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DISJOINT PATHS IN A PLANAR GRAPH-A GENERAL THEOREM* 

GUOLI DINGt, A. SCHRIJVERi, AND P. D. SEYMOUR§ 

Abstract. Let D = (V, A) be a directed planar graph, let (r1, s1), · · ·, (rk, sk) be pairs of vertices 
on the boundary of the unbounded face, let Ai , · · · , Ak be subsets of A, and let H be a collection of 
unordered pairs from {1, · · ·, k}. Given are necessary and sufficient conditions for the existence of a 
directed ri - Bi path Pi in (V, Ai) (for i = 1, · · · , k), such that P; and Pj are vertex-disjoint whenever 
{i,j} EH. 
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1. Introduction. Let D = (V, A) be a directed graph, let (ri, si), ... , (rk, Bk) 
be pairs of vertices of D, let Ai,···, Ak be subsets of A, and let H be a collection 
of unordered pairs from {1, · · ·, k }. We are interested in the conditions under which 
there exist directed paths Pi, · · · , Pk so that 

(1) 
(i) Pi is a directed r, - Si path in (V, Ai) (i = 1, · · ·, k); 

(ii) Pi and Pj are vertex-disjoint for each {i,j} EH. 

In §3 we will discuss some special cases of this problem. 
Since the problem is NP-complete, we may not expect a nice set of necessary and 

sufficient conditions characterizing the existence of paths satisfying ( 1). The problem 
is NP-complete even if we restrict the problem to instances with k = 2, Ai = A2 = A, 
and H = { {1, 2} }. Moreover, it is NP-complete when restricted to A1 = · · · = Ak = 
A, H is the collection of all pairs from {1, · · ·, k}, and D arises from an undirected 
planar graph by replacing each edge by two opposite arcs. 

(2) 

In this paper we give necessary and sufficient conditions for the problem when 

D is planar and the vertices r 1 , s1,. ·., rk, sk all belong to the 
boundary of one fixed face I. 

The characterization extends the one given by Robertson and Seymour [1]. In fact, 
if (2) holds, there is an easy, greedy-type algorithm for finding the path Pi, as we 
discuss below. 

Let D be embedded in the plane JR2 . We identify D with its image in the plane. 
Without loss of generality, we may assume I to be the unbounded face. (Each face is 
considered as an open region.) Moreover, we may assume that the boundary bd(J) of 
I is a simple closed curve. This is no restriction, since we can extend D by new arcs 
as long as we do not include them in any Ai and as long as we keep ri, s 1 , · · ·, rk, Bk 
on bd(J). 

We say that two pairs (r, s) and (r', s') of vertices on bd(J) cross if each r - s 
curve in IR2 \ I intersects each r' - s' curve in JR2 \ I. Clearly, the following is a 
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necessary condition for the existence of paths satisfying (1): 

(3) cross-freeness condition: if {i,j} EH then (ri,si) and (r-,s·) do 
not cross. J J 

Now the following algorithm finds paths as in (1) if (2) holds. First, check if the 
cross-freeness condition is satisfied. If not, our problem has no solution. If the cross
freeness condition is satisfied, choose a pair (ri, si) so that the shortest of the two 
ri - Si paths along bd(J) is as short as possible (over all i = 1, ... , k). Without loss 
of generality, i = k. Let Q be this shortest rk - sk path along bd(J). If (V, Ak) does 
not contain any rk - Sk path, then there are no paths satisfying (1). If (V, Ak) does 
contain an Tk - Sk path, let Pk be the (unique) directed rk - sk path in (V, Ak) that 
is nearest to Q. Next, repeat the algorithm for D,(r1 ,s1 ),···, (rk-i,sk_i), removing 
from any Ai with {i,k} EH all those arcs incident with some vertex in Pk. After at 
most k iterations we either find paths as required, or we find that no such paths exist. 

The correctness of the algorithm follows from the following observation. Suppose 
that there exist paths Q1 , · · · ,Qk as required. Then, if k is as above, we may assume 
without loss of generality that Qk is equal to Pk· Indeed, Qi,···, Qk-i. Pk also form 
a solution, since if Pk intersects some Qi, then also Qk intersects Qi. 

We describe a second necessary condition. Let C be some curve in R2 , starting 
in I and ending in some face F. Let f(C) and l(C) denote the first and last point of 
intersection of C with D. Let i 1 , · · · , in be indices from { 1, · · · , k} such that 

(4) 
(i) f(C),ri 17 Si17 ••• ,ri,.,si.,. are all distinct; 

(ii) The rij - Sii part of bd(I) containing f(C) is contained 
in the Ti;+i - Si;+i part of bd(J) containing f(C), for 
j = 1,· · · ,n -1; 

(iii) {ij,ij+i} EH for j = 1, · · · ,n -1. 

For each j = 1, · · ·, n we define a set Wi as follows. If f(C), Tip si, occur clockwise 
around bd(J), Wi is the set of points p on D traversed by C such that some arc in 
Ai . is entering C at p from the left and some arc in Aij is leaving C at p from the 
right. Similarly, if f(C), Ti;, Si; occur counterclockwise around bd(J), Wi is the set of 
points p on D traversed by C such that some arc in Aij is entering Cat p from the 
right, and some arc in Aij is leaving C at p from the left. 

We say that C fits ii, · · · , in if there exist distinct points Pi, · · · , Pn so that Pi E Wi 
for j = 1, ... , n and so that C traverses p1 , · · · ,pn in this order. Now we have the 
following condition: 

(5) cut condition: each curve C starting and ending in I fits each 
choice of ii,···,in satisfying (4), whenever (f(C),l(C)) crosses 
each (Tij, si,) (j = 1, · · ·, n). 

2. The theorem. We now prove the following theorem. . 2 
THEOREM. Let D = (V, A) be a directed planar graph, embedded in the plane R , 

let (r1 ,s1), ... , (rk,sk) be pairs of vertices of Don bd(I), withri #.si fori = 1, · · · ,n, 
let A1 , ... ,Ak be subsets of A, and let H be a set of unordered pa~rs from {1, · ·· ,k}. 

Then there exist paths Pi, ... , Pk satisfying (1) if and only if the cross-freeness 

condition (3) and the cut condition (5) hold. 



114 G. DING, A. SCHRIJVER, AND P. D. SEYMOUR 

Proof. Necessity of the conditions is trivial. To see sufficiency, we assume without 
loss of generality that the arcs on bd(J) do not belong to any Ai· (We can add new 
arcs to D (but not to any Ai), without violating the cross-freeness and cut conditions.) 

Choose an arbitrary point p0 on bd(J), not being a vertex of D. For each i = 
1, · · ·, k, let Qi be that of the two ri - Si parts of bd(J) that does not contain Po· For 
each i = 1, · · ·, k, let Fi be the set of faces F =JI of D for which there exists a curve 
C starting in I and ending in F, such that f(C) E Qi, and such that C does not fit 
some choice of ii,··· ,in satisfying (4) with in= i. 

Note that, since no arc on bd(J) belongs to Ai, each arc in Qi is on the boundary 
of LJFi. Let Bi be the set of arcs on the boundary of U Fi but not in Qi· We show 
that 

(6) Bi is contained in Ai and contains a directed ri - Si path. 

Assume without loss of generality that ri,po, si occur in this order clockwise 
around bd(J). Let a be an arc on the boundary of LJ Fi and not in Qi. We show that 
a belongs to Ai and that a is oriented clockwise with respect to U Fi. 

Let a separate faces FE Fi and F' tf_ F;. By definition of :Fi, there exists a curve 
C starting in I and ending in F, such that f(C) E Qi and such that C does not fit 
some choice i 1 , ···,in satisfying (4) with in =i. Now extend C to F' by crossing a, 
obtaining a curve C'. 

If C' does not fit i 1, ···,in, then F' =I (as F' tf_ Fi)· Then, however, C' violates 
the cut condition. 

So C' does fit i 1 , ···,in· Since C itself does not fit i 1 , ···,in, this implies that a 
belongs to Ai and that a is oriented clockwise with respect to U :Fi. This proves (6). 

Choose for each i = 1, · · ·, k a directed ri -s; path P; in Bi. We finally show that 
if {i,j} EH, then Pi and Pj are vertex-disjoint. Assume without loss of generality 
that i = 1, j = 2, and let {1, 2} E H. Suppose some vertex v is traversed both by P 1 

and Pz. Hence vis incident with some face F1 in :F1 and with some face F2 in :F2• It 
follows that there exists a curve C from I to F1 such that f ( C) E Qi and such that 
C does not fit indices i 1 , · · · , in satisfying ( 4) with in = 1. 

By the cross-freeness condition, we know that parts Q1 and Q2 of bd(J) are either 
contained in each other or are disjoint. 

First, assume that they are contained in each other, say Q1 <:;;; Q2 . Then each face 
F' =/: I incident with v is contained in :F2• To see this, we can extend curve C via v 
to F', yielding curve C'. As C does not fit i 1 , ... , in = 1, it follows that C' does not 
fit ii,···, in = 1, in+l = 2. So F' E :F2 . As this holds for each face F' =J I incident 
with v, no arc incident with v belongs to B2 , and hence P2 does not traverse v. 

Next, assume that Q1 and Q2 are disjoint. (So Po is in between Q 1 and Q 2.) Since 
F2 belongs to :F2, there exists a curve C' from I to F2 not fitting indices i~, · ·., i~, 
satisfying (4) (adapted to C' A,···, i~, ), such that f ( C') E Q 2 and such that i~, = 2. 

Connect the curves C and C' by a F 1 - F2 curve via v, yielding a curve C" from I 
to I. Then C" does not fit ii, · · · , in ,i~,, · · · , i~, as we can easily check. This violates 
the cut condition. D 

The theorem can be seen to give a "good characterization." 

3. Special cases. In this section we describe some special cases of the problem 
and the theorem. 

First, let G = (V, E) be an undirected planar graph, embedded in ~2 . Let 
{r1,s1}, · · ·, {rk, sk} be pairs of vertices of G, each on the boundary of the unbounded 
face I of G. Robertson and Seymour [l] proved that there exist pairwise vertex-disjoint 
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paths P1, ···,Pk in G where Pi connects ri and Si for i = 1, · · ·, k, if and only if no 
two of the pairs { r i, Si} cross and each vertex cut of G contains at least as many 
vertices as it separates pairs from {r1, s1}, · · ·, {rk, sk}· 

This follows trivially from our theorem by replacing each arc by two opposite 
arcs, and taking for H the collection of all pairs from {l, · · ·, k }. 

The second special case generalizes the first. Let G = (V, E) be an undirected 
planar graph, embedded in IR2 . Let R 1 , · · · , Rt be pairwise disjoint sets of vertices of 
G, all on the boundary of the unbounded face I of G. 

We say that two sets R and R' of vertices on the boundary of I cross if some pair 
of vertices in R crosses some pair of vertices in R'. We say that a cut separates a set 
R of vertices if the cut separates { r, s} for some r, s in R. 

Robertson and Seymour [l] proved more generally that there exist pairwise vertex
disjoint trees T1 , · · ·, Tt in G such that Ti covers ~ (i = 1, · · · ,t) if and only if no 
two of the ~ cross, and each vertex cut of G contains at least as many vertices as it 
separates sets from R 1, · · · , Rt. 

This follows from the theorem by replacing each edge of G by two opposite edges, 
by taking as pairs (r1, s1), · · ·, (rk, sk) all pairs (r, s) for which there exists an i E 
{l, · · ·, t} such that r, s E ~, and by taking for H all pairs {j, j'} from {1, · · ·, k} for 
which ri,si,rJ', and Sj' do not all belong to the same set among Ri,···,Rt. (We 
take each Ai to be equal to the full arc set.) 

As a third special case, consider a planar directed graph D = (V, A) and a col
lection of ordered pairs (r1 , s1), · · ·, (rk, sk) on the boundary of the unbounded face 
I (with ri -=/= Si for i = 1, · · ·, k). Then the theorem implies that there exists a di
rected ri - Si path Pi for i = 1, · · ·, k so that P1, ···,Pk are pairwise vertex-disjoint 
if and only if no two of the (ri, si) cross, and for each cut C not intersecting any of 
r1, s1, · · · , rk, s k, the following cut condition holds: 

(7) If C separates (rip Si1 ), · • ·, h"' siJ, in this order, then C con
tains vertices p1, · · · ,pn, in this order so that for each j = 1, · · ·, n: 

• if rij is at the left-hand side of C, then at least one arc of 
D is entering C at Pi from the left and at least one arc of 
D is leaving C at Pi from the right; 

• if rij is at the right-hand side of C, then at least one arc of 
D is entering C at Pi from the right and at least one arc 
of D is leaving C at Pi from the left. 

This follows by taking for H the set of all pairs from { 1, · · · , k} and taking each Ai 
equal to A. 

More generally, let D = (V, A) be a planar directed graph, let Rl, ···,Rt be sets of 
vertices on the boundary of the unbounded face I of D, and let, for each i = 1, · · ·, k, 
ri be some vertex from ~- The theorem gives necessary and sufficient conditions 
for the existence of pairwise vertex-disjoint rooted trees Ti,···, Tk in D, where Ti 
has root ri and covers ~ (i = 1, · · ·, k). Again this follows straightforwardly with 
reductions like the above. 

Finally, let D = (V, A) be a planar directed graph and let R1, · · ·, Rk be sets of 
vertices on the boundary of the unbounded face I of G. Again, it is straightforward to 
derive necessary and sufficient conditions for the existence of pairwise vertex-disjoint 
strongly connected subgraphs D1, · · · , Dk such that Di covers ~ (for i = 1, · · · , k). 
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