DISJOINT PATHS IN A PLANAR GRAPH—A GENERAL THEOREM*

GUOLI DING ${ }^{\dagger}$, A. SCHRIJVER ${ }^{\ddagger}$, AND P. D. SEYMOUR ${ }^{\S}$

Abstract

Let $D=(V, A)$ be a directed planar graph, let $\left(r_{1}, s_{1}\right), \cdots,\left(r_{k}, s_{k}\right)$ be pairs of vertices on the boundary of the unbounded face, let A_{1}, \cdots, A_{k} be subsets of A, and let H be a collection of unordered pairs from $\{1, \cdots, k\}$. Given are necessary and sufficient conditions for the existence of a directed $r_{i}-s_{i}$ path P_{i} in $\left(V, A_{i}\right)$ (for $\left.i=1, \cdots, k\right)$, such that P_{i} and P_{j} are vertex-disjoint whenever $\{i, j\} \in H$.

Key words. disjoint paths, trees, planar graph
AMS(MOS) subject classifications. 05C35, 05C38, 05C70

1. Introduction. Let $D=(V, A)$ be a directed graph, let $\left(r_{1}, s_{1}\right), \ldots,\left(r_{k}, s_{k}\right)$ be pairs of vertices of D, let A_{1}, \cdots, A_{k} be subsets of A, and let H be a collection of unordered pairs from $\{1, \cdots, k\}$. We are interested in the conditions under which there exist directed paths P_{1}, \cdots, P_{k} so that
(i) P_{i} is a directed $r_{i}-s_{i}$ path in $\left(V, A_{i}\right)(i=1, \cdots, k)$;
(ii) P_{i} and P_{j} are vertex-disjoint for each $\{i, j\} \in H$.

In $\S 3$ we will discuss some special cases of this problem.
Since the problem is NP-complete, we may not expect a nice set of necessary and sufficient conditions characterizing the existence of paths satisfying (1). The problem is NP-complete even if we restrict the problem to instances with $k=2, A_{1}=A_{2}=A$, and $H=\{\{1,2\}\}$. Moreover, it is NP-complete when restricted to $A_{1}=\cdots=A_{k}=$ A, H is the collection of all pairs from $\{1, \cdots, k\}$, and D arises from an undirected planar graph by replacing each edge by two opposite arcs.

In this paper we give necessary and sufficient conditions for the problem when
D is planar and the vertices $r_{1}, s_{1}, \cdots, r_{k}, s_{k}$ all belong to the
boundary of one fixed face I.

The characterization extends the one given by Robertson and Seymour [1]. In fact, if (2) holds, there is an easy, greedy-type algorithm for finding the path P_{i}, as we discuss below.

Let D be embedded in the plane \mathbb{R}^{2}. We identify D with its image in the plane. Without loss of generality, we may assume I to be the unbounded face. (Each face is considered as an open region.) Moreover, we may assume that the boundary $\mathrm{bd}(I)$ of I is a simple closed curve. This is no restriction, since we can extend D by new arcs as long as we do not include them in any A_{i} and as long as we keep $r_{1}, s_{1}, \cdots, r_{k}, s_{k}$ on $\mathrm{bd}(I)$.

We say that two pairs (r, s) and (r^{\prime}, s^{\prime}) of vertices on $\operatorname{bd}(I)$ cross if each $r-s$ curve in $\mathbb{R}^{2} \backslash I$ intersects each $r^{\prime}-s^{\prime}$ curve in $\mathbb{R}^{2} \backslash I$. Clearly, the following is a

[^0]necessary condition for the existence of paths satisfying (1):
(3)
cross-freeness condition: if $\{i, j\} \in H$ then $\left(r_{i}, s_{i}\right)$ and $\left(r_{j}, s_{j}\right)$ do not cross.

Now the following algorithm finds paths as in (1) if (2) holds. First, check if the cross-freeness condition is satisfied. If not, our problem has no solution. If the crossfreeness condition is satisfied, choose a pair $\left(r_{i}, s_{i}\right)$ so that the shortest of the two $r_{i}-s_{i}$ paths along $\operatorname{bd}(I)$ is as short as possible (over all $\left.i=1, \cdots, k\right)$. Without loss of generality, $i=k$. Let Q be this shortest $r_{k}-s_{k}$ path along $\operatorname{bd}(I)$. If $\left(V, A_{k}\right)$ does not contain any $r_{k}-s_{k}$ path, then there are no paths satisfying (1). If (V, A_{k}) does contain an $r_{k}-s_{k}$ path, let P_{k} be the (unique) directed $r_{k}-s_{k}$ path in $\left(V, A_{k}\right)$ that is nearest to Q. Next, repeat the algorithm for $D,\left(r_{1}, s_{1}\right), \cdots,\left(r_{k-1}, s_{k-1}\right)$, removing from any A_{i} with $\{i, k\} \in H$ all those arcs incident with some vertex in P_{k}. After at most k iterations we either find paths as required, or we find that no such paths exist.

The correctness of the algorithm follows from the following observation. Suppose that there exist paths Q_{1}, \cdots, Q_{k} as required. Then, if k is as above, we may assume without loss of generality that Q_{k} is equal to P_{k}. Indeed, $Q_{1}, \cdots, Q_{k-1}, P_{k}$ also form a solution, since if P_{k} intersects some Q_{i}, then also Q_{k} intersects Q_{i}.

We describe a second necessary condition. Let C be some curve in \mathbb{R}^{2}, starting in I and ending in some face F. Let $f(C)$ and $l(C)$ denote the first and last point of intersection of C with D. Let i_{1}, \cdots, i_{n} be indices from $\{1, \cdots, k\}$ such that
(i) $f(C), r_{i_{1}}, s_{i_{1}}, \ldots, r_{i_{n}}, s_{i_{n}}$ are all distinct;
(ii) The $r_{i_{j}}-s_{i_{j}}$ part of $\operatorname{bd}(I)$ containing $f(C)$ is contained in the $r_{i_{j+1}}-s_{i_{j+1}}$ part of $\operatorname{bd}(I)$ containing $f(C)$, for $j=1, \cdots, n-1 ;$
(iii) $\left\{i_{j}, i_{j+1}\right\} \in H$ for $j=1, \cdots, n-1$.

For each $j=1, \cdots, n$ we define a set W_{j} as follows. If $f(C), r_{i_{j}}, s_{i_{j}}$ occur clockwise around $\operatorname{bd}(I), W_{j}$ is the set of points p on D traversed by C such that some arc in $A_{i_{j}}$ is entering C at p from the left and some arc in $A_{i_{j}}$ is leaving C at p from the right. Similarly, if $f(C), r_{i_{j}}, s_{i_{j}}$ occur counterclockwise around $\operatorname{bd}(I), W_{j}$ is the set of points p on D traversed by C such that some arc in $A_{i_{j}}$ is entering C at p from the right, and some arc in $A_{i_{j}}$ is leaving C at p from the left.

We say that C fits i_{1}, \cdots, i_{n} if there exist distinct points p_{1}, \cdots, p_{n} so that $p_{j} \in W_{j}$ for $j=1, \cdots, n$ and so that C traverses p_{1}, \cdots, p_{n} in this order. Now we have the following condition:
cut condition: each curve C starting and ending in I fits each choice of i_{1}, \cdots, i_{n} satisfying (4), whenever $(f(C), l(C))$ crosses each $\left(r_{i_{j}}, s_{i_{j}}\right)(j=1, \cdots, n)$.
2. The theorem. We now prove the following theorem.

Theorem. Let $D=(V, A)$ be a directed planar graph, embedded in the plane \mathbb{R}^{2}, let $\left(r_{1}, s_{1}\right), \cdots,\left(r_{k}, s_{k}\right)$ be pairs of vertices of D on $\operatorname{bd}(I)$, with $r_{i} \neq s_{i}$ for $i=1, \cdots, n$, let A_{1}, \cdots, A_{k} be subsets of A, and let H be a set of unordered pairs from $\{1, \cdots, k\}$.

Then there exist paths P_{1}, \cdots, P_{k} satisfying (1) if and only if the cross-freeness condition (3) and the cut condition (5) hold.

Proof. Necessity of the conditions is trivial. To see sufficiency, we assume without loss of generality that the arcs on $\operatorname{bd}(I)$ do not belong to any A_{i}. (We can add new arcs to D (but not to any A_{i}), without violating the cross-freeness and cut conditions.)

Choose an arbitrary point p_{0} on $\operatorname{bd}(I)$, not being a vertex of D. For each $i=$ $1, \cdots, k$, let Q_{i} be that of the two $r_{i}-s_{i}$ parts of $\operatorname{bd}(I)$ that does not contain p_{0}. For each $i=1, \cdots, k$, let \mathcal{F}_{i} be the set of faces $F \neq I$ of D for which there exists a curve C starting in I and ending in F, such that $f(C) \in Q_{i}$, and such that C does not fit some choice of i_{1}, \cdots, i_{n} satisfying (4) with $i_{n}=i$.

Note that, since no arc on $\operatorname{bd}(I)$ belongs to A_{i}, each arc in Q_{i} is on the boundary of $\bigcup \mathcal{F}$. Let B_{i} be the set of arcs on the boundary of $\bigcup \mathcal{F}_{i}$ but not in Q_{i}. We show that
(6) $\quad B_{i}$ is contained in A_{i} and contains a directed $r_{i}-s_{i}$ path.

Assume without loss of generality that r_{i}, p_{0}, s_{i} occur in this order clockwise around $\operatorname{bd}(I)$. Let a be an arc on the boundary of $\bigcup \mathcal{F}_{i}$ and not in Q_{i}. We show that a belongs to A_{i} and that a is oriented clockwise with respect to $\bigcup \mathcal{F}_{i}$.

Let a separate faces $F \in \mathcal{F}_{i}$ and $F^{\prime} \notin \mathcal{F}_{i}$. By definition of \mathcal{F}_{i}, there exists a curve C starting in I and ending in F, such that $f(C) \in Q_{i}$ and such that C does not fit some choice i_{1}, \cdots, i_{n} satisfying (4) with $i_{n}=i$. Now extend C to F^{\prime} by crossing a, obtaining a curve C^{\prime}.

If C^{\prime} does not fit i_{1}, \cdots, i_{n}, then $F^{\prime}=I$ (as $F^{\prime} \notin \mathcal{F}_{i}$). Then, however, C^{\prime} violates the cut condition.

So C^{\prime} does fit i_{1}, \cdots, i_{n}. Since C itself does not fit i_{1}, \cdots, i_{n}, this implies that a belongs to A_{i} and that a is oriented clockwise with respect to $\bigcup \mathcal{F}_{i}$. This proves (6).

Choose for each $i=1, \cdots, k$ a directed $r_{i}-s_{i}$ path P_{i} in B_{i}. We finally show that if $\{i, j\} \in H$, then P_{i} and P_{j} are vertex-disjoint. Assume without loss of generality that $i=1, j=2$, and let $\{1,2\} \in H$. Suppose some vertex v is traversed both by P_{1} and P_{2}. Hence v is incident with some face F_{1} in \mathcal{F}_{1} and with some face F_{2} in \mathcal{F}_{2}. It follows that there exists a curve C from I to F_{1} such that $f(C) \in Q_{i}$ and such that C does not fit indices i_{1}, \cdots, i_{n} satisfying (4) with $i_{n}=1$.

By the cross-freeness condition, we know that parts Q_{1} and Q_{2} of $\mathrm{bd}(I)$ are either contained in each other or are disjoint.

First, assume that they are contained in each other, say $Q_{1} \subseteq Q_{2}$. Then each face $F^{\prime} \neq I$ incident with v is contained in \mathcal{F}_{2}. To see this, we can extend curve C via v to F^{\prime}, yielding curve C^{\prime}. As C does not fit $i_{1}, \ldots, i_{n}=1$, it follows that C^{\prime} does not fit $i_{1}, \cdots, i_{n}=1, i_{n+1}=2$. So $F^{\prime} \in \mathcal{F}_{2}$. As this holds for each face $F^{\prime} \neq I$ incident with v, no arc incident with v belongs to B_{2}, and hence P_{2} does not traverse v.

Next, assume that Q_{1} and Q_{2} are disjoint. (So p_{0} is in between Q_{1} and Q_{2}.) Since F_{2} belongs to \mathcal{F}_{2}, there exists a curve C^{\prime} from I to F_{2} not fitting indices $i_{1}^{\prime}, \cdots, i_{n^{\prime}}^{\prime}$ satisfying (4) (adapted to $C^{\prime}, i_{1}^{\prime}, \cdots, i_{n^{\prime}}^{\prime}$), such that $f\left(C^{\prime}\right) \in Q_{2}$ and such that $i_{n^{\prime}}^{\prime}=2$.

Connect the curves C and C^{\prime} by a $F_{1}-F_{2}$ curve via v, yielding a curve $C^{\prime \prime}$ from I to I. Then $C^{\prime \prime}$ does not fit $i_{1}, \cdots, i_{n}, i_{n^{\prime}}^{\prime}, \cdots, i_{1}^{\prime}$, as we can easily check. This violates the cut condition.

The theorem can be seen to give a "good characterization."
3. Special cases. In this section we describe some special cases of the problem and the theorem.

First, let $G=(V, E)$ be an undirected planar graph, embedded in \mathbb{R}^{2}. Let $\left\{r_{1}, s_{1}\right\}, \cdots,\left\{r_{k}, s_{k}\right\}$ be pairs of vertices of G, each on the boundary of the unbounded face I of G. Robertson and Seymour [1] proved that there exist pairwise vertex-disjoint
paths P_{1}, \cdots, P_{k} in G where P_{i} connects r_{i} and s_{i} for $i=1, \cdots, k$, if and only if no two of the pairs $\left\{r_{i}, s_{i}\right\}$ cross and each vertex cut of G contains at least as many vertices as it separates pairs from $\left\{r_{1}, s_{1}\right\}, \cdots,\left\{r_{k}, s_{k}\right\}$.

This follows trivially from our theorem by replacing each arc by two opposite arcs, and taking for H the collection of all pairs from $\{1, \cdots, k\}$.

The second special case generalizes the first. Let $G=(V, E)$ be an undirected planar graph, embedded in \mathbb{R}^{2}. Let R_{1}, \cdots, R_{t} be pairwise disjoint sets of vertices of G, all on the boundary of the unbounded face I of G.

We say that two sets R and R^{\prime} of vertices on the boundary of I cross if some pair of vertices in R crosses some pair of vertices in R^{\prime}. We say that a cut separates a set R of vertices if the cut separates $\{r, s\}$ for some r, s in R.

Robertson and Seymour [1] proved more generally that there exist pairwise vertexdisjoint trees T_{1}, \cdots, T_{t} in G such that T_{i} covers $R_{i}(i=1, \cdots, t)$ if and only if no two of the R_{i} cross, and each vertex cut of G contains at least as many vertices as it separates sets from R_{1}, \cdots, R_{t}.

This follows from the theorem by replacing each edge of G by two opposite edges, by taking as pairs $\left(r_{1}, s_{1}\right), \cdots,\left(r_{k}, s_{k}\right)$ all pairs (r, s) for which there exists an $i \in$ $\{1, \cdots, t\}$ such that $r, s \in R_{i}$, and by taking for H all pairs $\left\{j, j^{\prime}\right\}$ from $\{1, \cdots, k\}$ for which $r_{j}, s_{j}, r_{j^{\prime}}$, and $s_{j^{\prime}}$ do not all belong to the same set among R_{1}, \cdots, R_{t}. (We take each A_{j} to be equal to the full arc set.)

As a third special case, consider a planar directed graph $D=(V, A)$ and a collection of ordered pairs $\left(r_{1}, s_{1}\right), \cdots,\left(r_{k}, s_{k}\right)$ on the boundary of the unbounded face I (with $r_{i} \neq s_{i}$ for $i=1, \cdots, k$). Then the theorem implies that there exists a directed $r_{i}-s_{i}$ path P_{i} for $i=1, \cdots, k$ so that P_{1}, \cdots, P_{k} are pairwise vertex-disjoint if and only if no two of the (r_{i}, s_{i}) cross, and for each cut C not intersecting any of $r_{1}, s_{1}, \cdots, r_{k}, s_{k}$, the following cut condition holds:

If C separates $\left(r_{i_{1}}, s_{i_{1}}\right), \cdots,\left(r_{i_{n}}, s_{i_{n}}\right)$, in this order, then C contains vertices p_{1}, \cdots, p_{n}, in this order so that for each $j=1, \cdots, n$:

- if $r_{i_{j}}$ is at the left-hand side of C, then at least one arc of D is entering C at p_{j} from the left and at least one arc of D is leaving C at p_{j} from the right;
- if $r_{i_{j}}$ is at the right-hand side of C, then at least one arc of D is entering C at p_{j} from the right and at least one arc of D is leaving C at p_{j} from the left.

This follows by taking for H the set of all pairs from $\{1, \cdots, k\}$ and taking each A_{i} equal to A.

More generally, let $D=(V, A)$ be a planar directed graph, let R_{1}, \cdots, R_{t} be sets of vertices on the boundary of the unbounded face I of D, and let, for each $i=1, \cdots, k$, r_{i} be some vertex from R_{i}. The theorem gives necessary and sufficient conditions for the existence of pairwise vertex-disjoint rooted trees T_{1}, \cdots, T_{k} in D, where T_{i} has root r_{i} and covers $R_{i}(i=1, \cdots, k)$. Again this follows straightforwardly with reductions like the above.

Finally, let $D=(V, A)$ be a planar directed graph and let R_{1}, \cdots, R_{k} be sets of vertices on the boundary of the unbounded face I of G. Again, it is straightforward to derive necessary and sufficient conditions for the existence of pairwise vertex-disjoint strongly connected subgraphs D_{1}, \cdots, D_{k} such that D_{i} covers R_{i} (for $i=1, \cdots, k$).

REFERENCES

[1] N. Robertson and P. D. Seymour, Graph minors VI. Disjoint paths across a disc, J. Combin. Theory Ser. B, 41 (1986), pp. 115-138.

[^0]: * Received by the editors June 4, 1990; accepted for publication (in revised form) November 8, 1990.
 \dagger Rutgers Center for Operations Research, Rutgers University, New Brunswick, New Jersey 08903.
 \ddagger Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.
 § Bellcore, 445 South Street, Morristown, New Jersey 07960.

