View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CW!I's Institutional Repository

Lazy ETL in Action: ETL Technology Dates Scientific Data

Yagiz Kargin
CWI Amsterdam

Yagiz.Kargin@cwi.nl

Stefan Manegold
CWI Amsterdam

Stefan.Manegold@cwi.nl

ABSTRACT

Both scientific data and business data have analytical needs.
Analysis takes place after a scientific data warehouse is ea-
gerly filled with all data from external data sources (reposi-
tories). This is similar to the initial loading stage of Extract,
Transform, and Load (ETL) processes that drive business in-
telligence. ETL can also help scientific data analysis. How-
ever, the initial loading is a time and resource consuming
operation. It might not be entirely necessary, e.g. if the
user is interested in only a subset of the data.

We propose to demonstrate Lazy ETL, a technique to
lower costs for initial loading. With it, ETL is integrated
into the query processing of the scientific data warehouse.
For a query, only the required data items are extracted,
transformed, and loaded transparently on-the-fly.

The demo is built around concrete implementations of
Lazy ETL for seismic data analysis. The seismic data ware-
house is ready for query processing, without waiting for long
initial loading. The audience fires analytical queries to ob-
serve the internal mechanisms and modifications that realize
each of the steps; lazy extraction, transformation, and load-
ing.

1. INTRODUCTION

Nowadays scientists receive increasingly large volumes of
data. This data (e.g. images, time-series, sequences, etc.)
is accompanied by self-descriptive information, called meta-
data (e.g. properties, parameters, description of data struc-
tures, etc.). Both data and associated metadata are col-
lected in domain-specific files and file repositories. Efficient
management and analysis of these high-volume scientific
repositories have become pivotal for advancement in science.
Currently, scientists use their legacy tools that mostly ap-
ply file-at-a-time data analysis. But these tools do not scale
to the increasing dataset sizes [6]. Hence, there is a clear
need of a data management tool that opens up these file
repositories and performs analysis steps near-instantly.
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In business intelligence, data warehouses provide the means
for analytical tasks. The data from external source datas-
tores is extracted, transformed, and loaded (ETL) into the
data warehouse using ETL processes. These processes fa-
cilitate the initial loading, that enables analysis of business
data within the data warehouse. They also facilitate the
periodic refreshment to keep the data up-to-date [18]. In
its essence, this setting addresses the need that is similar
to that of scientific data analysis. In addition, a file reposi-
tory is one of the kinds of source datastores that ETL pro-
cesses deal with [19]. It is, therefore, natural to consider the
techniques that helped meeting the requirements of business
intelligence to help scientific data analysis.

Traditional ETL relies on eagerly filling the data ware-
house with data. This requirement, however, is a high initial
investment of time. It makes the first step of analysis far
from near-instant performance. This has been recognized as
one of the major obstacles in adopting database solutions
for scientific data [17, 7]. To overcome this shortcoming
without losing the merits of traditional ETL, the Lazy ETL
approach was introduced in [12] at BIRTE 2012. Here, we
demonstrate Lazy ETL, a query-driven, on-demand ETL
system, that mitigates the burden of initial loading.

Initial loading is reduced to loading only metadata to
achieve the necessary scalability. Consequently, the meta-
data is used to identify the actual data required by a query.
At query time, the actual data is extracted from the files
that contain the required data. It is transformed and loaded
transparently. Our approach reduces the cost for bootstrap-
ping a scientific data warehouse for a new file repository. It
also makes updating and extending a warehouse with mod-
ified and additional files more efficient. It can be also con-
sidered as a step forward in the 'near real-time ETL’ vision
put by Dayal et. al [5].

We implemented our approach in MonetDB [2] (an ana-
Iytical column-store database with support of a scientific
declarative query language, SciQL [20]). We propose to
demonstrate Lazy ETL through seismic data analysis. The
source datastore is a repository containing files in mSEED
format [1]. The system serves the need of mining interesting
seismic events. With the initial loading of only metadata,
the data warehouse is instantly ready for analysis queries.
This presents a significant reduction of the overall time from
source data availability to query answer. The overall system
provides easy browsing of metadata and navigation in the
data. At the same time, the demo shows the internal tech-
nical details behind the scene.
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2. RELATED WORK

The data ingestion needs of scientists are similar to those
of business analysts. We describe the state of the art of data
ingestion with business ETL and scientific data ingestion.

ETL Research. ETL research is mostly focused on sources
of Online Transaction Processing (OLTP) datastores. The
most popular setup is the following [4]: a row oriented oper-
ational DBMS for the OLTP-load and a data warehouse for
the analytical needs. After the initial loading, new data that
enters the operational system is loaded into the warehouse in
intervals using Extract, Transform & Load (ETL) processes
[9]. However, the data in the data warehouse might become
stale, depending on the update window [14]. Moreover,
all data is stored redundantly, making the system space-
inefficient [9]. The ETL research addresses some of these
problems from a different angle than we do. They focus on
update intervals [11], incremental updates [10], bounds on
staleness [13], etc.

Scientific Data Ingestion. The problem of scientific
data ingestion can be considered as loading data from exter-
nal files. This has received some attention from the database
community. The SQL/MED (Management of External Data)
standard [16] offers an integration of external files into a re-
lational schema. However, the file content straightforwardly
maps to tables, and the burden of managing the files is still
on the user. There are also well-established techniques like
external tables in major commercial systems. They enable
access to data in external sources as if it were in a table in
the data warehouse. However, they require every query to
access the entire dataset, because they are actually intended
for loading a file’s content. To address that, DBMS query
processing over flat data files is presented as NoDB [3]. They
provide query-driven on-demand loading as we do. However,
they cannot handle complex file formats that are common
in science applications like MiniSEED (mSEED) or Geo
Tagged Image File Format (GeoTIFF), etc. These files con-
tain complex schemas of different types of objects and even
pointers that should be resolved to foreign key constraints
when loading. Plus, they do not exploit the metadata for
selectively loading during query processing.

3. LAZY ETL

Traditional ETL processes load and pre-aggregate all data
that can possibly be queried (i.e. eager ETL). This is be-
cause it is unclear which data subset is interesting with-
out workload knowledge. However, the data warehouse may
only need a subset of the available data to answer a user’s
(ad-hoc) query. Nevertheless, the user still has to wait for
the possibly lengthy eager loading of all the input data.

Our goal is to mitigate the burden of lengthy initial load-
ing. For that purpose, we consider ETL as part of the query
execution, breaking with the traditional paradigm. Actual
data access is left to query-time. That is, we run ETL only
when required and only for the data that is required by a
query. This approach is called Lazy ETL [12]. Initial load-
ing covers only metadata. The actual data accessed lazily is
kept in a cache of limited size. If there is any update in the
repository, refreshments are handled in the cache when the
data warehouse is queried.

Metadata vs. Actual Data. Without any knowledge
about the input data files, all available files have to be con-
sidered “relevant” for a given query. Metadata provides a

means to understand the data. Thus it is central to scien-
tific data access [6]. Metadata is data that provides insight
into the content of a record, a file or the repository. In
science, this might cover data such as the starting time of
measurements, the sampling rate, the position of a sensor,
etc. Analytical queries usually refer to a subset of metadata
in order to define the subset of data they are interested in.
In most cases, traditional metadata is smaller in size and
cheaper to acquire than actual data. It is even cheaper if
metadata is encoded in the filename. In that case, the file
does not even need to be read. Therefore, it is our con-
scious preference to load the metadata eagerly to exploit
it for selective access to the actual data. The definition of
metadata might, however, differ with each file format, use
case and system performance. Nevertheless, it is relatively
straightforward in most of the cases to understand which
subset of the data describes the rest of the data. We call
all other data the actual data. In science domains, actual
data items usually describe data points, e.g., a timestamp
and one or many measured values. In practice, the majority
of the data is actual data.

In the following we illustrate how to replace a traditional
ETL process with our approach. We visit each step of the
lazy ETL process to explain the internals of the system that
we will demonstrate.

3.1 Lazy Extraction

The first goal of extraction is identifying the correct subset
of source data that has to be submitted to the subsequent
transformation and loading. In a typical ETL process, this is
usually performed in a bulk fashion. However, in Lazy ETL
extraction is performed per-query basis since we use meta-
data to identify the required subset of the source (files). The
extraction might also include the decompression if necessary.

In the worst case, the required subset of actual data that
is subject to lazy ETL is the entire repository. In that case,
it involves extracting the complete source as during initial
loading of the traditional ETL. In the best case, the required
subset of actual data is in the cache and up-to-date. Then
no ETL process needs to be performed.

Lazy extraction is implemented as two steps of query plan
modification. First, the query plan generated by the data
warehouse is modified at compile-time. The plan is reorga-
nized so that the selection predicates on the metadata are
applied first. Second, once this part of the plan is executed,
a plan rewriting operator is executed. This operator uses
plan introspection provided by the MonetDB system and
performs a plan modification at run time. It injects opera-
tors that either access data from the cache or extract data
only from the necessary files. Internally these operators use
external scientific library calls to extract the data from the
specific file formats. This allows us to seamlessly integrate
lazy extraction with query evaluation.

3.2 Lazy Transformation

An ETL process might include diverse transformations.
Examples are schema-level transformations, one-to-many map-
pings, etc. [18] [19]. Eager ETL processes apply these trans-
formations on the entire input data once and then on the
possible updates later. Most of these transformations can,
however, be expressed as relational algebra operators (i.e.
using projections, joins, etc.). So, we express them in SQL
for lazy ETL. We implement all necessary transformations as



non-materialized views. Thus, the transformations are per-
formed at query time, because view definitions are simply
expanded into the query. After the required actual data is
extracted, the transformations are done using relational op-
erators as specified in the query plan of the data warehouse.
This means that only the minimal amount of data items
needed from the sources are transformed and the transfor-
mations benefit from query optimization. In addition, some
transformations that are performed on a fine granularity
(e.g., record-level and value-level transformations, and data
cleaning) are added to the end of extraction phase.

Lazy transformation is provided with a run-time modifica-
tion of the query plan. After the rewriting operator injects
the operators for lazy extraction, the references to relational
tables that contain actual data are removed from the query
plan. The operators for transformation are then assigned to
each of the intermediates resulting from operators for lazy
extraction.

3.3 Lazy Loading

The extracted and transformed data is materialized into
the internal data structures of the data warehouse. This op-
eration is called loading in traditional ETL. This is usually
done by bulk loading data through a DBMS-specific utility.
For us, materialization of the extracted and transformed
data is simply caching the result of a view definition (i.e.
some of the intermediate results). Fortunately, MonetDB
already supports such caching in the form of intermediate
result recycling [8].

Lazy loading is provided through integration of Lazy ETL
with intermediate result recycling. Usually, the end result
of a view is saved in the cache. A least recently used (LRU)
policy is used for cache maintenance. In the ETL setting,
this cache also has to take care of the updates. We do
that lazily, too. The cache makes use of required files’ last
modified timestamp, and compares that with the admission
timestamp of that data to the cache. If the required data
in the cache is outdated or it is not in the cache, then it is
extracted from updated files during lazy extraction. Oth-
erwise the cached data is used. We adjust the cache size
according to the input dataset size, but it is not larger than
the size of system’s main memory.

4. DEMONSTRATION

We demonstrate Lazy ETL based on seismic data analysis.
In seismology, SEED [1] is the most widely used standard
file format to exchange waveform data among seismograph
networks. A SEED volume mainly consists of the waveform
time series, which are highly compressed. For example, a
SEED repository requires up to 10 times the original stor-
age size when loaded into a database [12]. Additionally,
a SEED volume has several ASCII control headers. The
control headers contain the metadata. In this demo we
use Mini-SEED (mSEED) variant, which reduces the SEED
metadata to the most widely used subset. The sizes of an
mSEED file commonly vary from 4 KB to several MBs. Mil-
lions of them are stored in remote file repositories with direct
FTP access, e.g., [15].

Each mSEED file contains multiple mSEED records. An
mSEED record represents the sensor readings over a consec-
utive time interval, i.e., a time series. The normalized data
warehouse schema, as proposed in [12], includes three tables,
that are straightforwardly derived from the mSEED format.

SELECT AVG(D.sample_value)

FROM mseed.dataview
WHERE F.station = ’ISK’
F.channel = ’BHE’
AND R.start_time > ’2010-01-12T00:00:00.000°
AND R.start_time < ’2010-01-12T23:59:59.999°
AND D.sample_time > ’2010-01-12T22:15:00.000°

AND D.sample_time < ’2010-01-12T22:15:02.000°;

SELECT F.station,
MIN(D.sample_value), MAX(D.sample_value)

FROM mseed.dataview

WHERE F.network = ’NL’
AND F.channel = ’BHZ’

GROUP BY F.station;

Figure 1: Two sample queries.

Two metadata tables F and R hold metadata per mSEED
file and mSEED record, respectively. Whereas one actual
data table D stores all the data points (i.e. tuples of sam-
ple time and sample value from all files and records). Each
mSEED file is identified by its URI. Each record is identified
by its (record) sequence number (unique per file). These
identifiers form also the foreign key relations between the
three tables. We define a (non-materialized) view dataview
that joins all three tables into a (de-normalized) “universal
table”.

Seismic data analysis contains tasks that help hunt for in-
teresting seismic events. Such tasks include finding extreme
values over Short Term Awveraging (STA, typically over an
interval of 2 seconds) and Long Term Averaging (LTA, typ-
ically over an interval of 15 seconds), retrieving the data of
an entire record for visual analysis, etc. Two of the sample
analysis queries are given in Figure 1. This is to make at-
tendees already familiar with the kind of queries that can
be fired. The first query computes a short term average
over the data generated at Kandilli Observatory in Istanbul
(ISK) via a specific channel (BHE). The second query calcu-
lates both minimum and maximum values (amplitudes) for
a channel (BHZ) per station in the Netherlands (NL) without
restricting the time period. For more detailed information
about the data, schema, and queries please refer to [12].

The demonstration scenario allows to zoom into the de-
tails of the Lazy ETL system and functioning. To illustrate,
a snapshot of the GUI is shown in Figure 2. The numbers
in the figure comply with the numbers on the list below.
In particular, the attendees can experiment with (1) initial
loading of only metadata from an mSEED repository of any
size, (2) browsing the metadata and navigating through the
data with their own queries, (3) comparing the performance
to the eager ETL approach, (4) observing the query plans
and changes on them while realizing lazy extraction of the
actual data, (5) observing the files containing required ac-
tual data that is lazily extracted for the query. (6) observing
the plans generated on the fly for lazy transformation, (7)
observing the contents of the cache and updates to it hap-
pening if needed (i.e. lazy loading), (8) looking through the
log to see what operations are performed and in which order.
In addition, there are also predefined queries for demonstra-
tion purposes that can be used when looking for interesting
seismic events.
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WIT -39895 48347 Get Waveform 7.8 9.0 3

SELECT station, MIN(sample value), MAX(sample value) WTSB -639955 -143402 Get MSEED record 3.2 1.5

FROM mseed.dataview HGN -31407 55762 Channel Amplitude 28.7 32.5

WHERE network = 'NL' AND channel = 'BHZ' 2 OPLO -116205 112038 Station Amplitude 4.3 2.1

GROUP BY station;
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MAL Plan (lazy transformation)

function user.s0_l{autocCommit=true}(A0:str,Al:str):void;

X l4:bat[:o0id,:str] :=
X_20:bat[:o0id, :str] =

sgl.bind(X_4,"
sgl.bind(X_4,"

X 22 := algebra.uselect(X_20,A0);
X 24 := algebra.semijoin(X 19,X 23);
X 25 := algebra.uselect(X_24,Al);

X 30:bat[:o0id,:str] := sgl.bind(X 4,"
4 := algebra.join(X_13,X 36);

mseed", "files" ,"
mseed", "files","

mseed", "files" ,"

function user.s0_l{autoCommit=true}(A0:str,Al:str):void;

channel",0);
network",0);

4

file location",0);

(¥_180
(%185
x_778
x_781

X_817

X_820 :

x_1040

puas)

paas) =

miniseed.load(".../NL_WIT__BHZ.2010.223.03.35.20.mseed");
miniseed.load(".../NL_WTSB_01_BHZ.2010.227.12.11.47.mseed");

:= mkey.bulk rotate xor hash(X 601,22:int,X 180);
:= mkey.bulk rotate_xor hash(X_604,22:int,X 185);
:= algebra.join(X 403,X 778); 6

= algebra.join(X_408,X_781);

X 40:bat[:o0id,:str] := sgl.bind(X 4,"mseed","catalog","file location",0); = algebra.leftjoin(X 895,X 42);
X_42 := algebra.leftjoin(X 39,X 40); X_1042 := algebra.leftjoin(X_1002,X_42);
lazyETL.plan modifier("mseed",X _42); aen
4 X 1257 := batcalc.==(X 1040,X 1218);: 4
Cache (lazy loading) -y Query log (o] Extracted files
cached data r timestamp 2013-03-27 12:30:37 Query received. o NL_WIT__BHZ.2010.223.03.35.20.mseed
2013-03-27 12:30:37 Query plan reorder is | NL WTSB 01 BHE.2010.227.12.11.47.mseed
NL_WIT__BHZ.2010.223.03.35.20.mseed 2013-03-27-12T12:10:823822 | 2013-03-27 12:30:37 Query is executing. NL_HGN_02_BHZ.2010.154.10.16.15.mseed
NL_WTSB_01_BHZ2.2010.227.12.11.47.mseed 2013-03-27-12T12:10:823822 | 2013-03-27 12:30:37 Metadata is being proc/ NL_WTSB_01_BH2.2010.071.16.50.06.mseed
NL_HGN 02 _BHZ2.2010.154.10.16.15.mseed 2013-03-27-12T12:11:325825 | 2013-03-27 12:30:37 Found required files i/ NL_HGN_02 BHZ.2010.026.13.31.16.mseed
NL_WrSB_01 BH2Z.2010.071.16.50.06.mseed 2013-03-27-12T12:11:325825 / 2013-03-27 12:30:37 Run-time query rewrite NL WIT BHZ.2010.054.10.52.14.mseed 4
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Figure 2: GUI of Lazy ETL.

Pirk, for constructive guidance on the functionality and im-

plementation of Lazy ETL.
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