Edge-Disjoint Circuits in Graphs on the Torus

A. Frank
Department of Computer Science, Eötvös Loránd University, Múzeum krt. 6-8, 1088 Budapest, Hungary
AND
A. Schrijver
Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Communicated by the Editors

Received April 20, 1990

Abstract

We give necessary and sufficient conditions for a given graph embedded on the torus, to contain edge-disjoint cycles of prescribed homotopies (under the assumption of a "parity" condition). 1992 Academic Press, Inc.

1. Introduction

We prove a theorem on edge-disjoint cycles of prescribed homotopies in an undirected graph embedded on the torus. It forms a sharpening (integer version) of a theorem proved in [1] for general compact orientable surfaces.

Let $G=(V, E)$ be an undirected graph embedded on the torus T, and let C_{1}, \ldots, C_{k} be closed curves on T. We are interested in conditions under which
there exist pairwise edge-disjoint cycles $\tilde{C}_{1}, \ldots, \widetilde{C}_{k}$ in G so that \widetilde{C}_{i} is freely homotopic to C_{i}, for $i=1, \ldots, k$.

We will identify an embedded graph with its image in T. A closed curve on T is a continuous function $C: S_{1} \rightarrow T$, where S_{1} is the unit circle in the complex plane.

A cycle in G is a sequence $\left(v_{0}, e_{1}, v_{1}, \ldots, e_{d}, v_{d}\right)$ so that e_{i} is an edge connecting v_{i-1} and $v_{i}(i=1, \ldots, d)$, with $v_{0}=v_{d}$. (If e_{j} is a loop, we associate an orientation with e_{j}.) In a natural way we can identify such a cycle in G
with a closed curve on T. We call a collection of cycles pairwise edgedisjoint if no two cycles have an edge in common, and moreover, no cycle traverses the same edge more than once.

Two closed curves C and \tilde{C} on T are called freely homotopic, in notation: $C \sim \tilde{C}$, if there exists a continuous function $\Phi: S_{1} \times[0,1] \rightarrow T$ so that $\Phi(z, 0)=C(z)$ and $\Phi(z, 1)=\widetilde{C}(z)$ for each $z \in S_{1}$. (So there is not necessarily a point fixed.)

The following cut condition is a necessary condition for (1): for each closed curve D on T, intersecting G only a finite number of times and not intersecting V, one has

$$
\begin{equation*}
\operatorname{cr}(G, D) \geqslant \sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right) \tag{2}
\end{equation*}
$$

Here we use the notation (for closed curves C and D)

$$
\begin{align*}
\operatorname{cr}(G, D) & :=\left|\left\{z \in S_{1} \mid D(z) \in G\right\}\right|, \\
\operatorname{cr}(C, D) & :=\left|\left\{(y, z) \in S_{1} \times S_{1} \mid C(y)=D(z)\right\}\right|, \tag{3}\\
\min \operatorname{cr}(C, D) & :=\min \{\operatorname{cr}(\tilde{C}, \tilde{D}) \mid \widetilde{C} \sim C, \tilde{D} \sim D\} .
\end{align*}
$$

Condition (2) is not sufficient for (1), as is shown by Fig. 1, where the wriggled lines indicate closed curves C_{1} and C_{2} and where the torus arises by identifying the two segments α and identifying the two segments β (the fact that the cut condition is satisfied can be seen by observing that a "halfinteger" packing of required cycles exists). A second example arises by

taking for G a graph consisting of two vertices, each attached with a loop (pairwise disjoint and nonnullhomotopic), and for C_{1} a closed curve going twice around one of the loops (see Fig. 2).

We show that (2) is sufficient for (1) if each C_{i} is simple (i.e., is a one-toone function), and the following parity condition holds:
(parity condition) for each closed curve D on T, not intersecting vertices of G, the number of crossings of D with edges of G, plus the number of crossings with C_{1}, \ldots, C_{k}, is an even number.

One easily checks that the parity condition implies that each vertex of G has even degree.

Theorem. Let $G=(V, E)$ be a graph embedded on the torus T, and let C_{1}, \ldots, C_{k} be simple closed curves on T, such that the parity condition holds. Then there exist pairwise edge-disjoint closed cycles $\widetilde{C}_{1}, \ldots, \widetilde{C}_{k}$ in G so that $\widetilde{C}_{i} \sim C_{i}(i=1, \ldots, k)$, if and only if the cut condition holds.
(We do not require the \bar{C}_{i} to be simple-they may have self-intersections at vertices of G.)

Figures 1 and 2 show that we cannot delete the parity or the simple-ness condition. For general compact orientable surfaces the cut condition only implies the existence of a "fractional" solution to (1).

Figure 2

2. Closed Curves on the Torus and Their Crossings

Before proving the theorem (in Section 3), we show an inequality for the function $\min \operatorname{cr}(C, D)$ defined in (3). This inequality is esential in our proof and does not hold for compact orientable surfaces other than the sphere and the torus.

Let $D_{1}, D_{2}: S_{1} \rightarrow T$ be closed curves on T with $D_{1}(1)=D_{2}(1)$. Let $D_{1} \cdot D_{2}$ denote the concatenation of D_{1} and D_{2}. That is, $D_{1} \cdot D_{2}: S_{1} \rightarrow T$ is defined by $\left(D_{1} \cdot D_{2}\right)(z):=D_{1}\left(z^{2}\right)$ if $\operatorname{Im} z \geqslant 0$ and $\left(D_{1} \cdot D_{2}\right)(z):=D_{2}\left(z^{2}\right)$ if $\operatorname{Im} z<0$. Then:

Proposition. min cr $\left(C, D_{1} \cdot D_{2}\right) \leqslant \min \operatorname{cr}\left(C, D_{1}\right)+\min \operatorname{cr}\left(C, D_{2}\right)$.
Proof. Identify the torus T with the product $S_{1} \times S_{1}$ of two copies of the unit circle S_{1} in the complex plane \mathbb{C}. For $m, n \in \mathbb{Z}$ we define the closed curve $C_{m, n}: S_{1} \rightarrow S_{1} \times S_{1}$ by

$$
\begin{equation*}
C_{m, n}(z):=\left(z^{m}, z^{n}\right) \quad \text { for } \quad z \in S_{1} \tag{5}
\end{equation*}
$$

As is well known (cf. [2, Sect. 6.2.2]), the closed curves $C_{m, n}$ form a system of representatives for the free homotopy classes of closed curves on T. For $m, n, m^{\prime}, n^{\prime} \in \mathbb{Z}$,

$$
\min \operatorname{cr}\left(C_{m, n}, C_{m^{\prime}, n^{\prime}}\right)=\left|\operatorname{det}\left(\begin{array}{cc}
m & n \tag{6}\\
m^{\prime} & n^{\prime}
\end{array}\right)\right|=\left|m n^{\prime}-m^{\prime} n\right|
$$

To see the proposition, we may assume that $D_{1}=C_{m^{\prime}, n^{\prime}}$ and $D_{2}=C_{m^{\prime \prime}, n^{\prime \prime}}$ for some $m^{\prime}, n^{\prime}, m^{\prime \prime}, n^{\prime \prime} \in \mathbb{Z}$. Then $D_{1} \cdot D_{2} \sim C_{m^{\prime}+m^{\prime \prime}, n^{\prime}+n^{\prime \prime}}$. Hence choosing m, n so that $C \sim C_{m, n}$,

$$
\begin{align*}
\min \operatorname{cr}\left(C, D_{1} \cdot D_{2}\right) & =\left|m\left(n^{\prime}+n^{\prime \prime}\right)-\left(m^{\prime}+m^{\prime \prime}\right) n\right| \\
& \leqslant\left|m n^{\prime}-m^{\prime} n\right|+\left|m n^{\prime \prime}-m^{\prime \prime} n\right| \\
& =\min \operatorname{cr}\left(C, D_{1}\right)+\min \operatorname{cr}\left(C, D_{2}\right) \tag{7}
\end{align*}
$$

3. Proof of the Theorem

The cut condition clearly is necessary. To see sufficiency, suppose the cut condition is satisfied, but cycles as required do not exist. We assume that we have a counterexample $G=(V, E)$ with

$$
\begin{equation*}
\sum_{v \in V} 2^{\operatorname{deg}(v)} \tag{8}
\end{equation*}
$$

as small as possible. Here $\operatorname{deg}(v)$ denotes the degree of vertex v.

Figure 3

We first show:
each vertex of G has degree at most 4 .
Suppose to the contrary that vertex v has degree $2 d \geqslant 6$ (see Fig. 3). Replace Fig. 3 by Fig. 4, where there are $d-2$ parallel edges connecting v^{\prime} and $v^{\prime \prime}$. For the new graph G^{\prime} again the cut condition holds (as we may assume that the cut D does not intersect the "new" edges in Fig. 4, since we can make a detour through the original edges without increasing $\operatorname{cr}\left(G^{\prime}, D\right)$). However, for G^{\prime} the sum (8) has decreased (since $2^{2 d-2}+2^{2 d-2}+2^{4}<2^{2 d}$). So in G^{\prime} cycles as required exist. This directly gives cycles as required in the original graph G, contradicting our assumption. This shows (9).

We next show that in each vertex v of G of degree 4 the following holds. Consider a neighbourhood $N \simeq \mathbb{C}$ of v not containing any vertex other than v (see Fig. 5). Here F_{1}, \ldots, F_{4} stand for the intersections of faces with N. We show:

Figure 5

Claim. There exists a closed curve $D: S_{1} \rightarrow T \backslash V$ such that
(i) D contains a subcurve contained in N connecting F_{1} and F_{3};
(ii) $\operatorname{cr}(G, D)=\sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right)$.

Proof of the Claim. Suppose such a curve does not exist. Replace N as in Fig. 5 by N as in Fig. 6. Since any packing of cycles as required in the new graph G^{\prime} would yield a required packing in the original graph G, and since for G^{\prime} the sum (8) has decreased, the cut condition does not hold for G^{\prime}. That is,

$$
\begin{equation*}
\operatorname{cr}\left(G^{\prime}, D\right)<\sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right) \tag{11}
\end{equation*}
$$

for some closed curve D not intersecting any vertex of G^{\prime}. We may assume that D does not traverse v. Let p be the number of subcurves of D contained in N and connecting F_{1} and F_{3} (in one direction or the other). As $\operatorname{cr}\left(G^{\prime}, D\right)<\operatorname{cr}(G, D)$ we know $p \geqslant 1$. Choose D so that p is as small as possible. We show $p=1$. Assume $p \geqslant 2$.

Figure 6

Let P be any curve in N from F_{1} to F_{3} not intersecting v, v^{\prime}, or $v^{\prime \prime}$, and only crossing e_{1} and e_{2}. Then we may assume that
(i) $D=P \cdot D_{1} \cdot P \cdot D_{2}$, where D_{1} and D_{2} are curves from F_{3} to F_{1}; or
(ii) $D=P \cdot D_{1} \cdot P^{-1} \cdot D_{2}$, where D_{1} is a curve from F_{3} to F_{3}, and D_{2} is a curve from F_{1} to F_{1}
(P^{-1} denotes the curve reverse to P). If (12)(i) holds, then (using the proposition),

$$
\begin{align*}
\operatorname{cr}\left(G^{\prime}, D\right) & =\operatorname{cr}\left(G^{\prime}, P \cdot D_{1}\right)+\operatorname{cr}\left(G^{\prime}, P \cdot D_{2}\right) \\
& \geqslant \sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, P \cdot D_{1}\right)+\sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, P \cdot D_{2}\right) \\
& \geqslant \sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right) \tag{13}
\end{align*}
$$

since $P \cdot D_{1}$ and $P \cdot D_{2}$ are closed curves containing fewer than p subcurves in N connecting F_{1} and F_{3}.

If (12)(ii) holds, then (again using the proposition),

$$
\begin{align*}
\operatorname{cr}\left(G^{\prime}, D\right) & \geqslant \operatorname{cr}\left(G^{\prime}, D_{1}\right)+\operatorname{cr}\left(G^{\prime}, D_{2}\right) \\
& \geqslant \sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, P \cdot D_{1} \cdot P^{-1}\right)+\sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D_{2}\right) \\
& \geqslant \sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right) \tag{14}
\end{align*}
$$

since D_{1} and D_{2} are closed curves containing fewer than p subcurves in N connecting F_{1} and F_{3}.

Both (13) and (14) contradict (11). So $p=1$. Hence $\operatorname{cr}(G, D)=$ $\operatorname{cr}\left(G^{\prime}, D\right)+2$. Therefore, by (11), $\operatorname{cr}(G, D)<2+\sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right)$. It follows by the parity condition that D satisfies (10).

End of proof of the Claim

Now by the "homotopic circulation theorem" in [1], the cut condition implies the existence of a "fractional" packing of cycles. That is, there exist cycles

$$
\begin{equation*}
C_{1,1}, \ldots, C_{1, t_{1}}, C_{2,1}, \ldots, C_{2, t_{2}}, \ldots, C_{k, 1}, \ldots, C_{k, t_{k}} \tag{15}
\end{equation*}
$$

in G and rational numbers

$$
\begin{equation*}
\lambda_{1,1}, \ldots, \lambda_{1, t_{1}}, \lambda_{2,1}, \ldots, \lambda_{2, t_{2}}, \ldots, \lambda_{k, 1}, \ldots, \lambda_{k . t_{k}}>0 \tag{16}
\end{equation*}
$$

satisfying
(i) $C_{i, j} \sim C_{i}$
$\left(i=1, \ldots, k ; j=1, \ldots, t_{i}\right)$,
(ii) $\sum_{j=1}^{t_{i}} \lambda_{i, j}=1 \quad(i=1, \ldots, k)$,
(iii) $\sum_{i=1}^{k} \sum_{j=1}^{t_{i}} \lambda_{i, j} \chi^{C_{i, j}}(e) \leqslant 1 \quad(e \in E)$.

Here $\chi^{C}(e)$ denotes the number of times the cycle C traverses edge e.
We may assume that no $C_{i, j}$, after arriving in a vertex v via an edge e, immediately returns over the same edge e backward.

We show:
for each i, j, if $C_{i, j}$ arrives in a vertex v via edge e, say, then it next leaves v via the edge opposite to e.
(If $e_{1}, e_{2}, e_{3}, e_{4}$ are the edges incident to v in cyclic order, then e_{1} and e_{3} are called opposite; similarly for e_{2} and e_{4}.) To see this, suppose that cycle $C_{1,1}$ say, contains ..., e_{1}, v, e_{2}, \ldots (where $v, e_{1}, e_{2}, e_{3}, e_{4}$ are as in Fig. 5). Let $D: S_{1} \rightarrow T \backslash V$ be a closed curve satisfying (10). We may assume that D crosses e_{1} and e_{2} successively.

However, since $C_{1,1}$ contains $\ldots, e_{1}, v, e_{2}, \ldots$, we know

$$
\begin{equation*}
\operatorname{cr}\left(C_{1,1}, D\right)>\min \operatorname{cr}\left(C_{1,1}, D\right) \tag{19}
\end{equation*}
$$

This gives the contradiction

$$
\begin{align*}
\operatorname{cr}(G, D) & \geqslant \sum_{i=1}^{k} \sum_{j=1}^{t_{i}} \lambda_{i, j} \operatorname{cr}\left(C_{i, j}, D\right) \\
& >\sum_{i=1}^{k} \sum_{j=1}^{t_{i}} \lambda_{i, j} \min \operatorname{cr}\left(C_{i, j}, D\right)=\sum_{i=1}^{k} \min \operatorname{cr}\left(C_{i}, D\right) \tag{20}
\end{align*}
$$

This proves (18). It follows from (18) that any two of the $C_{1,1}, \ldots, C_{k, t_{k}}$ are pairwise edge-disjoint or are the same (up to cyclic permutation and reversal). (No $C_{i, j}$ makes more than one orbit of a cycle, as it is homotopic to a simple closed curve C_{i}.) This implies that we can select from $C_{1,1}, \ldots, C_{k, t_{k}}$ pairwise edge-disjoint cycles as required.

Acknowledgment

We thank two anonymous referees for carefully reading this paper and for giving helpful comments.

References

1. A. Schrijver, Decomposition of graphs on surfaces and a homotopic circulation theorem, J. Combin. Theory Ser. B 51 (1991), 161-210.
2. J. Stillwell, "Classical Topology and Combinatorial Group Theory," Springer-Verlag. New York, 1980.
