JOURNAL OF COMBINATORIAL THEORY, Series B 58, 40-45 (1993)

Disjoint Cycles in Directed Graphs on the Torus and the Klein Bottle

GUOLI DING*

Rutgers Center for Operations Research, Rutgers University, New Brunswick, New Jersey 08903

A. Schrijver

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

AND

P. D. Seymour

Bellcore, 445 South Street, Morristown, New Jersey 07960

Received June 7, 1990

We give necessary and sufficient conditions for a directed graph embedded on the torus or the Klein bottle to contain pairwise disjoint circuits, each of a given orientation and homotopy, and in a given order. For the Klein bottle, the theorem is new. For the torus, the theorem was proved before by P. D. Seymour. This paper gives a shorter proof of that result. (© 1993 Academic Press, Inc.

1. INTRODUCTION

Let S be the torus or the Klein bottle. We call a function $\phi: S \to S$ a shift if there exists a continuous function $\Phi: S \times [0, 1] \to S$ such that

(i) $\Phi(x, 0) = x$, $\Phi(x, 1) = \phi(x)$, for all $x \in S$,

(1)

(ii) $\Phi(\cdot, t)$ is a homeomorphism on S, for each $t \in [0, 1]$.

Let G be a directed graph embedded on S (without crossings). Let $C_1, ..., C_k$ be pairwise disjoint simple closed curves on S, each being nonnullhomotopic. We characterize when there exists a shift of S bringing each C_i to a directed cycle in G (with the same orientation as C_i), under the assumption that $S \setminus C_1$ is a cylinder. (This is automatically the case if S is the torus.)

* Present address: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803.

0095-8956/93 \$5.00

Copyright (C) 1993 by Academic Press, Inc. All rights of reproduction in any form reserved. For the torus, this characterization was given in [2]. In this paper, we give a shorter proof, while for the Klein bottle the result is new. For compact surfaces of genus more than one, as well as for the Klein bottle in case $S \setminus C_1$ is *not* a cylinder, a characterization is given in [1]. So the present paper closes the gap. (Note that $S \setminus C_1$ being a cylinder implies that S is the torus or the Klein bottle.)

In studying this problem, we assume without loss of generality that $C_1, ..., C_k$ occur in this order around S. That is, we assume that there exists a closed curve D_0 crossing each of $C_1, ..., C_k$ exactly once, and in this order. If S is the torus, each curve D gives a natural interpretation of "left" and "right" with respect to D. If S is the Klein bottle, we choose for each curve D some interpretation of "left" and "right," arbitrarily but fixed when going along D from its begining point to its end point. Define a sequence

$$(\alpha_1, ..., \alpha_k) \tag{2}$$

by $\alpha_i = +1$ if C_i crossed D_0 from left to right, and $\alpha_i = -1$ if C_i crosses D_0 from right to left.

Let D be any curve on S, with end points in faces of G. We assume here and below that any such curve has only a finite number of intersections with G. Moreover, we assume that each intersection with G is in a vertex. (We can add a vertex at each intersection.)

We say that a crossing of D with any C_i is *positive* if it is a crossing in the same direction as D_0 , and *negative* otherwise. If D has π positive crossings with C_1 and ν negative crossings with C_1 , then the *winding* number w(D) of D is equal to $\pi - \nu$.

Let D traverse vertices $v_1, ..., v_m$ of G, in this order (repetition allowed). We associate with D a sequence

$$i_G(D) = (X_1, ..., X_m),$$
 (3)

where each X_j is a subset of $\{+1, -1\}$. The set X_j is defined as follows. Consider the segment of D when traversing v_j , going from face F to face F', say, of G. Let $e_1, ..., e_d$ be the edges incident with v_j , choosing indices in such a way that $F, e_1, ..., e_t, F', e_{t+1}, ..., e_d$ occur in this order clockwise at v_j , for some t. Then $+1 \in X_j$ if and only if at least one of $e_1, ..., e_t$ is directed towards v_j and at least one of $e_{t+1}, ..., e_d$ is directed away from v_j . Similarly, $-1 \in X_j$ if and only if at least one of $e_1, ..., e_t$ is directed away from v_j .

For any finite sequence x and any integer w > 0 we define x^w as the concatenation of w copies of x. If $x = (\xi_1, ..., \xi_s)$ and $y = (\eta_1, ..., \eta_t)$, then we let $x \prec y$ if there exist indices $1 \leq j_1 < j_2 < \cdots < j_s \leq t$ such that $\xi_i \in \eta_{j_i}$ for i=1, ..., s. Moreover, $x \leq y$ if x' < y for some cyclic permutation x' of x.

2. The Torus

We first consider the torus.

THEOREM 1. Let S be the torus. Then there exists a shift of S bringing $C_1, ..., C_k$ to directed cycles in G, if and only if, for each closed curve D of positive winding number, one has

$$(\alpha_1, ..., \alpha_k)^{w(D)} \ll i_G(D). \tag{4}$$

Proof. Necessity of the condition is trivial. Suppose now that the condition is satisfied. We may assume that each face of G is an open disk. (In any face F not being an open disk, we can put a new vertex v, with arcs from v to each vertex incident with F.)

We consider the torus as being the quotient space of $\mathbb{C}\setminus\{0\}$ by identifying any $y, z \in \mathbb{C}$ if $z = 2^{\mu}y$ for some integer u. Let $\pi: \mathbb{C}\setminus\{0\} \to S$ be the quotient map. We make this construction in such a way that each lifting of each C_i to $\mathbb{C}\setminus\{0\}$ is a closed curve enclosing 0. More precisely, there exist closed curves Γ_i $(i \in \mathbb{Z})$ so that $\pi \circ \Gamma_i = C_i$ for each $i \in \mathbb{Z}$, taking indices of $C_i \mod k$. We can take the indices in such a way that Γ_{i+1} encloses Γ_i , and such that $\Gamma_{i+k} = 2\Gamma_i$ for each integer *i*. Moreover, we assume that Γ_i has clockwise orientation if $\alpha_i = +1$ and anti-clockwise orientation if $\alpha_i = -1$ (taking indices of $\alpha_i \mod k$).

The inverse image $H := \pi^{-1}[G]$ of G is an infinite graph embedded in $\mathbb{C} \setminus \{0\}$. For any curve P on $\mathbb{C} \setminus \{0\}$ we denote $i_H(P) := i_G(\pi \circ P)$. (So $i_H(P)$ can be defined similarly as we defined $i_G(P)$ above.)

Now for each integer *i*, let \Re_i be the set of faces *F* of *H* so that there exists an integer $t \leq i$ and a curve *P* starting in a face enclosed by Γ_i and ending in *F*, such that

$$(\alpha_t, \alpha_{t+1}, ..., \alpha_i) \not\prec i_H(P).$$
⁽⁵⁾

We show

CLAIM. $\bigcup \mathcal{R}_i$ is bounded, for each integer i.

Proof. We show that in the definition of \mathscr{R}_i we can restrict P to curves traversing at most kf faces of H, where f denotes the number of faces of G, from which the claim follows (as it implies that $\bigcup \mathscr{R}_i$ is at most kf faces "away from" the bounded set enclosed by Γ_i).

Let P be a curve starting in a face enclosed by Γ_r and ending in F, satisfying (5) and traversing a minimum number of faces of H. Suppose P

traverses more than kf faces. We show that there exists a $t' \leq i$ and a curve P' starting in a face enclosed by $\Gamma_{t'}$ and ending in F such that

$$(\alpha_{t'}, \alpha_{t'+1}, ..., \alpha_i) \not\prec i_H(P'), \tag{6}$$

and such that P' traverses fewer faces of H than P does, which means a contradiction.

Since P traverses more than kf faces of H, there exists a face F' of G so that $\pi \circ P$ traverses F' more than k times. So P can be decomposed as $P = P_0 \cdot P_1 \cdot P_2 \cdot \cdots \cdot P_k \cdot P_{k+1}$, where for each $j = 1, ..., k, \pi \circ P_j$ is a curve with end points in F', intersecting G at least once. Without loss of generality, each such $\pi \circ P_j$ is a closed curve.

For j = 0, ..., k, let h_i be the smallest integer h for which

$$(\alpha_i, \alpha_{i+1}, ..., \alpha_h) \not\prec i_H(P_0 \cdot P_1 \cdot \cdots \cdot P_j).$$
(7)

Then there exist j', j'' so that $0 \le j' < j'' \le k$ and so that $h_{j'} \equiv h_{j''} \pmod{k}$. Let $h' := h_{j'}$ and $h'' := h_{j''}$.

Since $\pi \circ (P_{j'+1} \cdot \cdots \cdot P_{j''})$ is a closed curve on *S*, there exists a $z \in \mathbb{C} \setminus \{0\}$ and a $u \in \mathbb{Z}$ so that $P_{j'+1} \cdot \cdots \cdot P_{j''}$ goes from *z* to $2^{u}z$.

Since the closed curve $\pi \circ (P_{j'+1} \cdot \cdots \cdot P_{j''})$ has winding number u, we know

$$(\alpha_1, ..., \alpha_{ku}) \ll i_H(P_{i'+1} \cdot \dots \cdot P_{i''}).$$
 (8)

Suppose ku > h'' - h'. Then

$$(\alpha_{h'}, \alpha_{h'+1}, ..., \alpha_{h''}) \prec i_H(P_{i'+1} \cdot \cdots \cdot P_{i''}),$$
 (9)

since $h' \equiv h'' \pmod{k}$. Since $(\alpha_i, ..., \alpha_{h'-1}) \prec i_H(P_0 \cdots P_{j'})$ (by definition of $h' = h_{j'}$), (9) implies $(\alpha_i, ..., \alpha_{h''}) \prec i_H(P_0 \cdots P_{j''})$. This contradicts the definition of $h'' = h_{j''}$.

So $ku \leq h'' - h'$. Consider the curve

$$P' := (2^{u}(P_0 \cdot \dots \cdot P_{j'})) \cdot P_{j''+1} \cdot \dots \cdot P_{k+1}.$$
(10)

Let t' := t + ku. Then $t' = t + ku \le t + h'' - h' \le i$ (since $t \le h'$ and $h'' \le i$). Now

$$(\alpha_{t'}, \alpha_{t'+1}, ..., \alpha_{h''}) \not\prec i_H(2^u(P_0 \cdot \cdots \cdot P_{j'}))$$
(11)

(as $(\alpha_{t'}, \alpha_{t'+1}, ..., \alpha_{h'+ku}) = (\alpha_t, \alpha_{t+1}, ..., \alpha_{h'}) \prec i_H(P_0 \cdot \cdots \cdot P_{j'}) = i_H(2^u(P_0 \cdot \cdots \cdot P_{j'}))$, by definition of $h' = h_{j'}$, and as $h' + ku \leq h''$). Moreover,

$$(\alpha_{h''}, \alpha_{h''+1}, ..., \alpha_i) \not\prec i_H(P_{j''+1} \cdot \cdots \cdot P_{k+1})$$
 (12)

(since otherwise $(\alpha_i, ..., \alpha_i) \prec i_H(P)$, as $(\alpha_i, ..., \alpha_{h^n-1}) \prec i_H(P_0 \cdot \cdots \cdot P_{j^n})$, by definition of $h'' = h_{j^n}$).

Relations (11) and (12) directly imply (6).

This ends the proof of the Claim.

Clearly, each face F enclosed by Γ_i belongs to \mathcal{R}_i (since we can take t=i and for P any curve remaining in F). Moreover, \mathcal{R}_{i+k} can be obtained from \mathcal{R}_i by multiplying the faces in \mathcal{R}_i by 2.

The faces in \mathscr{R}_i induce a connected subgraph of the dual graph of H, as one easily checks. (If P is the arc connected to $F \in \mathscr{R}_i$ then every face traversed by P belongs to \mathscr{R}_i .) Hence the arcs on the boundary of the unbounded connected component of $\mathbb{C} \setminus \bigcup \mathscr{R}_i$ form a simple closed curve; call it Δ_i . (Here \overline{X} denotes the topological closure of X.)

Then Δ_i is oriented clockwise if $\alpha_i = +1$, and anti-clockwise if $\alpha_i = -1$. This follows from the fact that any arc *a* of *H* on the boundary of $\bigcup \mathcal{R}_i$ is oriented clockwise if $\alpha_i = +1$, and anti-clockwise if $\alpha_i = -1$ (clockwise and anti-clockwise with respect to $\bigcup \mathcal{R}_i$). To see this, let *a* be incident with faces $F \in \mathcal{R}_i$ and $F' \notin \mathcal{R}_i$. By definition of \mathcal{R}_i , there exists a $t \leq i$ and a curve *P* starting in a face enclosed by Γ_i and ending in *F*, satisfying (5). We can extend *P* to a curve *P'* ending in *F'*, by crossing *a*. Since $F' \notin \mathcal{R}_i$, $(\alpha_i, ..., \alpha_i) \prec i_H(P')$. Hence α_i must belong to the last set occurring in $i_H(P')$, giving the required statement.

Moreover, for each integer *i*, Δ_i is enclosed by Δ_{i+1} , without intersections. This follows from the fact that if *F* belongs to \mathcal{R}_i , then each face *F'* having a vertex in common with *F* belongs to \mathcal{R}_{i+1} . Indeed, by definition of \mathcal{R}_i , there exists a $t \leq i$ and a curve *P* starting in a face enclosed by Γ_i and ending in *F*, satisfying (5). We can extend *P* to a curve *P'* ending in *F'*, by traversing a vertex incident with both *F* and *F'*. From (5) one derives $(\alpha_i, ..., \alpha_{i+1}) \neq i_H(P')$. Hence $F' \in \mathcal{R}_{i+1}$.

Since also $\Delta_{i+k} = 2\Delta_i$ for each *i*, it follows that $\pi \circ \Delta_1, ..., \pi \circ \Delta_k$ give disjoint closed curves on the torus *S*, of the same orientations as $C_1, ..., C_k$, respectively, and in the same order as $C_1, ..., C_k$. Shifting $C_1, ..., C_k$ to $\pi \circ \Delta_1, ..., \pi \circ \Delta_k$ gives the required shift.

3. THE KLEIN BOTTLE

We next consider the Klein bottle. Define $\alpha_i := -\alpha_{i-k}$ for i = k + 1, ..., 2k.

THEOREM 2. Let S be the Klein bottle, such that $S \setminus C_1$ is a cylinder. Then there exists a shift of S bringing $C_1, ..., C_k$ to directed cycles in G, if and only

if, for each orientation-preserving closed curve D of positive winding number, one has

$$(\alpha_1, ..., \alpha_k, \alpha_{k+1}, ..., \alpha_{2k})^{w(D)/2} \ll i_G(D).$$
(13)

Proof. The proof is similar to that of Theorem 1. We now consider the Klein bottle as being the quotient space of $\mathbb{C}\setminus\{0\}$ by identifying any $y, z \in \mathbb{C}$ if $z = 2^u y$ for some even integer u or $z = 2^u \overline{y}$ for some odd integer u. Again, let $\pi: \mathbb{C}\setminus\{0\} \to S$ be the quotient map, in such a way that there exist closed curves Γ_i ($i \in \mathbb{Z}$) so that $\pi \circ \Gamma_i = C_i$ for each $i \in \mathbb{Z}$, taking indices of $C_i \mod k$. We can take the indices in such a way that Γ_{i+1} encloses Γ_i , and such that $\Gamma_{i+2k} = 2\Gamma_i$ for each integer i. Moreover, we assume that Γ_i has clockwise orientation if $\alpha_i = +1$ and anti-clockwise orientation if $\alpha = -1$, now taking indices of $\alpha_i \mod 2k$.

Also the remainder of the proof is similar to that of Theorem 1.

ACKNOWLEDGMENTS

We thank two anonymous referees for carefully reading the text and for giving helpful suggestions.

REFERENCES

1. A. SCHRIJVER, Disjoint cycles in directed graphs on compact surfaces, to appear. 2. P. D. SEYMOUR, Directed circuits on a torus, *Combinatorica* 11 (1991), 261–273.