DISJOINT PATHS IN A PLANAR GRAPH-A GENERAL THEOREM*

GUOLI DING[†], A. SCHRIJVER[‡], AND P. D. SEYMOUR[§]

Abstract. Let D = (V, A) be a directed planar graph, let $(r_1, s_1), \dots, (r_k, s_k)$ be pairs of vertices on the boundary of the unbounded face, let A_1, \dots, A_k be subsets of A, and let H be a collection of unordered pairs from $\{1, \dots, k\}$. Given are necessary and sufficient conditions for the existence of a directed $r_i - s_i$ path P_i in (V, A_i) (for $i = 1, \dots, k$), such that P_i and P_j are vertex-disjoint whenever $\{i, j\} \in H$.

Key words. disjoint paths, trees, planar graph

AMS(MOS) subject classifications. 05C35, 05C38, 05C70

1. Introduction. Let D = (V, A) be a directed graph, let $(r_1, s_1), \ldots, (r_k, s_k)$ be pairs of vertices of D, let A_1, \cdots, A_k be subsets of A, and let H be a collection of unordered pairs from $\{1, \cdots, k\}$. We are interested in the conditions under which there exist directed paths P_1, \cdots, P_k so that

(1)

(i) P_i is a directed $r_i - s_i$ path in (V, A_i) $(i = 1, \dots, k)$;

(ii) P_i and P_j are vertex-disjoint for each $\{i, j\} \in H$.

In §3 we will discuss some special cases of this problem.

Since the problem is NP-complete, we may not expect a nice set of necessary and sufficient conditions characterizing the existence of paths satisfying (1). The problem is NP-complete even if we restrict the problem to instances with k = 2, $A_1 = A_2 = A$, and $H = \{\{1,2\}\}$. Moreover, it is NP-complete when restricted to $A_1 = \cdots = A_k = A$, H is the collection of all pairs from $\{1, \dots, k\}$, and D arises from an undirected planar graph by replacing each edge by two opposite arcs.

In this paper we give necessary and sufficient conditions for the problem when

(2) D is planar and the vertices $r_1, s_1, \dots, r_k, s_k$ all belong to the boundary of one fixed face I.

The characterization extends the one given by Robertson and Seymour [1]. In fact, if (2) holds, there is an easy, greedy-type algorithm for finding the path P_i , as we discuss below.

Let D be embedded in the plane \mathbb{R}^2 . We identify D with its image in the plane. Without loss of generality, we may assume I to be the unbounded face. (Each face is considered as an *open* region.) Moreover, we may assume that the boundary $\mathrm{bd}(I)$ of I is a simple closed curve. This is no restriction, since we can extend D by new arcs as long as we do not include them in any A_i and as long as we keep $r_1, s_1, \dots, r_k, s_k$ on $\mathrm{bd}(I)$.

We say that two pairs (r, s) and (r', s') of vertices on bd(I) cross if each r - s curve in $\mathbb{R}^2 \setminus I$ intersects each r' - s' curve in $\mathbb{R}^2 \setminus I$. Clearly, the following is a

 $^{^{\}ast}$ Received by the editors June 4, 1990; accepted for publication (in revised form) November 8, 1990.

[†] Rutgers Center for Operations Research, Rutgers University, New Brunswick, New Jersey 08903.

[‡] Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.

[§] Bellcore, 445 South Street, Morristown, New Jersey 07960.

necessary condition for the existence of paths satisfying (1):

(3) cross-freeness condition: if $\{i, j\} \in H$ then (r_i, s_i) and (r_j, s_j) do not cross.

Now the following algorithm finds paths as in (1) if (2) holds. First, check if the cross-freeness condition is satisfied. If not, our problem has no solution. If the cross-freeness condition is satisfied, choose a pair (r_i, s_i) so that the shortest of the two $r_i - s_i$ paths along bd(I) is as short as possible (over all $i = 1, \dots, k$). Without loss of generality, i = k. Let Q be this shortest $r_k - s_k$ path along bd(I). If (V, A_k) does not contain any $r_k - s_k$ path, then there are no paths satisfying (1). If (V, A_k) does contain an $r_k - s_k$ path, let P_k be the (unique) directed $r_k - s_k$ path in (V, A_k) that is nearest to Q. Next, repeat the algorithm for $D, (r_1, s_1), \dots, (r_{k-1}, s_{k-1})$, removing from any A_i with $\{i, k\} \in H$ all those arcs incident with some vertex in P_k . After at most k iterations we either find paths as required, or we find that no such paths exist.

The correctness of the algorithm follows from the following observation. Suppose that there exist paths Q_1, \dots, Q_k as required. Then, if k is as above, we may assume without loss of generality that Q_k is equal to P_k . Indeed, Q_1, \dots, Q_{k-1}, P_k also form a solution, since if P_k intersects some Q_i , then also Q_k intersects Q_i .

We describe a second necessary condition. Let C be some curve in \mathbb{R}^2 , starting in I and ending in some face F. Let f(C) and l(C) denote the first and last point of intersection of C with D. Let i_1, \dots, i_n be indices from $\{1, \dots, k\}$ such that

(i)
$$f(C), r_{i_1}, s_{i_1}, \ldots, r_{i_n}, s_{i_n}$$
 are all distinct;

(ii) The $r_{i_j} - s_{i_j}$ part of bd(I) containing f(C) is contained in the $r_{i_{j+1}} - s_{i_{j+1}}$ part of bd(I) containing f(C), for $j = 1, \dots, n-1$;

(iii)
$$\{i_j, i_{j+1}\} \in H$$
 for $j = 1, \dots, n-1$.

For each $j = 1, \dots, n$ we define a set W_j as follows. If $f(C), r_{i_j}, s_{i_j}$ occur clockwise around $\operatorname{bd}(I)$, W_j is the set of points p on D traversed by C such that some arc in A_{i_j} is entering C at p from the left and some arc in A_{i_j} is leaving C at p from the right. Similarly, if $f(C), r_{i_j}, s_{i_j}$ occur counterclockwise around $\operatorname{bd}(I), W_j$ is the set of points p on D traversed by C such that some arc in A_{i_j} is entering C at p from the right, and some arc in A_{i_j} is leaving C at p from the left.

We say that C fits i_1, \dots, i_n if there exist distinct points p_1, \dots, p_n so that $p_j \in W_j$ for $j = 1, \dots, n$ and so that C traverses p_1, \dots, p_n in this order. Now we have the following condition:

(5) cut condition: each curve C starting and ending in I fits each choice of i_1, \dots, i_n satisfying (4), whenever (f(C), l(C)) crosses each (r_{i_j}, s_{i_j}) $(j = 1, \dots, n)$.

2. The theorem. We now prove the following theorem.

THEOREM. Let D = (V, A) be a directed planar graph, embedded in the plane \mathbb{R}^2 , let $(r_1, s_1), \dots, (r_k, s_k)$ be pairs of vertices of D on $\operatorname{bd}(I)$, with $r_i \neq s_i$ for $i = 1, \dots, n$, let A_1, \dots, A_k be subsets of A, and let H be a set of unordered pairs from $\{1, \dots, k\}$.

Then there exist paths P_1, \dots, P_k satisfying (1) if and only if the cross-freeness condition (3) and the cut condition (5) hold.

Proof. Necessity of the conditions is trivial. To see sufficiency, we assume without loss of generality that the arcs on bd(I) do not belong to any A_i . (We can add new arcs to D (but not to any A_i), without violating the cross-freeness and cut conditions.)

Choose an arbitrary point p_0 on bd(I), not being a vertex of D. For each $i = 1, \dots, k$, let Q_i be that of the two $r_i - s_i$ parts of bd(I) that does not contain p_0 . For each $i = 1, \dots, k$, let \mathcal{F}_i be the set of faces $F \neq I$ of D for which there exists a curve C starting in I and ending in F, such that $f(C) \in Q_i$, and such that C does not fit some choice of i_1, \dots, i_n satisfying (4) with $i_n = i$.

Note that, since no arc on bd(I) belongs to A_i , each arc in Q_i is on the boundary of $\bigcup \mathcal{F}_i$. Let B_i be the set of arcs on the boundary of $\bigcup \mathcal{F}_i$ but not in Q_i . We show that

(6) B_i is contained in A_i and contains a directed $r_i - s_i$ path.

Assume without loss of generality that r_i, p_0, s_i occur in this order clockwise around bd(I). Let a be an arc on the boundary of $\bigcup \mathcal{F}_i$ and not in Q_i . We show that a belongs to A_i and that a is oriented clockwise with respect to $\bigcup \mathcal{F}_i$.

Let a separate faces $F \in \mathcal{F}_i$ and $F' \notin \mathcal{F}_i$. By definition of \mathcal{F}_i , there exists a curve C starting in I and ending in F, such that $f(C) \in Q_i$ and such that C does not fit some choice i_1, \dots, i_n satisfying (4) with $i_n = i$. Now extend C to F' by crossing a, obtaining a curve C'.

If C' does not fit i_1, \dots, i_n , then F' = I (as $F' \notin \mathcal{F}_i$). Then, however, C' violates the cut condition.

So C' does fit i_1, \dots, i_n . Since C itself does not fit i_1, \dots, i_n , this implies that a belongs to A_i and that a is oriented clockwise with respect to $\bigcup \mathcal{F}_i$. This proves (6).

Choose for each $i = 1, \dots, k$ a directed $r_i - s_i$ path P_i in B_i . We finally show that if $\{i, j\} \in H$, then P_i and P_j are vertex-disjoint. Assume without loss of generality that i = 1, j = 2, and let $\{1, 2\} \in H$. Suppose some vertex v is traversed both by P_1 and P_2 . Hence v is incident with some face F_1 in \mathcal{F}_1 and with some face F_2 in \mathcal{F}_2 . It follows that there exists a curve C from I to F_1 such that $f(C) \in Q_i$ and such that C does not fit indices i_1, \dots, i_n satisfying (4) with $i_n = 1$.

By the cross-freeness condition, we know that parts Q_1 and Q_2 of bd(I) are either contained in each other or are disjoint.

First, assume that they are contained in each other, say $Q_1 \subseteq Q_2$. Then each face $F' \neq I$ incident with v is contained in \mathcal{F}_2 . To see this, we can extend curve C via v to F', yielding curve C'. As C does not fit $i_1, \ldots, i_n = 1$, it follows that C' does not fit $i_1, \ldots, i_n = 1$, it follows that C' does not fit $i_1, \ldots, i_n = 1$, it follows that C' = I incident with v, no arc incident with v belongs to B_2 , and hence P_2 does not traverse v.

Next, assume that Q_1 and Q_2 are disjoint. (So p_0 is in between Q_1 and Q_2 .) Since F_2 belongs to \mathcal{F}_2 , there exists a curve C' from I to F_2 not fitting indices $i'_1, \dots, i'_{n'}$ satisfying (4) (adapted to $C', i'_1, \dots, i'_{n'}$), such that $f(C') \in Q_2$ and such that $i'_{n'} = 2$.

Connect the curves C and C' by a $F_1 - F_2$ curve via v, yielding a curve C'' from I to I. Then C'' does not fit $i_1, \dots, i_n, i'_n, \dots, i'_1$, as we can easily check. This violates the cut condition. \Box

The theorem can be seen to give a "good characterization."

3. Special cases. In this section we describe some special cases of the problem and the theorem.

First, let G = (V, E) be an undirected planar graph, embedded in \mathbb{R}^2 . Let $\{r_1, s_1\}, \dots, \{r_k, s_k\}$ be pairs of vertices of G, each on the boundary of the unbounded face I of G. Robertson and Seymour [1] proved that there exist pairwise vertex-disjoint

paths P_1, \dots, P_k in G where P_i connects r_i and s_i for $i = 1, \dots, k$, if and only if no two of the pairs $\{r_i, s_i\}$ cross and each vertex cut of G contains at least as many vertices as it separates pairs from $\{r_1, s_1\}, \dots, \{r_k, s_k\}$.

This follows trivially from our theorem by replacing each arc by two opposite arcs, and taking for H the collection of all pairs from $\{1, \dots, k\}$.

The second special case generalizes the first. Let G = (V, E) be an undirected planar graph, embedded in \mathbb{R}^2 . Let R_1, \dots, R_t be pairwise disjoint sets of vertices of G, all on the boundary of the unbounded face I of G.

We say that two sets R and R' of vertices on the boundary of I cross if some pair of vertices in R crosses some pair of vertices in R'. We say that a cut separates a set R of vertices if the cut separates $\{r, s\}$ for some r, s in R.

Robertson and Seymour [1] proved more generally that there exist pairwise vertexdisjoint trees T_1, \dots, T_t in G such that T_i covers R_i $(i = 1, \dots, t)$ if and only if no two of the R_i cross, and each vertex cut of G contains at least as many vertices as it separates sets from R_1, \dots, R_t .

This follows from the theorem by replacing each edge of G by two opposite edges, by taking as pairs $(r_1, s_1), \dots, (r_k, s_k)$ all pairs (r, s) for which there exists an $i \in \{1, \dots, t\}$ such that $r, s \in R_i$, and by taking for H all pairs $\{j, j'\}$ from $\{1, \dots, k\}$ for which $r_j, s_j, r_{j'}$, and $s_{j'}$ do not all belong to the same set among R_1, \dots, R_t . (We take each A_j to be equal to the full arc set.)

As a third special case, consider a planar directed graph D = (V, A) and a collection of ordered pairs $(r_1, s_1), \dots, (r_k, s_k)$ on the boundary of the unbounded face I (with $r_i \neq s_i$ for $i = 1, \dots, k$). Then the theorem implies that there exists a directed $r_i - s_i$ path P_i for $i = 1, \dots, k$ so that P_1, \dots, P_k are pairwise vertex-disjoint if and only if no two of the (r_i, s_i) cross, and for each cut C not intersecting any of $r_1, s_1, \dots, r_k, s_k$, the following cut condition holds:

- (7) If C separates $(r_{i_1}, s_{i_1}), \dots, (r_{i_n}, s_{i_n})$, in this order, then C contains vertices p_1, \dots, p_n , in this order so that for each $j = 1, \dots, n$:
 - if r_{ij} is at the left-hand side of C, then at least one arc of D is entering C at p_j from the left and at least one arc of D is leaving C at p_j from the right;
 - if r_{i_j} is at the right-hand side of C, then at least one arc of D is entering C at p_j from the right and at least one arc of D is leaving C at p_j from the left.

This follows by taking for H the set of all pairs from $\{1, \dots, k\}$ and taking each A_i equal to A.

More generally, let D = (V, A) be a planar directed graph, let R_1, \dots, R_t be sets of vertices on the boundary of the unbounded face I of D, and let, for each $i = 1, \dots, k$, r_i be some vertex from R_i . The theorem gives necessary and sufficient conditions for the existence of pairwise vertex-disjoint rooted trees T_1, \dots, T_k in D, where T_i has root r_i and covers R_i $(i = 1, \dots, k)$. Again this follows straightforwardly with reductions like the above.

Finally, let D = (V, A) be a planar directed graph and let R_1, \dots, R_k be sets of vertices on the boundary of the unbounded face I of G. Again, it is straightforward to derive necessary and sufficient conditions for the existence of pairwise vertex-disjoint strongly connected subgraphs D_1, \dots, D_k such that D_i covers R_i (for $i = 1, \dots, k$).

REFERENCES

 N. ROBERTSON AND P. D. SEYMOUR, Graph minors VI. Disjoint paths across a disc, J. Combin. Theory Ser. B, 41 (1986), pp. 115-138.