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We give necessary and sufficient conditions for a given graph embedded on the 
torus, to contain edge-disjoint cycles of prescribed homotopies (under the assump
tion of a "parity" condition). •£1 1992 Academic Press, Inc. 

1. INTRODUCTION 

We prove a theorem on edge-disjoint cycles of prescribed homotopies in 
an undirected graph embedded on the torus. It forms a sharpening (integer 
version) of a theorem proved in [ 1] for general compact orientable 
surfaces. 

Let G = ( V, E) be an undirected graph embedded on the torus T, and let 
C 1 , .. ., Ck be closed curves on T. We are interested in conditions under 
which 

there exist pairwise edge-disjoint cycles C 1 , ... , Ek in G so 
that C; is freely homotopic to C;, for i = 1, ... , k. (1) 

We will identify an embedded graph with its image in T. A closed curve 
on T is a continuous function C: S,-+ T, where S1 is the unit circle in the 
complex plane. 

A cycle in G is a sequence (v0, e 1, v,, .. ., ed, vd) so that e; is an edge con
necting v1 _ 1 and V; (i= 1, ... , d), with v0 =vd. (If ej is a loop, we associate 
an orientation with ej.) In a natural way we can identify such a cycle in G 
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with a closed curve on T. We call a collection of cycles pairwise edge
disjoint if no two cycles have an edge in common, and moreover, no cycle 
traverses the same edge more than once. 

Two closed curves C and C on Tare called freely homo topic, in notation: 
C"' C, if there exists a continuous function <l>: S 1 x [O, I]-+ T so that 
<l>(z, 0) = C(z) and <l>(z, I)= C(z) for each z E S 1 • (So there is not necessarily 
a point fixed.) 

The following cut condition is a necessary condition for (I): for each 
closed curve D on T, intersecting G only a finite number of times and not 
intersecting V, one has 

k 

cr(G, D)~ I min cr(C;, D). (2) 
i= I 

Here we use the notation (for closed curves C and D) 

cr(G,D):= l{zES1 I D(z)EG}I, 

cr(C,D):= l{(y,z)ES1 xS1 I C(y)=D(z)}I, (3) 

min er( C, D) : = min {er( C, l5) I C ,.,_. C, D ,.,,, D}. 

Condition (2) is not sufficient for (1), as is shown by Fig. I, where the 
wriggled lines indicate closed curves C 1 and C 2 and where the torus arises 
by identifying the two segments a and identifying the two segments f3 (the 
fact that the cut condition is satisfied can be seen by observing that a "half
integer" packing of required cycles exists). A second example arises by 

0: 
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FIGURE I 
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taking for G a graph consisting of two vertices, each attached with a loop 
(pairwise disjoint and nonnullhomotopic ), and for C 1 a closed curve going 
twice around one of the loops (see Fig. 2 ). 

We show that (2) is sufficient for (1) if each C, is simple (i.e., is a one-to
one function), and the following parity condition holds: 

(parity condition) for each closed curve Don T, not inter
secting vertices of G, the number of crossings of D with 
edges of G, plus the number of crossings with C 1 , ... , C b 

is an even number. ( 4) 

One easily checks that the parity condition implies that each vertex of G 
has even degree. 

THEOREM. Let G = ( V, £) be a graph embedded on the torus T, and let 
C,, ... ,Ck be simple closed curves on T, such that the parity condition holds. 
Then there exist pairwise edge-disjoint closed cycles C,, ... ,Ck in G so that 
C,"' C, (i = 1, .. ., k ), if and only if the cut condition holds. 

(We do not require the C, to be simple-they may have self-intersections 
at vertices of G.) 

Figures 1 and 2 show that we cannot delete the parity or the simple-ness 
condition. For general compact orientable surfaces the cut condition only 
implies the existence of a "fractional" solution to ( 1 ). 

a 

s s 

a 

FIGURE 2 
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2. CLOSED CURVES ON THE TORUS AND THEIR CROSSINGS 

Before proving the theorem (in Section 3 ), we show an inequality for the 
function min cr(C, D) defined in (3). This inequality is esential in our proof 
and does not hold for compact orientable surfaces other than the sphere 
and the torus. 

Let D 1 , D 2 :S1 ~ T be closed curves on T with D 1(1)=D2(1). Let 
D 1 · D2 denote the concatenation of Di and D 2 . That is, Di· D 2 : S 1 ~ T is 
defined by (D 1 ·D2 )(z) := Di(z 1 ) if Imz;::,O and (Di ·D 2 )(z) := Dh 2 ) if 
Im z < 0. Then: 

PROPOSITION. min er( C, Di · D 2 ) ~ min er( C, D 1 )+ min er( C, D 2 ). 

Proof Identify the torus T with the product S 1 x S 1 of two copies of the 
unit circle S 1 in the complex plane IC. For m, n El we define the closed 
curve Cm. n: Si~ S 1 x S 1 by 

(5) 

As is well known ( cf. [2, Sect. 6.2.2] ), the closed curves C,,,, 11 form a system 
of representatives for the free homotopy classes of closed curves on T For 
m, n, m', n'El, 

min cr(C"' n• C,,,. 11 ·) =I det ( ni, n,)I = lmn' - m'nl. (6) 
· · m n 

To see the proposition, we may assume that Di= C,,,., 11 • and D2 = Cm",n" 
for some m', n', m", n"El. Then Di ·D2 -Cm'+m",n'+n"· Hence choosing 
m, n so that c- cm,n• 

miner( C, D 1 · D 2 ) = lm(n' + n" )- (m' + m")nl 

~ lmn'-m'nl + lmn" - m"nl 

=mincr(C,Di)+mincr(C,D 2 ). I (7) 

3. PROOF OF THE THEOREM 

The cut condition clearly is necessary. To see sufficiency, suppose the cut 
condition is satisfied, but cycles as required do not exist. We assume that 
we have a counterexample G = ( V, E) with 

L 2deg(c) 
VE V 

as small as possible. Here deg( 11) denotes the degree of vertex v. 

(8) 
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FIGURE 3 

We first show: 

each vertex of G has degree at most 4. (9) 

Suppose to the contrary that vertex v has degree 2d ")?:. 6 (see Fig. 3 ). 
Replace Fig. 3 by Fig. 4, where there are d - 2 parallel edges connecting v' 
and v". For the new graph G' again the cut condition holds (as we may 
assume that the cut D does not intersect the "new" edges in Fig. 4, since we 
can make a detour through the original edges without increasing 
cr(G', D)). However, for G' the sum (8) has decreased (since 
2 1d- 2 + 21d 2 + 24 < 22d). So in G' cycles as required exist. This directly 
gives cycles as required in the original graph G, contradicting our 
assumption. This shows (9). 

We next show that in each vertex v of G of degree 4 the following holds. 
Consider a neighbourhood N '.'.:::: C of v not containing any vertex other than 
v (see Fig. 5 ). Here F1 , •.• , F4 stand for the intersections of faces with N. We 
show: 

FIGURE 4 
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FIGURE 5 

CLAIM. There exists a closed curve D: S 1 ~ T\ V such that 

(i) D contains a subcurve contained in N connecting F 1 and F3 ; 

(10) 
(ii) cr(G,D)=L}= 1 mincr(C;,D). 

Proof of the Claim. Suppose such a curve does not exist. Replace N as 
in Fig. 5 by N as in Fig. 6. Since any packing of cycles as required in the 
new graph G' would yield a required packing in the original graph G, and 
since for G' the sum (8) has decreased, the cut condition does not hold for 
G'. That is, 

k 

cr(G', D) < L min cr(C;, D) ( 11) 
i= 1 

for some closed curve D not intersecting any vertex of G'. We may assume 
that D does not traverse v. Let p be the number of subcurves of D con
tained in N and connecting F 1 and F 3 (in one direction or the other). As 
cr(G',D)<cr(G,D) we know p~ 1. Choose D so that p is as small as 
possible. We show p = 1. Assume p ~ 2. 

FIGURE 6 
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Let P be any curve in N from Fi to F 3 not intersecting v, v', or v", and 
only crossing e 1 and e2 • Then we may assume that 

(i) D = P ·Di· P ·Di, where Di and D 2 are curves from F3 to Fi; or 

(ii) D=P·Di .p-i .D2 , where Di is a curve from F3 to F3 , (12) 

and D 2 is a curve from Fi to Fi 

(P-i denotes the curve reverse to P). If (12)(i) holds, then (using the 
proposition), 

cr(G', D)=cr(G', P·Di)+cr(G', P·D 2 ) 

k k 

~ L min cr(C;, P ·Di)+ L min cr(C;, P· Di) 
i= i i=i 

k 

~ L min cr(C;, D), (13) 
i=i 

since P ·Di and P ·Di are closed curves containing fewer than p subcurves 
in N connecting Fi and F 3 • 

If (12)(ii) holds, then (again using the proposition), 

cr(G', D);;;::: cr(G', Di)+ cr(G', D 2 ) 

k k 

~ L min cr(C;, P ·Di· p-i) + L min cr(C;, Di) 
i= I i=i 

k 

~ L min cr(C;, D), (14) 
i:= l 

since Di and D 2 are closed curves containing fewer than p subcurves in N 
connecting Fi and F3 • 

Both (13) and (14) contradict (11). So p= 1. Hence cr(G, D)= 
cr(G',D)+2. Therefore, by (11), cr(G,D)<2+L:~=imincr(C;,D). It 
follows by the parity condition that D satisfies ( 10 ). 

End of proof of the Claim 

Now by the "homo topic circulation theorem" in [ 1 ], the cut condition 
implies the existence of a "fractional" packing of cycles. That is, there exist 
cycles 

C i, i' ... , C I, 11' C 2, l • .•. , C 2. 12' ••. , Ck, i' ... , Ck, lk ( 15) 

in G and rational numbers 

.ll.1. i· ... , A1.11• Ai. i· ... , A2. ,,, ... , J.k, i· ... , J.k, lk > 0 ( 16) 

582b. 551 i-2 
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satisfying 

(i= 1, ... , k;j= 1, ... , t;), 
11 

(ii) " l = 1 L, l,j (i=l, ... ,k), (17) 
j=l 

k li 

(iii) I I ).;,iXc;.,(e):::; l (e E £). 
i= l J= I 

Here xc(e) denotes the number of times the cycle C traverses edge e. 

We may assume that no C;. i' after arriving in a vertex r via an edge e, 
immediately returns over the same edge e backward. 

We show: 

for each i, j, if C;. i arrives in a vertex v via edge e, say, 
then it next leaves v via the edge opposite to e. ( 18) 

(If e 1, e2 , e3 , e4 are the edges incident to v in cyclic order, then e 1 and e 3 

are called opposite; similarly for e 2 and e4 .) To see this, suppose that cycle 
C1, 1 say, contains .. ., e 1, v, e2 , ... (where v, e 1 , e 2 , e 3 , e4 are as in Fig. 5). Let 
D: S 1 --+ T\ V be a closed curve satisfying ( 10 ). We may assume that D 
crosses e 1 and e2 successively. 

However, since C 1, 1 contains .. ., e 1 , v, e 2 , .. ., we know 

cr(C1, 1 , D) > min cr(C'i, 1 , D). (19) 

This gives the contradiction 

k t, 

cr(G, D)~ I I ).;,1 cr(C;.1, D) 
i= I )=I 

k !1 k 

>I L A;.J miner( C;_ 1, D) = L miner( C;, D ). (20) 
i= I )= l i= 1 

This proves (18 ). It follows from ( 18) that any two of the C 1• 1 , .. ., Ck. ,k 

are pairwise edge-disjoint or are the same (up to cyclic permutation and 
reversal). (No C;,J makes more than one orbit of a cycle, as it is homotopic 
to a simple closed curve C;.) This implies that we can select from 

c I, I• .. ., ck, lk pairwise edge-disjoint cycles as required. I 
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