordered attributes of a relation. In the absence of
pasteurization. In other words, they are less susceptible to the or-any secondary index, a complete scan is needed to locate all values
der in which individual values appear in a cacheline, while more that satisfy the predicates of a query. The result of such a scan is
opportunities for compression are presented. In addition, becausethe positions in the array of the qualifying values. It is preferred
of this immunity to value order within a cacheline, a column im-  to return the positions rather than the actual values because of the
print remains robust even in the case of highly unclustered data. |ate materializationstrategies usually used in column stores [1].
We experimentally demonstrate that imprints perform well and be- However, instead of scanning the entire column, secondary indexes

have as intended even in the presence of skewed data, where othegan be used to avoid accessing data that is certain not to be part of
state-of-the-art bitmap compression techniques, such as WAH [23], the query result.
are less effective.

The contributions of our work can be summarized as follows: 2.1  State of the Artin Secondary Indexes

e We introduce column imprints, a light-weight secondary in-  Zonemaps is acommon choice for indexing secondary attributes.

found across a predefined number of consecutive values, called the
o We detail the algorithms and the implementation details for zones. The zonemap index of Figure 1 partitions the columrbinto
constructing and compressing a column imprint. zones. In this example, each zone has the size of a cacheline that
. - . fits exactly3 values. The first zone contains the valies, and4.
° We presentthe algorlthms tc_J efficiently evaluate range queriesTpa minimum value id and the maximum is. Similarly, for the
with the use of column imprints. second zone the minimum value lisand maximunb, and so on
e We study the effect on imprints when updating the values of for the remaining zones. To evaluate a query using zonemaps, the
a column. minimum and maximum values of each zone are compared with
the predicates of the query. If the predicates’ ranges overlap with
e We quantify the amount of local clustering by introducing a the range of a zone, then the zone (i.e., the cacheline) is retrieved
metric calledcolumn entropy and the exact positions of only tlypialifying values are returned.
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the initial filtering very fast, while the number of imprint vectors
. . to be checked is significantly reduced because of having one per
Figure 1. A simple column and an example of zonemaps,  cacheline instead of one per value. The rightmost index in Figure 1
bitmaps, andimprints indexes. depicts the imprint index of the example column. Each imprint
vector uses 8 hits per cacheline, while three bits are set. The parti-
tioning of the column is done per cacheline, same as the zones of
Note that the ranges of the predicates and the zone may overlap buthe zonemap index. The imprint vector corresponding to the first
not be strictly inclusive. cacheline has thist, 4th, and8th bit set, since the first three values
Bitmaps are another popular choice for secondary indexing. Theyof the column ard, 8 and4. For the second cacheline thst, 6th,
work by mapping the column domain to bit vectors. Each vector andT7th bits are set, and so on for the rest of the cachelines. There
has as many bits as the size of the column. For each value found inare in total five imprint vectors to index the column of Figure 1.
a specific position of the column, the corresponding bit in the map- The example is designed with the cardinality of the column to be
ping bitvector is set. The mapping canbe 1 if the cardinality of small enough to allow a-1 mapping between values and bits. In
the column is low, otV — 1, with the help of binning strategies, if ~ the more common cases of large cardinality, imprints use approxi-
the cardinality is high. A bitmap index uses significantly less stor- mated equi-width histograms to divide the domain into ranges and
age than the column, thus making it cheaper to scan. Deciding if map one bit per range. We detail this technique in the following
a value satisfies a query involves first checking the corresponding subsection along with all the construction algorithms for column
bitmap, and returning only the position of the bits that are set. The imprints.
checking is done with bitwise operators, making the process faster Column imprints inherit many of the good properties of both
than the value comparison needed by zonemaps. Figure 1 detailzonemaps and bitmaps, while avoiding their pitfalls. First, although
a bitmap index with 15 bits per bit vector, where each bit corre- imprints are defined per cacheline, they are resilient to skewed data
sponds to one position of the column. There are 8 such bit vectors distribution, where zonemaps typically fail. If each cacheline con-
(drawn vertically in the figure), where the first one maps vdlue  tains both the minimum and the maximum value of the domain and
the second one valug and so on. Bits are set as follows: thih one random value in between, zonemaps are practically useless,
position of the column contains the valbigtherefore, in théth bit but imprints will have a different bit set for each of these random
vector, thel 1th bit is set. Similarly, therd value of the column is values. In addition, checking imprints is faster than zonemaps be-
4, hence th&rd bit of the4th bitmap is set. In this example thereis  cause there is no value comparison. Compared to bitmaps, imprints
a 1-1 mapping between the eight unique values of the column andneed less space since they are defined per cacheline and not per
the eight vectors of the bitmap index. value. Finally, as we will demonstrate, imprints compress signifi-
cantly better than state-of-the-art compression scheme for bitmaps.
2.2 Column Imprints

We proposecolumn imprintsas an alternative secondary index 2.3 Imprlnts Compressmn

that best combines the benefits of the aforementioned state-of-the- We develop a compression scheme similar to a run-length en-
art indexes. Column imprints map the values of a column to a coding but for imprint vectors. The compression scheme com-
vector of bits. However, instead of allocating one such vector per bined with bit-binning, makes column imprints an efficient solution
value, imprints allocate one vector per cacheline. We call the vec- for indexing very large columns with high cardinality of any type,
tors of a column imprints indeinprint vectorgo distinguish them such as doubles, floats, etc. The compression scheme benefits from
from the bitvectors of a bitmap index. An imprint vector does not our empirical observation that local clustering is a common phe-
have only one bit set per position, but as many bits as are heededhomenon even for secondary attributes. In addition to that, the op-
to map all distinct values of a cacheline. To decide if a cacheline portunities for compression also increase because of the non-dense
contains values that satisfy the predicates of a query, first the im- nature of column imprints. Most importantly, even for cases where
print vectors are checked. If at least one common bit between thethere is no clustering at all, column imprints remain space effective.



The compression works iygrouping together imprint vectors that
are identical and consecutive, aii)dimplying theid of the values

Algorithm 1 Main function to create the column imprints index:
imprints()

with a concise numbering schema for the indexed cachelines. MorelInput: columncol of sizecol_sz
specifically, we keep track of which imprints map to which cache- Output: imprints index structurémp for columncol

lines by defining a&acheline dictionaryvith two entries, aounter
and arepeatflag. By knowing the number of the cacheline we can
easily compute thil’s of the values of the specific cacheline, since
each cacheline contains a fixed number of values.

The cacheline dictionary contains two typescofinterentries,
distinguished by theepeatflag. Assume that theounterhas the
valuez. If repeatis unset, then the next cachelines have all dif-
ferent imprint vectors. If, howeverepeatis set then the next:
cachelines all have the same imprint vector, thus only one vector

typedef struct cache_dict {

struct imp_idximp;
charvpg
ulongi_cnt= 0;
ulongd_cnt= 0;

typedef struct imp_idx {

uintcnt24; cache_dictcd;
uintrepeatl; ulong*imprints;
uint flags7; coltypeb[64];
} cache_dict; uchabins
}imp_idx;

/* initialize the column imprints index structure */
/* constant values per cacheline */

[* imprints count */

/* dictionary count */

needs to be stored. Figure 2 shows an example of the column im-yongimprint_v= o; /* the imprint vector */

prints compression schema. Assume a column that can be parti-bi nni ng(imp);
tioned to23 cachelines and that each imprint vector has 15 bits. for i =0 — col_sz— 1 do

From thecacheline dictionaryf Figure 2 we can deduce that the
first 7 cachelines all contain random values, thus each of them map
to a different imprint vector. Therefore, the fifgsimprint vectors
correspond to the first cachelines. The next imprint vector, i.e.,
the 8th, corresponds to the next thirteen cachelines, which accord-
ing to the cacheline dictionary all have an identical imprint since
repeatis set. Finally, the last cachelines are mapped by the last
imprints.

In the next subsection we demonstrate the technical details to
create a column imprint. We build our ideas on top of the Mon-
etDB architecture [16]. The choice of a specific columnar database
architecture allows us to better present the details of our imple-
mentation, however, imprints can also be implemented with minor
adjustments on other columnar architectures, such as C-Store [14]
and MonetDB/X100 [5]. The most important design decision is
how many values of a column an imprint vector covers. The de-
cision is based on the size of the block managed by the specific
database buffer pool. Tlaecess granularityf the underlying sys-
tem design determines the number of values that each vector of an
imprint covers. For example, if the execution model of the database
engine is based on vectorization, then the size of the data vectors is

[* determine the histogram'’s size and bin borders */
/* for all values incol */
/* locate bin */
[* set bit */
/* end of cacheline reached */
/* sameimprint */
[* cntnot full */

bin = get bi n(imp, col[i]);
imprint_v= imprint_v| (1 < bin);
if (i mod vpc-1= 0) then
if (imp.imprintgi_cnt = imprint_vA
imp.cdd_cnt.cnt < max_cnt— 1) then
if (imp.cdd_cni.repeat= 0) then
if (imp.cdd_cni.cnt+ 1) then

imp.cdd_cni.cnt— = 1; /* decrease courant*/

d_cnt+ =1; /* increase dictionary courtt_cnt*/
imp.cdd_cni.cnt = 1; /* set countto 1 */
end if
imp.cdd_cni.repeat= 1; /* turn on flagrepeat*/
end if
imp.cdd_cnt.cnt+ = 1; * increasecntby 1 */
else [* different imprint than previous */

imp.imprintgi_cn{ = imprint_v,

icnt+ =1;

if (imp.cdd_cni.repeat= 0 A

imp.cdd_cn{.cnt < max_cnt— 1) then

imp.cdd_cni.cnt+ = 1;

else
d_cnt+ =1;
imp.cdd_cnt.cnt = 1;
imp.cdd_cni.repeat= 0;

[* increasecntby 1 */

/* increase dictionary courtt_cnt*/
/* set countto 1 */
[* set flagrepeatoff */

; : o end if
used. In our scenario, where typically the database hot-set fits into  gnq it
main memory, our goal is to optimize the cpu cache access. Forthat  imprint_v= 0; I* resetimprint for next cacheline */
reason, a column imprint consist of one vector per cacheline. The endif

size of the cacheline is determined by the underlying hardware. In end for
this work we assume the commonly used size of 64 bytes.

2.4 Imprints Construction Algorithm the same distribution of the values, however, the left and right most
The first step to create an imprint index for a column is to build bins serve as overflow bins for outlier values. If the sampling re-
a non-materialized histogram by sampling the values of that col- turns fewer than 62 unique values, then the imprint can be adjusted
umn. Then the imprint vectors are created with as many bits as theto have as many bits as needed to map the columns with low car-
number of bins in the histogram, but never more than 64 bits. Each dinality. If the number of distinct sampled values is more than 62,
imprint covers a cacheline of 64 bytes. For all values in a cache- the domain is divided into 62 ranges, where each range contains the
line, the bins of the histogram into which they fall is located, and same count of sampled values, including in the count the multiple
the corresponding bits are set. The process is repeated such that atbccurrences of the same value. Based on these ranges the borders
cachelines are mapped by imprints. If consecutive imprint vectors of the histogram are deduced. By counting also duplicate sampled
are identical they are compressed to one and the counters of thevalues, it allows us to roughly approximate an equal-height his-
cacheline dictionary are updated. togram, since repeated values are more likely to be sampled, cre-
The histogram serves as a way to divide the value dorPadf ating smaller ranges for their respective bins. The ranges of each
the column into equal ranges. For this, only the bounds of each bin are defined to be inclusive on the left, and exclusive on the
bin need to be stored in the imprint index structure. The histogram right. For example, ib[¢] defines the border of thih bin, then if
is created by sampling a small number of values from the column, b[3] = 10 andb[4] = 13, all values that are equal or greater than
not more thar2048 in our implementation. The first bin always 10 but less thari 3 fall into the4th bin with borderg10, 13), while
has values betweenco (i.e., the minimum value of the domain  value13 falls into the5th bin.
D), up until the smallest value found in the sample. Similarly, the For each imprint, an index number is needed to point to the cor-
last bin contains all values greater than the largest sampled valueresponding cacheline. In practice, these pointers need not be mate-
up to+oco. We expect that future inserts in the column will retain  rialized since the sequence of the imprint vectors indirectly provide



the numbering of the cachelines. However, since identical imprints
tend to repeat multiple times, even if the data of the indexed column
is not clustered or sorted, there is a great opportunity for compress-
ing imprints together. With a 64-bit imprint vector one may encode

hundreds, and in many cases thousands, of sequential cachelines,

Therefore, thecacheline dictionarys needed to keep track of the
count of the cachelines and imprints. We define the two structures
to store and administer the column imprints index, nanmaly_idx
andcache_dictsee Algorithm 1). Structurimp_idxholds all the
constructs needed to maintain the imprints index of one column. It
consists of a pointer to the array of the cacheline dictionary (i.e.,
cache_dic}, a pointer to the array of the imprint vectors, an array
with 64 values that holds the bounds of the bins of the histogram,
and the actual number of bins of the histogram. Recall that it may
not be needed to have all 64 bins if the cardinality is small, e.g., an
8-bit imprint vector may be enough instead of a 64-hit vector. The
dictionary structureeache_dictis a 4-byte value, split as follows:
24 bits are reserved for the countat, 1 bit is to mark if the next
imprint is repeatednttimes, or if the nextntimprints correspond
to one cacheline each. Finally, 7 bits of the cacheline dictionary
structure are reserved for future use.

Algorithm 1 details the process of creating the column imprints
index. Functioni npri nt s() receives as input a colunuol and
its sizecol_sz The function returns an imprints index structure
imp containing an array of imprints and the cacheline dictionary.
The algorithm works by first calling thii nni ng() procedure,
which is described in detail later on in the text. The result of the
bi nni ng() procedure is the number of bins needed to partition

the values of the columns, and the ranges of the bins. Next, for each

value of the column, thget _bi n() function is invoked in order

to determine the bin the current value falls into. The correspond-
ing bit in the imprint vector is then set. If the end of a cacheline
has been reached, the current imprint vector must be stored and

consecutive imprints, the algorithm checks if the imprint vector is
equal to the previous one. If so, the coantfield of the cacheline
dictionary and theepeatflag is updated as follows. If thepeat

of the previous entry in the cacheline dictionary is not set and the
countcntis greater tharl, a new entry is created. If threpeatof

the previous entry is not set but the coentis 1, then therepeat

is set and the courgnt is incremented t®. If the imprint vec-

tor of the current cacheline is not equal to the previous one, then a
slightly different procedure is followed to update the entries in the
cacheline dictionary. If the current entry does not haverépeat

flag set, then the countentis simply increased. Otherwise, a new
entry is created with coumint = 1 and therepeatunset. After this,

the cacheline dictionary is correctly updated and the imprint stored.
Finally, a new imprint vector is created with all the bits off, the next
value of the column is fetched, and the process is repeated.

2.5 Binning and Efficient Binary Search

Algorithm 2 describes the implementation of thenni ng()
procedure. Given a coluneol, a uniform sample of 2048 values

&

new empty one must be created. However, in order to compress

Algorithm 2 Define the number of bins and the ranges of the bins
of the histogrambi nni ng()

Input: imprints index structurenp, columncol
Output: number of bingmp.binsand the rangeisnp.b

Coltype*sample=uni _sanpl e(col,2048); /* sample 2048 values */
sort (sampl¢; [* sort the sample */
smp_szdupl i cat e_el i m nati on(samplg; /* remove duplicates */
if (smp_szx 64) then /* less than 64 unique values */
fori =0 — smp_sz- 1do
imp.Hi] = samplgi];
end for
if (i < 8) thenimp.bins= 8;
else if(i < 16) thenimp.bins= 16;
else if (i < 32) thenimp.bins= 32;
elseimp.bins= 64;
end if
fori =i — 63 do
imp.Hi] = coltype_MAX;
end for
else
doubley = 0, ystep= smp_sz62;
fori =0— 62do
imp.Ki] = samplé(int)y];

[* populateb with the unique values */

/* determine the number dfins*/

[* default value */

/* more then 64 unique values */

/* set ranges for all bins */

y+ = ystep
end for
imp.h63] = coltype_MAX;
end if

larger power of 2. Moreover, the remaining empty bins are assigned
the maximum value of the domain. This is needed in order for the
get _bi n() procedure to work properly. If the total number of
unique values of the sample is 64 or more, we need to divide the
bins into larger ranges. This is done by dividing #mep_sby 62

and assigning the result of the divisionystep Notice thatystepis
double. This is necessary in order to guarantee an even spread of
the ranges of the bins. For example, if the result of the division is
1.2, then the 5th bin should contain the 6th value of the sample, but
if we kept the result as an integer, i.gstep= 1, the 5th value of

the sample would be assigned to ik bin. Each birb is assigned

to be equal to the neystepsampled value, until all bins are set.

In order to determine the bin a value falls ing®et _bi n() is
invoked. The approach taken is to perform a cache-conscious bi-
nary search over the 64 bins. For this, we use nested if-statements
instead of a for-loop. We noticed during our experimentation that
by explicitly unfolding the code for the binary search and by using
if-statements without any else-branching, the search can become
three times faster, or even more. This is because each if-statement
is independent allowing the cpu to execute the branches in paral-
lel. For this, three macros are defined. The magraldl e(),
checks if a value falls inside a range, and two others, chléfd
andri ght, check if a value is smaller or larger than a range
boundary. The algorithm then is constructed by repeatedly divid-
ing the search space into half, and invoking theght , mi ddl e
andl ef t macros, in that order. Since there are no else-statements,
many if-statement may evaluate to be true, but only the last assign-

is created. Afterwards, the sample is sorted and all duplicates arement of the return variableswill hold. For this reason the search

removed. At this point the size of the samimp_szmight be
smaller than 2048. I§mp_sis less than 64, the cardinality of the
column can be approximated to be equal to the number of unique

is performed by starting from the 63rd bin and decreasing.
The algorithms to construct the column imprint index are short
and optimized to be cpu friendly. The complexityi afpri nt s()

values found in the sample. Therefore, each bin of the histogram function is linear to the size of the column. Assume that a col-
can contain exactly one value. Even if this approximation is not umn has: values, and each cacheline containglues. The most
precise, there is an extremely slim possibility to be much off. In costly part is the call to thget _bi n() function which performs
such a case, simply more than one value will fall into the same bin. 3 comparisons before dividing the search space in half, thus it needs
The next step of the algorithm is to fill thearray with the unique 3 x log64 = 18 comparisons for each value. Therefore, for cre-
values of the sample, and to set the number oftihsto the next ating the entire imprint index we ned® x n comparisons. The



call tobi nni ng() also involves one scan of thevalues of the

Algorithm 3 Evaluate range queries over the column imprints in-

column but the rest of the operations are independent of the input.dex:quer y()

Finally, the update of the cacheline dictionary is only perforrfied

Input: imprints index structurénp, columncol, queryQ = [low, high]

times, and the cost is negligible (5 comparisons in the worst case) Output: arrayresof ids

compared tgyet _bi n() . During our experimentation we thor-
oughly studied the effects of different design and implementation
choices. Here, we presented the one that performed the best.

3. IMPRINTS QUERY EVALUATION

queries over the column imprints index. Given a range qé&ey

[low, high], all valuesv in columncol that satisfylow < v < high

need to be located. Since our setting is a columnar database, it
suffices to return thél list of the qualifying values.

Evaluating range queries over column imprints is a straightfor-
ward procedure. The first step is to create an empty bit-vector and
set the bits that correspond to the bins that are included in the range
of query Q. There might be more than one bits set, since the query
range can span multiple bins. The query bit-vector is then checked
against the imprint vectors, and if bitwise intersection indicates
common bits set for both the query and the imprint vector, the cor-
responding cacheline is accessed for further processing. Hawever
if all bits set correspond to bins that are fully included in the query
range[low, high| the cacheline need not be checked at all. Other-
wise, the algorithm examines all values in the cacheline to weed out
false positives. Finally, because of our compression schema, some
administrative overhead to keep the cachelines and the imprint vec-
tors aligned is needed.

Algorithm 3 presents the details for evaluating a range query us-
ing imprints. The constantpcis set equal to the number of val-
ues that fit in a cacheline. This is needed to alids with the
cachelines. In addition, counterscnt and cache_cntare main-
tained to align imprints and cachelines, respectively. Next, two
bit-vectors are produced, namatyaskandinnermask The mask
is a bit-vector that sets all bits that fall into the rarjgmw, high].

The innermaskis a bit-vector with only the bits that fall entirely
inside the query range set. More precisely, if a bin range contains
one of the borders of the query range, the corresponding bit is not
set. Therefore, if an imprint vector has only the bits fromitireer-
maskset, then all values in the corresponding cacheline fall into the
guery range and no further check for false-positives is needeal. Th
algorithm runs by iterating over all entries in the cacheline dictio-

charvpg
ulongi_cnt= 0;
ulongcache_cnt= 0;
ulongid = 0;
ulong*res;
(maskinnermask = nmake_nmasks (imp,[low,high]);
In this section we present the algorithms for evaluating range for i = 0 — d_cnt— 1 do

[* constant values per cacheline */
/* imprints count */
* cacheline count */
/* ids counter */
/* large enough array to hold the result */

[* iterate over the cacheline dictionary */
if (imp.cdi].repeat= 0) then /*if repeatis not set */
for j =i_cnt— i_cnt+ imp.cdi].cnt— 1 do
if (imp.imprintgj]&masRk then /* if imprint vector matches mask */
if ((imp.imprintgj]& “innermask = 0) then
for id = cache_cntx vpc — (cache_cntx (vpc+ 1)) — 1 do
res=res« id, /* addid to the result setes*/
end for
else /* need to check for false-positives */
for id = cache_cntx vpc — (cache_cntx (vpc+ 1)) — 1 do
if (col[zd] < highA col[id] > low) then
res=res« id, /* addid to the result setes*/

end if
end for
end if

end if

cache_cnt = 1; /* increase cache count by 1*/
end for
i_cnt+ = imp.cdi].cnt * increase imprint count */

else [* repeatis set */

if (imp.imprintgi_cn&mask then /* if imprint vector match mask */
if ((imp.imprintgf_count& “innermask = 0) then
for id = cache_cnkvpc —
(cache_cntx vpc) + vpc x imp.cdi].cnt— 1 do
res=res«— id; /* addid to the result setes*/
end for
else
for id = cache_cnkvpc —
(cache_cntx vpc) + vpc x imp.cdi].cnt— 1 do
if (col[id] < highA col[id] > low) then
res=res« id, [* addid to the result setes*/

/* need to check for false-positives */

end if
end for
endif
end if
icnt+ =1; /* increase imprints count by 1 */
cache_cnt- = imp.cdi].cnt /* increase cache count */

end if

end for

nary. If therepeatflag is not set, then the neghtimprint vectors
correspond tant distinct cachelines. For any of these imprints,
if there is at least one bit set in the same position as the ones ini
the maskbit-vector, the cacheline contains values that satisfy the
query range. If in addition, there are no bits set different than the
bits of theinnermask then all the values of the cacheline satisfy
the query. In any other case, we need to check each value of the
cacheline individually. For all qualifying values, the corresponding
ids are materialized in the result array. If however thpeatflag

is set, then by checking only one imprint vector we can determine
if the nextcnt cachelines contain values that fall into the range of
the query. As before, an extra check with theermaskbit-vector

may result in avoiding the check of each individual value for false-
positives.

Algorithm 3 returns a materialized list of thes that satisfy the
range query. This list is then passed to the next operator of the
query evaluation engine. However, it might be the case that a user’s
guery contains many predicates for more than one attribute of the
same relation. In this case, thaer y() procedure of Algorithm 3
is invoked multiple times, one for each attribute, with possible dif-

s the check for false-positives and the materialization ofidise
But in the case of multiple range queries over many columns of the
same table, both of these expensive operations can be postponed.
This technique is known in the literature as late materialization. To
achieve this, instead of producing the materialimbdists, Algo-
rithm 3 has to return the list of the qualifying cachelines. After ev-
ery range query is evaluated over the respective columns, the lists of
cachelines are merge-joined, resulting in a smaller set of qualifying
ids. This is based on the general expectation that the combination
of many range queries will increase the selectivity of the final result
set. After the merge-join, the qualifyirids that were common to
all cachelines can be checked for false-positives. Note that the al-
ternative indexing schemes used in the evaluation of Section 6 have
been coded with the same rigidity.

4. UPDATING COLUMN IMPRINTS

Column imprints are designed to support read intensive database
ferent[low, high] values. The most expensive part of Algorithm 3  applications. In such scenarios, updates are a relatively rare event,



and when they occur, are performed in batches. The most common | Dataset Size | §Col Value types | Max rows
type of updates is appending new rows of data to the end of a table. | Routing 5.4G 4 int, long 240M
Column imprints can easily cope with such updates. However, we | SDSS 6.2G | 4008 | real, double, long 47M
can not exclude from our study updates that change an arbitrary | Cnet 12G | 2991 int, char M
value of a column, or insert/delete a row in the middle of a table. Airtraffic 29G 93 | int, short, char, str 126M

TPC-H 100| 168G 61 int, date, str 600M

4.1 Data Append

During data appends, any index that is based on bit vectors and Table 1: Dataset statistics.
bit-binning techniques has to perform two operations. The first one

is to readjust, if necessary, the borders of the bins. Such a read- o ) )
justment should be avoided since it calls for a complete rebuild of 2€€n used to decide if a record can be found in a relation, and thus

the index. For column imprints, this is very rare, siricéhe first postponing bringing the data_into memory. However, Bloom filters
and last bins are used for overflow values, @nthe bins were de- @€ not suited for range queries, the target of column imprints.
termined by sampling the active domain of the column. Any new _Bitmap indexing relies on three orthogonal techniques [25]: bin-
data appended, need to have dramatically different value distribu-NiNg, encoding and compression. Binning concerns the decision
tion to render the initial binning inefficient. The second operation ©f how many bit vectors to define. For low cardinality domains, a
is to update the bit vectors. For bitmap indexes this is a costly op- smgle_ bit vector for _each dlstl_nct value is used._ High cardinality
eration, since all bit vectors have to be updated, even those that ar¢lomains are dealt with each bit vector representing a set of values.
not mapping the new values [6]. For column imprints this is not The common strategy is to use a data va_lue_ histogram to derive a
necessary. The imprint vectors are horizontally compressed, thusNumber of equally sized bins. Although binning reduces the num-
data appends simply cause new imprint vectors to be appended goer of b!t vectors to manage, it also requires a post analysis ovgrthe
the end of the existing ones, without the need of accessing any ofunderlying table to filter out false positives during query evaluation.

the previous imprint vectors. Column imprints use similar binning techniques.
. Since each record turns on a single bit in one bit vector of the
4.2 Imprints and Delta Structures index only, the bitmaps become amendable to compression. Varia-

In place updates are never performed in columnar databases belions of run-length encoded compression have been proposed. The
cause of the prohibitive cost they entail. Instead, a delta structure isState-of-the art approach is the Word-Aligned Hybrid (WAH) [23,
used that keeps track of the updates, and merges them at query time?6] Storage scheme. WAH forms the heart of the open-source pack-
A delta structure can be as simple as two tables with insertions and29¢€ FastBf, which is a mature collection of independent tools and
deletions that need to be union-ed and difference-ed, respectively,@ C++ library for indexing file repositories. Consequently, column
with the base table, or it can be a more complex structure, such asimprints use another variation of run-length encoded but for identi-
positional update trees [11]. cal cacheline mappings instead of consecutive equal values.

Column imprints can cope with inter-column operations, such  Bitmap indexing has been used in large scientific database ap-
as unions and differences, by first applying them to the cacheline Plications, such as high-energy physics, network traffic analysis,
dictionaries, such that a candidate list of qualifying cachelines is 125€rs, and earth sciences. However, deployment of bitmap index-
created for both operands. The details of inter-column operations iNg Over large-scale scientific databases is disputed. [20] claims
are out of the scope of this paper, and are left to be presented inthat based on information theoretic constructs, the length of a com-
the future. Nevertheless, even without such a functionality, column Pressed interval encoded bitmap it too large when high cardinal-
imprints can be used to access the base table to create a candidat®y ttributes are indexed. The storage size may become orders of
list of qualifying cachelines. The underlying delta structure may Magnitude larger than the base data. Instead, a multi-level indexing
then hold in addition the cacheline counter where an update hasScheme is proposed to aid in the design of an optimal binning strat-
been performed in order to merge to the final result. egy. They extend the work on bit binning [9, 24]. Alternatively, the

Moreover, imprints can produce false positives, thus a deletion data Q|strlbut|9n in combination with query workload can be used
can be ignored by the corresponding imprint vector. An insertion {0 refine the binning strategy [13, 7]. _
however, will call for additional bits to be set to the imprint corre- ~ With the advent of multi-core and gpu processors it becomes at-
sponding to the affected cachelines. Such an approach will eventu-tractive to exploit data parallel algorithms to speed up processing.
ally saturate the imprint index. In these cases, it is not uncommon Bit vectors carry the nice property of being small enough to fit in
to disregard the entire secondary index and rebuild it during the the limited gpu memory, while most bit operations nicely fall in
next query scan. The overhead for rebuilding an imprint index dur- the SIMD algorithm space. Promising results have been reported

ing a regular scan in minimal, such that it will go undetected by the 1N [8]. Similar, re-engineering the algorithms to work well in a flash
user. storage architecture have shown significant improvements [22].

5. RELATED WORK 6. EXPERIMENTAL EVALUATION

Column imprints can be viewed as a new member of the big  We performed an extensive experimental study to gain insights
family of bitmapped based indexes. Bitmapped indexes have be-into the applicability of the imprints index, the storage overhead
come the prime solution to deal with the dimensionality curse of and creation time, as well as the query performance. We compare
traditional index structures such as B-trees and R-trees. Their con-our index with two state-of-the-art commonly used secondary index
tribution to speed up processing has been credited to Patrick O’Neil solutions, namelgonemapsind bit-binning with WAH encoding
through the work on the Model 204 Data Management System [17, We also provide, for a baseline comparison, the time measurements
18]. Since then, database engines include bitmapped indexes forfor sequential scan. In order to study the impacts of different value
both fast access over persistent data and as intermediate storaggpes, different column sizes, and different value distributions, we
scheme during query processing, e.g. Sybase IQ, Postgresql, IBM
DB2, Oracle. Besides traditional bitmaps, Bloom filters [4] have ‘http://crd-legacy.lbl.gov/ kewu/fastbit/
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Figure 3: Prints of column imprint indexes (" X’ =bitset,’ .’ = bit unset) and the respective column entrop\£.

used real world datasets gathered from various test cases. These_ 4000 :

datasets are either publicly available or part of in-house projects. § 3500 |- i
Column imprints, zonemaps, and WAH are all implemented in C, é
and the code is available for review upon request.The implementa- g 3000 - ]
tion of zonemaps and WAH follow the same coding style and rules ¢ 2500 - b
as imprints to ensure fairness of comparison. Each experimental 8 5000 | i
run is done by first copying a column into main memory, and then 2 1500 - |
creating the zonemap, imprints and WAH indexes. The timer is &
always started during the snippets of code that implement each in- é 1000 - 1
dex, thus avoiding measuring administrative overhead, which may 2  so0 g
not be common for all indexes. We report the wall-clock time as  # 0 . . . . . ! ! !
returned by the timing facilities of thei ne. h library of C. All 0 01 02 03 04 05 06 07 08 09 1
code has been compiled with thimangcompiler with optimization column entropy

level 3.

Zonemaps are implemented as two arrays containing the min and Figure 4: Cumulative distribution of the columns’ entropy &.
max values of each zone. The size of the zones is chosen to be equal
to the size that each imprint vector covers, i.e., the size of the cache-
line. The min and max arrays are aligned with the zone numbering, tains scientific data, with many double precision and floating point
i.e., the first min and max values correspond to the minimum and columns following a uniform distribution, thus stressing compres-
maximum values found in the first zone, and so on. For the bit- sion techniques to their limits. Cnet is a categorical dataset describ-
binning approach of bitmaps, the bins used are identical to thoseing the properties of technological products. All data are stored on
used for the imprints index, as described in tienni ng() pro- a single but very wide table, where each column is very sparse,
cedure of Algorithm 2. Using this binning scheme, each value of thus presenting ample opportunities for compression. The dataset
the column sets the appropriate bit on a vector large enough to holdwas re-created based on the study of J.Beckham [2]. The Airtraf-
all records. To compress the resulting bit-vectors we apply WAH fic delay database represents an ever growing data warehouse with
compression with word size 32 bits, as described in [23]. statistics about flight delays, landing times, and other flight statis-

All experiments were conducted on an Ifteoré™ i7-2600 tics. The data are updated per month, leading to many time-ordered
cpu @ 3.40GHz machine with 8 cores and 8192 KB cache size. Theclustered sequences. Lastly, we used the TPC-H benchmark dataset
available main memory was 16 GB, while the secondary storage with scale factor 100, in order to compare against a well recogniz-
was provided by a Seag&t€onstellation™ SATA 1-TB hard drive able dataset.
and capable of reading data with a rate of 140MB/sec.

Table 1 lists the name, the size in gigabytes, the total number 6.1  Column Entropy

of columns, the column types, and the maximum number of rows  we wish to better study the properties of the columns that are
of the datasets used for our experimentation. The first dataset, de+ypically not ordered, part of very wide tables, and eligible for sec-
noted as Routing, is a collection of over 240 million geographical ondary indexing. Our initial motivation was based on the obser-
records (i.e., longitude, latitude, trip-id, and timestamp) of “trips”  vation that “secondary data” exhibit some degree of clustering, ei-
as logged by gps devices. The next dataset, SDSS, is a 6.2 GBther inherited during the creation process of the data, or indirectly
sample of the astronomy database SkyServer. This database conmposed by the few columns that are ordered because of primary
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Figure 5: Index size and creation time for different types of columrs (z-axis enumerates the columns, ordered by size).

indexing. Column imprints are designed such that this clustering is repeated permutation of an order. Such an organization of data re-
naturally exploited without the need of explicit configuration. This sembles closely an ordered column, and thus also has a low entropy
is why imprints are built per block and compressed row-wise per value.

imprint vector, instead of vertically per bin. To better understand  Figure 4 depicts the cumulative distribution of the entrépipr

and quantify the degree of clustering found in data, we define a all columns of all datasets that we used in our experiments. We
new metric, calledolumn entropyColumn entropy measures how  exclude all columns that are less thaimegabyte in size, since
close a column is to being ordered, or, in other words, the amount they are of minimal interest and introduce outliers in our measure-
of clustering found in a column when the values are partitioned into ments. More thar8000 columns have entropy smaller tham,

bins. More formally, column entropy is defined to be thus supporting our claim that data often tend to exhibit good local
S d(iyi—1) clustering and ordering proper;ies. Nevertheless, there are almost a
E=i=2 2/ thousand columns that have high entropy values, up to alin@st
2% 30 b(4) Those columns are not to be ignored since they sum up ta20%ér
whered(i, i — 1) is theedit distancéoetween bit-vectoi andi — 1, of the total data. A secondary index should be immune to such high

andb(i) is the number of bits that are set in bit-vectolVe define entropy, and still be able to take advantage of any opportunities for
the edit distance between two bit-vectors to be the number of bits compression. In the next section we study the storage overhead of
that need to be set and unset in the first bit-vector in order to becomeimprints and other state-of-the-art secondary indexes, while giving

the second. Column entrogytakes values betweeh0 and1.0. emphasis to their behavior on columns with high entropy. We show
The higher the entrop§ the more random the data is and the less that imprints are robust against columns with high entropy, while
clustered it appears to be. bitmaps with WAH fail to achieve a good compression rate.

To give a more intuitive view ofolumn entropywe print a small . . .
portion of the column imprint index of five columns, one from each 6.2 Index Size and Creation Time
dataset, and list them in Figure 3, together with their respective en- We analyze the storage overhead introduced by the column im-
tropy value€. The prints in Figure 3 correspond to the actual im- prints index and compare it with that of zonemaps and WAH. The
printindexes as constructed in our code for the experiments. If a bit upper row of the graphs in Figure 5 depict the sizes of the indexes
is set then an x’ is printed, otherwise ah. ' . The first column over all columns and all datasets. Each graph corresponds to a dif-
imprint of Figure 3 corresponds to a column from the SkyServer ferent value type. For presentation reasons, we divide the types
dataset. Itis of type real and has a high entropy value of alm8st according to their size in bytes. For example, char-iy/te, short
which implies that each next imprint vector is significantly different is 2-byte, int and date arg-byte, and long and doub&byte types.
from the previous one. Such columns with high entropy, as demon- The y-axis depicts the size of the indexes measured in megabytes,
strated in the next section, are harder to compress. The next im-starting from a few bytes for the smaller columns to almost one
print is the latitude attribute of the Routing dataset. It exhibits nice gigabyte for the large ones. Notice thabxis islog-scaled The
clustering properties, something to be expected since the dataset isc-axis orders the columns according to their size (in increasing or-
taken from real observations, and thus trips are continuous without der). However, because many columns have exactly the same size,
any jumps, unless the trip-id changes. The next two imprints are since they originate from the same tables, we distinguish them by
taken from the Airtraffic and Cnet dataset. These are categorical placing them next to each other. As a result, the flat horizontal pat-
datasets, with low cardinality — hence the smaller bit-vectors — and terns appearing in the graphs correspond to different columns of
with low entropy value. The last imprint index is thetail_price the same size, while the “stepping” effect corresponds to the next
attribute of tablepart of TPC-H. This dataset is created to contain group of larger columns.
a sequence of prices that are not ordered, but they are still the same The red triangle points mark the size of the bit-binning index
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with WAH compression, the blue squares mark the size of zone- ) )
maps, and the green circles mark the size of the column imprints ~ Figure 7: Index size overhead % over column entropyt.
index. The general picture drawn for all types is that WAH index
entails the largest storage overhead, zonemaps come second, while
imprints have the least requirements of storage space. More specif-exhibit a steady storage overhead that hardly exceeds 12%. WAH
ically, the general trend is that imprints are between one and two indexing suffers more, with up to almost 100% of storage overhead
orders of magnitude more space efficient than zonemaps and WAH.0n the size of the column. Imprints on the one hand need at most
However, there are exceptions to that rule, especially for WAH in- 64 bits per cacheline unit, making them immune to high entropy,
dexing, which depicts the biggest fluctuation in storage needs. ForWhile benefiting from low entropy. On the other hand, WAH can
1-byte types, there are cases where WAH achieves better compresPotentially become very inefficient. If there are very few opportuni-
sion and reaches that of imprintsl By examining the data closer tieS f0r Compression, most 32'b|t WOI’dS will be aligned W|th 31-b|t
we noticed that this is true for columns that although they have literals, i.e., no big long sequences of same bits will be found in the
more than 126 million rows (taken from the Airtraffic dataset), they bit-vectors. In addition, since we use a 64 bit-binning approach,
only contain two distinct values, thus allowing both WAH and im-  there will potentially be 64 uncompressed bits per value. Allin all,
prints to fully compress their bit-vectors. Another point of interest WAH is more suitable for low entropy data, while imprints are more
is found in the case di-byte types, where WAH can become a bit ~ Stable and with better compression for the entire range of entropy
more space efficient than imprints. This is true for those columns Vvalues, i.e., they work even if data are not locally clustered.
that contain primary keys (e.g., bigint identifiers) and in addition  Another concernis the time spent to create each secondary index.
are ordered. Although we are studying secondary indexes that typ- T e bottom row of graphs in Figure 5 depicts the creation time for
ically apply to unordered columns, we did not exclude any ordered WAH, zonemaps, and imprints. As expected the zonemaps are the
columns from our experimental datasets for completeness. fastest to create. For each row only two comparisons have to be
Since itis impractical and hard to explicitly show the size of each Made to determine the minimum and the maximum values for the
individual Column, we Compute the percentage of the size of the in- current zone. The slowest is the WAH indeX, since there is Signif-
dexes over the size of the column. Figure 6 shows such a graph.icantly more work to be done in order to compress the bit-vectors.
In additionl instead of grouping on value type’ we group columns |mpl’intS on the other hand, alWays perform between zonemaps and
different applications, and hence different value distributions can three indexes is steady and to be expected since each of them re-
be gained. The categorical data Cnet which has columns with low quire a different amount of work per value. Most importantly, the
cardinality, as well as the nicely clustered routing dataset, achieve time for all indexes increases linearly to the size of the columns,
the best Compression for both imprints and WAH’ thus requiring in thus making them a cost-effective solution for Secondary indeXing.
many cases less than 10% space overhead. However, the same cag
not be said for broader value domains and uniform distributions. 0-3 ~Query Performance
Specifically, the scientific dataset of SkyServer, consisting of many  Next, we turn our attention to the performance analysis of eval-
columns with real and double values, with high cardinality and no uating range queries. The execution scenario for this set of exper-
apparent clustering, makes the WAH index very unstable and in- iments is as follows. For each column, ten different range queries
duces high storage overhead. Imprints perform fairly stably and with varying selectivity are created. The selectivity starts from
much better than WAH, with space overhead closer to zonemaps.less than0.1 and increases each time IByl, until it surpasses
The failure of WAH is expected due to the high randomness of the 0.9. These 10 queries are then fired against the three indexes (i.e.,
values in SkyServer, which allows for very few compression op- zonemaps, WAH, and imprints) defined over the column, and also
portunities. However, imprints do not suffer from the same prob- evaluated with a complete scan over that column. The result set of
lem. Since one imprint vector is constructed for each cacheline, each query is a materialized ordered listidi6. The ordering of
the space requirements are less than bitmaps, while the chance ofd’s is guaranteed by the sequential scan, the zonemap index, and
consecutive imprint vectors to be identical, and thus compressible, the imprints index. However, this is not true for WAH, since each
is increased. pass over the different bit-vectors will produce a new seid&f
Figure 7 depicts the index size overhead of both imprints and which needs to be merged. The merging is done by defining an-
WAH as percentage of the size of the column, ordered over the other bit-vector aligned with thiel's. The bits that are set in thid
entropia&. Imprints achieve storage overhead less than 10% for bit-vector correspond to thd’s that satisfy the range query. In this
columns with low entropy, i.e., up t0.4. The same observation  way no final merge is needed, just the materialization ofidise
holds with few exceptions for WAH indexing. However, the pic- This implementation only adds a small, but necessary for fairness,
ture changes for columns with entropy@®® and higher. Imprints overhead to WAH compared to the other indexes.
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time (msec) by the imprints index over the sequential scan baseline and the
competitive zonemap indexing. Figure 10 depicts the factor of im-
Figure 9: Cumulative distribution of query times. provement achieved for each query. A point abave translated

as a factor of improvement over the baseline, while a point be-
low 1 shows how many times an approach is slower than the base-

Figure 8 plots the query times of over 40,000 queries evaluated line. The upper graph of Figure 10 shows with green circle points
over each index. The queries are ordered ontlais according the improvement of imprints over sequential scans, while the red
to their selectivity. If the selectivity i6.1, the query returns 10%  triangles, the corresponding improvement of bitmaps with WAH
of the total values in the column, whie9 returns 90% of the to- over sequential scans. Both imprints and WAH, show a signifi-
tal values. All three indexes and the sequential scan produce thecant improvement for queries with high selectivity, i.e., when less
same graph patterns for query times. However, these patterns arehan 20% of the tuples are returned. For imprints that improvement
shifted along thej-axis. Imprints is the fastest index overall since is in some cases almostla00 times faster, and for WAH ovel0.
the points in the graph are shifted the most to the bottom. As ex- However, for low selectivity queries, imprints become less compet-
pected, if the selectivity of the query is low and thus more data are itive, while WAH can become significantly slower than scans. This
returned, the smaller the differences that are observed between in-observation is aligned with the strategy of most modern database
dexes. In fact, sequential scans then also become competitive. Thissystems, where, if the cost model of the query optimizer detects
is due to the fact that the overhead of decompressing the data, andx low selectivity selection, a sequential scan is preferred over any
materializing almost all of thil’s, surpasses the time needed to se- index probing. Moreover, WAH is punished in a main memory set-
quentially scan the entire column and check each value. In addition, ting. The processing overhead of the WAH compression outweighs
zonemaps exhibits query times similar to that of sequential scan for the throughput of data that is achieved from main memory to the
low selectivity queries, since zonemaps require the least adminis-cpu cache. Therefore, WAH is more suitable for cases where data
tration overhead compared to imprints and bitmaps with WAH. do not reside in memory, but need to be fetched from disk. Simi-

To better understand the behavior of zonemap, WAH, and im- larly, the bottom graph of Figure 10 depicts the same comparison,
prints, for queries with high selectivity, and compare them with but with zonemap indexing being the baseline, instead of sequen-
sequential scans, we plot in Figure 9 the cumulative distribution of tial scans. The same trend can be seen here, although zonemaps
the queries over time. More precisely, we count the queries that fin- is more competitive and thus the improvement factor for imprints
ish execution at each time frame, and cumulatively sum them up. is closer to100 times. However, in a few cases of low selectivity
The steeper the graph in Figure 9 the more queries finish in a shorterzonemaps can become faster than imprints due to less computation
time, thus the more efficient the index is overall. Figure 9 shows needs.
that almostl5, 000 queries need each of them less tiiah mil- Finally, we compare the number of index probes and data com-
liseconds to be evaluated with imprints index. Zonemaps, which parisons performed (originating from testing for false positives)
is the second best, manage to evaluate just over 7,500 queries imormalized over the number of records in a column. This experi-
the same time frame. However, as the evaluation time increases thement reveals implementation-independent statistics for column im-
time gap between the different approaches is reduced. prints in comparison with zonemaps and WAH. The top graph of

We are interested in the factor of improvement that is achieved Figure 11 shows the number of index probes, while the bottom the



Column imprints can be extended to exploit multi-core platforms
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