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We prove the following theorem, conjectured by K. Mehlhom: Let G = ( V, E) be 
a planar graph, embedded in the plane C. Let 0 denote the interior of the 
unbounded face, and let I be the interior of some fixed bounded face. Let C 1, ••• ,Ck 
be curves in IC \(Ju 0 ), with end points in V n bd(l u 0), so that for each vertex 
v of G the degree of t' in G has the same parity as the number of curves C, 
beginning or ending in t• (counting a curve beginning and ending in !' for two). 
Then there exist pairwise edge-disjoint paths P 1, ••• ,Pk in G so that P; is homotopic 
to C, in the space C\(/ u 0) for i =I, .. ., k, if and only if for each dual walk Q from 
{ /, 0} to ( /, 0 J the number of edges in Q is not smaller than the number of times 
Q necessarily intersects the curves C,. The theorem generalizes a theorem of 
Okamura and Seymour. We demonstrate how a polynomial-time algorithm finding 
the paths can be derived. < • 1990 Academic Pres>. Inc. 

1. THE THEOREM 

We prove the following theorem, conjectured by K. Mehlhorn in relation 
to the automatic design of integrated circuits ( cf. [ 1] ). 

THEOREM. Let G = ( V, E) he a planar graph, embedded in the plane C 
let 0 denote the interior of the unhoundedface. let I he the interior of some 
fixed bounded face. let C 1 , ... , Ck he cunies in C \(! u 0 ), with end points in 
V\ bd(l u 0 ), so that for each vertex v of G 

deg 0 (v) + degc1 ... ck(v) is even 
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("parity condition"). (1) 
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Then there exist pairwise edge-disjoint paths P 1 , ••• , P, in G so that P;-C; 
in IC\(/ u 0) (i = 1, ... , k) (f and only if jiJr each dual walk Q from { /, 0} to 
{ /, 0 } we have 

k 

e(Q)~ [ cr(Q, C;) ("cut condition"). (2) 
i= I 

We here use the following terminology and conventions. A graph may 
have multiple edges. We denote 

bd(F) :=boundary of F; 

degc;(v) :=the degree of v in G; 

degc1 •••• 0 (v) := I7= 1 Pi• where (3) 

Pi:= the number of end points of C; 

equal to v (so pi E { 0, I , 2} ). 

By a path we mean a path not containing the same edge twice (it may 
contain vertices more than once). Each of the curves C; is allowed to have 
self-intersections. By P - C in IC\ (I u 0 ), or just P - C, we mean that P 
and Care homotopic in the space IC\(Ju 0) (i.e., there exists a continuous 
function F:[O,l]x[0,1]--+IC\(/uO) so that F(O,·) follows P, F(l,·) 
follows C, F( ·, 0) is constant, and F( ·, 1) is constant; it implies that P and 
C have the same beginning point and have the same end point). 

A dual i,valk (from { /, 0} to { /, 0}) means a walk from one of I, 0 to 
one of 1, 0 in the dual graph 

(4) 

where F0 , ••• , F1 are faces, where e1 is an edge separating F1 _ 1 and F1 

(j= 1, ... , t), and where F0 and F1 are the only faces among F0 , ... , F1 

which belong to {I, 0 }. (The edges e 1 , ••• , e, and faces F0 , ••• , F, need not 
be distinct.) We denote by e(Q) the number of edges in Q, counting multi
plicities (so e(Q) =tin (4)). Moreover, 

cr(Q,C):=min{IQnCllQ-Q, c-c}. (5) 

Here we identify a dual walk in the obvious way with a curve in (; \(/ u 0), 
which is unique up to homotopy and up to the choice of the beginning and 
end points on the first and last edges of Q. (In IQ n Cl we count multi
plicities.) 

Note that 1 and 0 play a symmetric role: if the configuration is turned 
inside out, I and 0 can be interchanged. 

It is not difficult to see that our theorem implies the following theorem 
due to Okamura and Seymour [4]: 
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OKAMURA-SEYMOUR THEOREM. Let G = ( V, E) he a planar graph, 
embedded in the plane C. Let 0 denote the unhounded fi1ce. let 
r 1 , s 1, ••• , rk, sk he vertices on the boundary of' 0, so that for each vertex l' 

of G 

degG(v) + p( { v}) is even. (6) 

Then there exist pairwise edge-disjoint paths P 1 , ••• , Pk in G so that Pi 
connects r i and s, (i = I, ... , k ), i/ and only (/f()I" each U £ V 

du( U) ~ p( U). 

Here we denote 

de;( U) :=number of edges of G having exactly one end 
point in U, 

p( U) :=number of i = I, ... , k with exactly one of r i• si 
in U. 

(7) 

(8) 

The Okamura-Seymour theorem can be derived from our theorem by 
replacing each pair ri, si by an arbitrary curve in IC\O connecting ri and 
s;, and by adding, somewhere in 0, a new vertex with a loop, whose 
interior we call I. We should remark however that our proof below makes 
use of the Okamura -Seymour theorem. 

2. PROOF OF THE THEOREM 

Since necessity of the cut condition (2) is trivial, we only show 
sufficiency. Suppose the implication does not hold. Then there exists a 
counterexample G = ( V, £), /, C 1 , ••• , Ck such that each of the curves C1 is 
homotopically nontrivial and such that 21£1 - k is as small as possible. 
(Since 21£1 - k = IEI + ~ L:, e i (degc;(v)- degc, . .c, (t')) ~ IEI ~ 0, such a 
smallest counterexample exists.) 

We may assume that G is embedded in the complex plane IC so that 0 
belongs to I. We identify G with its topological image. 

For convenience we first show: 

Claim 1. No edge of G is incident at both of its sides to face 0. 
Similarly for face /. 

Proof of Claim 1. Suppose to the contrary that edge e is incident at 
both sides to 0. Then for the dual walk Q = ( 0, e, 0) we have e( Q) = I. 
Hence, by the parity and cut conditions, there is exactly one C, with 
er( Q, Ci) # 0, for which Ci we have er( Q, Ci) = 1. Without loss of 
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generality, i = 1. So C 1 passes edge e, and hence it can be decomposed as 
c;, e, C;' for certain curves C'1 and c;'. Then after deleting edge e and 
replacing C 1 by c; and c;' we are again in a situation where the parity 
and cut conditions hold. As in the new situation the number 21£1-k 
is smaller, there exist pairwise edge-disjoint paths P'1 - c;, P;' ""C~, 
P2 - C2 , ••• ,Pk - Ck. Defining P 1 := P'1, e, P;' we obtain a packing of paths 
as required. 

Similarly for face I. I 
Claim I implies that we may assume that both I and IC\ 0 are convex 

subsets of C. We next consider the "projection function" r:IC~IC\{O} 
given by r(z) := e1n=. So for each j E "/L, the restriction r I { z e Cij ~ 
Im z < j + 1 } is a bijection onto IC\ { 0}. Then, as is well-known, for any 
curve C: [O, 1] ~IC\ { 0} and any p Er 1( C(O) ), there exists a unique curve 
C': [O, 1] ~IC such that C'(O) = p and C = r ,, C' (Lemma 3.1 in Chapter 5 
of Massey [2] ). The curve C' is called a lifting of C to IC. 

For any i = 1, ... , k and j e "/L, let c; be the lifting of C; to IC with 
j~Im(C;(O))<j+l. Let rf:=Cj(O) and s{:=C~(l). Consider the 
(infinite) graph G' := r 1 [ G], with vertex set V' := r 1 [VJ. Then 
O' :=r- 1[0] and I' :=r- 1[I] are the two unbounded faces of G'. Now 
the cut condition (2) for G is equivalent to the "cut condition" for G' 

for each dual walk Q in G' from {I', O'} to {!', O'} we 
have e(Q) ~ p(Q), (9) 

where 

p( Q) :=the number of pairs (i, j) such that Q separates r{ 
andsf(i=l, ... ,k;je"/L). (10) 

Here Q separates vertices v' and v" if v' and v" belong to different com
ponents when we delete from G' all edges occurring in Q. 

We now first derive from the Okamura-Seymour theorem that (9) 
implies 

Claim 2. There exist pairwise edge-disjoint paths P; in G' such that P; 
connects rf and sf (i = I, ... , k; j e "lL ). 

Proof of Claim 2. Let Q be a dual walk in G' from I' to O' with 
e(Q)- p(Q) as small as possible. Clearly, Q is a simple walk (i.e., no face 
or edge occurs more than once in Q ). For j e "/L, let Q1 := Q + ji be the 
"copy" of Q obtained by replacing any edge e and face F in Q by their 
translatee + jiand F + ji (idenotes the complex number). LetN := e(Q)!.Let 

D :=sup{lm PIP belongs to some edge in Q} +Ni, 

C := inf{Im p Ip belongs to some edge in Q }. 
( 11) 
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Let V" := { v E V' IC~ Im v ~ D }. Contract all vertices i· of G' with 

Im v > D to one new vertex w. Contract all vertices r of G' with Im i· < C 

to one new vertex u. This gives the finite graph G" embedded in C. Let for 

any vertex v of G': 

u := v 

:=w 

:= ll 

if C~ Im v~ D, 

if Im v> D, 

if Im v <C. ( 12) 

Let K := {(i, j) Ii= 1, ... , k; j E ""£; if#.~{}. Then K 1s finite. Let 

r:=e(Q)-p(Q). Then for each Ur;; V"u {u, ll') 

where 

( i) d(j'.( V) ?! p( V), if U does not separate 11 and w, 

(ii) cfc,.(V)?!p(V)+r, if U separates 11 and \\', 

de; .. ( U) :=number of edges of G" with exactly one end 

point in U, 

p( U) :=number of pairs (i, j) in K so that U separates r; 

( 13) 

and sf. (14) 

Here U separates v' and v" if U contains exactly one of t•' and v". 

Since by the parity condition ( 1 ), 

dc; .. (v)=:p({v}) 

dG .. (11) = p( { u}) + r 

du .. (w)=:p({w})+r 

(mod2) 

(mod2), 

(mod2). 

for each t' E V". 

( 15) 

the Okamura-Seymour theorem gives us that in G" there exist pairwise 

edge-disjoint paths P~ (for (i, j) EK) and R; (for i= !, ... , r) such that P; 
connects r: and sf and each R; connects u and w. 

Since e( Q) = p( Q) + r, and similarly e( Qh) = p(Q 1i) + r for each h EE. 

each edge in Q1i is contained in a unique path P; + 1i. with (i, j) EL. or R;. 

for h = 0, ... , N. Here 

L := {(i, j) EK IQ separates if and s:}. (16) 

Since e(Q) = p( Q) + r = [ L[ + r, for each h = 0, ... , N there exists a bijection 

F 11 : E( Q) __. L u { I, ... , r} ( 17) 
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(where E(Q) denotes the set of edges in Q), given by 

F11 (e) :=(i,j)EL ife+hi belongs to P;+", 

:= i E { 1, ... , r} if e +hi belongs to R;. 

Therefore there exist two different h, h' E { 0, ... , N} such that F,, = F1i·· 

( 18) 

Having this, we can "glue" together copies of the part of G" in between 
Qh and Q1i to obtain G'. The packing of the paths P~ as it is between Q11 

and Q". extends to a packing of paths P'. as required. More precisely, path 
P'. is the path in G' consisting of those edges e for which the unique edge 
e+k(h-h')i satisfying: e+k(h-h')i is between Q" and Q,,. and kE"li., 
belongs to path P; +kill·· ,,. 1• I 

What in fact is equivalent to what must be proved is that there exists a 
periodic packing of paths P; of period l; that is, one for which p~+ 1 arises 
from P~ by the translation ::: -+:::+i. 

Since I is a convex subset of C, we know that the boundary of I' is 
linearly ordered by Im p <Im q for p, q E bd(l' ). Similarly for bd( O' ). We 
next claim: 

Claim 3. We may assume that r? E bd( O' ), that P? contains a vertex v 
on bd(O') with Im(r?l<Im(v), and that, if s?Ebd(O'), then Im(v)< 
Im(s~). 

Proof of Claim 3. First note that for no i, j are the vertices r; and s{ 
adjacent. Otherwise the curve C; would be homotopic to one of the edges 
of G, and then deleting this edge and deleting .this curve C; would yield a 
counterexample with smaller value of 21£1 - k. 

If no P~ in the packing found in Claim 2 contains any edge e on bd( O' ), 
we can delete in Gall edges on bd(O) without violating the cut condition 
( 2) (as deleting all edges on bd( O') from G' does not violate condition (9 ), 
since a packing of paths P~ exists also in the remaining graph). This would 
yield again a counterexample with smaller value of 21£1 - k. So at least one 
of the edges on bd( O') is used by one of the P;. Similarly for bd(I' ). 

Suppose now there is a path P'. having exactly one of its end points on 
bd( O') and containing a vertex v on bd( O') with v :f. r{ and v :f. s{. Then by 
renaming (i-+ I,}-+ 0) and possibly reorienting, we can arrive at the situa
tion described in the claim. 

So we may assume that no path P'. with exactly one of its end points on 
bd( O') has another point on bd( O' ). Similarly for bd(/' ). Since we know 
that at least one edge on bd( 0') is used by some P'., there must exist P'. 
with end points both on bd( O') or both on bd(l'). Without loss of 
generality, let there exist paths P~ with both end points on bd(O'). By 
interchanging r; and sf if necessary, we may assume lm(r{l < Im(sf) for 
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each of these paths. Choose i ', j', i ", j" such that r f., sf, r; , s{ all belong 
to bd ( O' ), such that Im( r; ) < I m(.1·{ ), and such that Im(s; ) - lm(r j) is as 
small as possible (possibly i'=i",j'=j"). Consider the edge e on bd(O') 
adjacent tor; in between rf. and s{ (i.e., Im(r{)<lm(p)<lm(s;.J for all 
points p on e ). 

If e is not used by any path P;, then (by the parity condition (I)) e is 
contained in a circuit or in an infinite path consisting of edges all not used 
by any Pj. Then we can insert this circuit into p;: or we can replace part 
of Pj: by part of this infinite path, so as to obtain that Pj: contains e. 
Hence we satisfy the claim (after renaming i' --> I, j' --> 0 ). 

So we may assume that e is used by some path Pj. This path cannot 
have exactly one of its end points on bd( O') (by the above), and hence r{, 
s;ebd(O') or r;,s;ebd(l'). Write Pj=(a,r;.,e,{J) for strings x,{J. If (J 
intersects p;:, say in vertex H', we can exchange the parts r(, ... , 1t' of P'. and 
P'. , thus satisfying the claim (after renaming i' ---> I, j' ---> 0 ). 

If f3 does not intersect P'. , then r;, s{ E bd( O') and for the end point p of 
/3 we have lm(p)>lm(rj}. Hence Im(s;)~Im(p)>lm(r{.), and therefore 
Im(s!) ~ lm(s{) (by the minimality of lm(s{. )- lm(r(l ). If also Im(rf) ~ 
Im(s{:) then P'. and p;:: intersect each other at least twice, and we can 
exchange parts of Pj and P'. so as to obtain that P;:: contains edge e, thus 
satisfying the claim (after renaming i" --> I, j" ---> 0 ). 

If lm(r;J < Im(s;:) then lm(r;) ~ Im(r(j (by the minimality of 
Im(sf.) - lm(r{· )), and hence the claim is satisfied (after renaming i-> I, 
.i _.. o J. I 

We now distinguish three cases. 

Case 1. sY E bd( O') and 

(See Fig. 1.) 
Define 

lm(v) ~ Im(ri>) + 1 

rb := r;, 
r~ := v +Ji, .<o; := s{ 

r-{ :== r-:' .'ii{:= s; 

(j E £' ), 

(jEZ), 

( i = 2, ... , k; j Ed.). 

( 19) 

(20) 

We claim that we have the analogue of (9) for the new situation. That is, 

e(Q)~p(Q) for each dual walk in G' from{/', O'} to{/', O'}, (21) 

where 
p( Q) := numer of pairs (i, j) such that Q separates Ff and 

§{(i=O, ... ,k;jel). (22) 
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or 

FIGURE I 

Note that 

1!( Q) = p( Q )+ 2 ·(number of j E £'. such that Q separates 
both f{1 and .1:/1, and fj and .l:j) (23) 

(as Q separates exactly one of the pairs rf)' .1:(1 and ,~j, .l:j if and only if Q 
separates rj and s(). 

If we have proved (21 ), Case I is done, as in the new situation the value 

of 21£1 - k is decreased (in the graph G), and hence there would exist 

a periodic packing of paths P'. connecting if and §! ( i = 0, ... , k; j E 71. ). 
Replacing the paths P~ and pi1 by the path P~ipi1 (for j E £'.), we would 

obtain a periodic packing of paths for the original situation. 

To show (21 ), let Q be any dual walk in G' from {!', O'} to {!', O' }. If 
for no j E Z, Q separates both rf» .1:{1 and fj, .l:j, then p( Q) = p( Q ), and 

hence e(Q) ~ p(Q) = p(Q). 
If for some j E Z, Q separates both f{)' .i'{i and Fj, .l:j, then we may assume 

thatj=O (by translating Q). By (19), for no other value ofjEZ, Q does 

separate both f6, .1:6 and fj, .l:j. So by (23), f)(Q)=p(Q)+2. Moreover, 

e(Q):?:p(Q)+2, since path P~ intersects Q twice (as P~ passes vertex v), 

while Q does not separate r? and sY. Hence e( Q) ;?: p( Q ). 

Case 2. s? E bd(O') and Im(r?J +I< Im(v) < Im(s\1)- 1. (See Fig. 2.) 



DISJOINT HOMOTOPIC PATHS 

Now let h := Jlm(v)- lm(r(:ll- I (where I l denotes upper integer 

part). Put 

.\:{i:=v+(j-h)i 

r( : = v + (} - h) i. .\:( :=.1·j 

. 1:; := s: 

(jE i). 

(jE i ) . 

(i = 2 .... , k: j E C ). 

We claim that again (21) holds, which would finish this case as before. 

Note that again (23) holds. Moreover, lm(.\:{1 ) ~ lm(r(,) + I. 
To show (21) in this case, let Q again be a dual walk in G' from : /'. o· l 

to { !', O' }. If for no j E Z, Q separates both r[, . . \:[1 and r( .. l:j. then 

p( Q) = p( Q ), and hence e( Q) ~ p( Q) = p( Q ). If for some j E IZ. Q separates 

both rb, .\:{1 and rj, .I:{, then again this j is unique (as Im(.\:/,)~ lm(r(,) + I). 
We may assume j= 0. So p(Q) = p(Q) + 2. Moreover. e(Q) ~ p(Q) + 2. 

This can be seen as follows. 

As Q separates both rg, sg and r~, .1:\1, as r = .1:;; +hi, and as 

Im(v)<lm(s~1 )-1, we know that there exists a tEl such that Q+ti 

separates both rg, v and 11, .\:~. Hence e( Q + ti) ~ p( Q + ti) + 2. as Q + ti 

I 
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1 ' 
' 

' ' 
' ' 

v 

}' ' ' ~() 

rl 

11 CJ 
rl 

fIUURl J 

intersects P 1i twice (as P\1 passes v, while Q does not separate rY and s~ ). 
Hence e(Q)? p(Q) + 2. 

Concluding, we have e(Q)?p(Q). 

Case 3. s~ E bd(/' ). (See Fig. 3.) 
Again let h :=llm(v)-Im(r~)l-1, and define as in (24). We claim that 
again (21) holds, finishing this case as before. Again (23) holds, and 
Im(sb);:;; lm(Fb) +I. 

Proving (21) in this case is similar to Case 2. Note that again, if Q 
separates both rg, .vii and r\1, s?, then there exists a t so that Q + ti 
separates both Fg, v and t', s\1, implying e( Q + ti)? p( Q + ti) + 2. I 

3. POLYNOMIAL-TIME SO LY ABILITY 

Our theorem characterizes the existence of pairwise edge-disjoint paths 
of given homotopies (if the parity condition holds). Although our proof is 
constructive, it does not yield directly a polynomial-time algorithm to find 
these paths (if they exist), mainly by the very large auxiliary graph G" 
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(used in proving Claim 2). We will show however that the theorem implies 
that the paths can be found in polynomial time. 

First note that it is not even immediate that our theorem yields a "good 
characterization", i.e., that the problem of deciding if the paths exist 
belongs to NP n co-NP. However, the following lemma implies that our 
theorem gives a good characterization. 

Again, let G = ( V, E) be a planar graph embedded in C. Let 0 be the 
unbounded face, and let I be some other face, including 0. Let C 1 , ••• , Ck be 
curves in C \(I u 0) with end points in V n bd(l u 0 ). Consider again the 
graph G' described in the proof above. I.e., let r(.::) := e2 n= for.:: EC, and let 
G' := r · 1 [ G], a graph with vertex set V' := r 1 [ V]. For i = 1, ... , k and 
jEZ, let rf be the unique point in C with r(r'.l=C(O) and j~lm(r!)< 
/+1, let c; be the unique curve in C with Cj(O)=r! and r C'.=C,, and 
lets{:= Cj( I). Let O' := r 1 [OJ and !' := r 1 [/].Trivially, the cut condi
tion (2) is equivalent to 

e(Q) ~ p(Q) for each dual walk Q in G' from {I', O'} 

to {!', O' }, (25) 

where p(Q) :=number of (i,/) for which Q separates rf and sf. 

Let R be a shortest dual walk from I' to O' (i.e., with a minimum 
number of edges). Again, let R + ji denote the translation of R by 
.:: r--+.:: +/i. Note that by the minimality of R, the paths R + /i do not have 
faces or edges in common (except for I', 0'), provided G is connected. 

LEMMA. Let G he connected. Then (25) holds, [(and only [fe(Q)~p(Q) 
for each dual walk Q in G' from { /', O'} to {I', O'} so that Q intersects at 
most 41£1 4· the walks R + ji in faces distinct from I', O'. 

Proof Necessity being trivial, we only show sufficiency. Suppose 
e(Q)<p(Q) for some dual walk Q from{!', O'} to{!', O'}, and suppose 
we have chosen this Q so that it intersects the minimum number t of the 
R+ ji. If t~41EI we are done, so assume t>41EI. In particular t> 1, 
implying 

e(R) ~ p(R). (26) 

By translation, we may assume that Q intersects R + i, R + 2i, ... , R + ti. 
Moreover, we may assume that it first intersects R + i, next R + 2i, next 
R + 3i, ... , finally R + ti. Otherwise we would have that, for some j, Q inter
sects R + ji (in face F say), next R + (j + 1) i, and then R + ji again (in face 
F' say). But then we can replace the part of Q between F and F' by the 
part of R + ji between F and F'. This does not change p( Q ), and does not 

582b 48 1·7 
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increase e( Q ), since R, and hence R +Ji also, is a shortest dual walk from 
I' to O'. 

We next prove that Q contains faces F', F" tj: { !', O'} so that F" = F' +i. 
Let 

(27) 

Choose for each j = l, ... ,tan element hi from { l, ... , m} so that Q intersects 
R+ji in face Fh1 +Ji. Since t>4\E[>m (as r[e0 ], ... ,r[emJ are distinct 
edges of G), there exists a j E { 2, ... , t - l} such that either h1 _ 1 ~ h1 and 
hi+ 1 ~hi or hi 1 ~hi and hi+ 1 ~hi. (Indeed, if h 1 = h2 letj = 2; if h 1 < h2 let 
j be the largest value so that h 1 < h2 < · · · <hi (so j ~ m ~ t - I); similarly, 
if h 1 > h2 let J be the largest value such that h 1 > h2 > · · · > h1.) 

It follows that part F11,., + (j - 1) i, ... , F1i, + ji of Q intersects part 
F1i, + (j - I ) i, ... , F111 +, +Ji of Q - i. So Q and Q - i have a face in common, 
implying that Q contains faces F', F" ~ {I', O'} such that F" = F' +i. 

Hence Q can be decomposed as Q'Q"Q"', where Q' connects {!', O'} 
with F', Q" connects F' and F" = F' + i, and Q "' connects F" and {I', 0'}. 
Now let Q 0 := Q"' -i. Then Q'Qc is a dual walk from {/', 0'} to {I', O'} 
satisfying 

e(Q'Q") = e(Q) - e(Q"), 

p(Q'Q")=p(Q)-number of i= I, ... , k for which (28) 

C; connects bd( 0) and bd(J). 

The second equation follows from the fact that Q intersects more than 
I£[ + 2 of the R +Ji, whereas each pair r;, s; is separated by at most 
e(R) ~ [£[ of the R +Ji (by (26 )). As Q'Q" intersects t- I of the R +Ji, we 
know that e(Q'Q 0 )~p(Q'Q'') holds, and hence (as e(Q)<p(Q)) 

e(Q")~(number of i=l, ... ,k: C; connects bd(O) and 

bd(J)) - I. (29) 

Now let L be a shortest dual path in G' from /' to F'. So e(L) ~ [£[. 
Consider the dual walk 

Q:=L·Q"·(Q"+i)·(Q"+2i)· ··· ·(Q"+(3[E[-l)i)(L 1 +3[E[i) (30) 

(where L 1 denotes the path reverse to L ). Then 

e( Q) = 2e( L) + 3 [ £[ · e( Q") ~ 2 [ £[ + 3 [ £[ · [ (number of i = I, ... , k: 

C; connects bd( 0) and bd(/)) - 1] 

< 3[E[(number of i= l, ... , k: C; connects bd(O) and bd(I)) 

~ p(Q). (31) 
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However, Q intersects at most 31 El + 2 ,,_:; 41 El of the R + ji, thus proving 
the Lemma. I 

Now consider the finite graph G" = ( V", E") (analogous to that occur
ring in the proof of the theorem) obtained from G' by contracting all ver
tices not "in between of" R and R + 41 Eli to two vertices. Again, by r; and 
s; we denote the vertices rf and sf after contraction. Let 
K := {(i, j) I r(f s{}. Consider the cut condition for G": 

d(j"( U) ;:::op( U) for each subset U of V", (32) 

where da .. ( U) is the number of edges having exactly one of its end points 
in U, and p( U) is the number of pairs (i, j) in K for which U separates r; 
and s;. By the Lemma we have, if G is connected, 

the cut condition holds for G, I, C 1 , ••• ,Ck if and only if 
(32) holds. (33) 

In particular 

the theorem gives a good characterization, (34) 

since if the cut condition for G is violated we can show this by specifying 
a violated cut for G" (if G is not connected, then the cut condition ( 2) is 
violated by one of the components of G). 

The Lemma also implies 

the cut condition (2) can be checked in polynomial time. (35) 

Indeed, checking the cut condition (2) reduces to testing if de;·( U) ;:::op( U) 

holds for each subset U of V", which can be done easily in polynomial 
time. (For each pair of edges e', e" on bd(O") (where O" denotes the 
unbounded face of G" ), we find a shortest dual walk Q" in G" from O" to 
O" such that Q" starts with O", e' and ends with e", O". Then Q" deter
mines a subset U of V" such that the only two edges on bd( O') leaving U 
are e' and e", and such that d(j . .( U) is minimal. Since e', e" determine p( U), 

the inequality e( Q) ;:::op( Q) is easily checked. If this inequality holds for 
each pair of edges e', e" on bd(O") then (32) holds, and otherwise not.) 

So our theorem together with (35) implies that the problem of deciding 
if paths as required exist belongs to the complexity class ./> (if the parity 
condition holds). How are we to find these paths in polynomial time when 
they exist? We describe a brute-force polynomial-time method. 

Consider any shortest dual walk R in G from I to 0. We may assume 
that the curves C; are given as walks in G. The steps of the algorithm are 

as follows. 

Step l. Check if the cut condition holds. If not, stop (the required 

paths do not exist). If so, go to step 2 (the required paths exist). 
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Step 2. Check if there exist a curve C; and an edge e of G such that C, 
is homotopic to e. If so. delete C, and e, and repeat step 2. (Add P; :=e to 
the final packing of pairs.) If not, go to step 3. 

Step 3. Check if the cut condition is preserved after deleting all edges 
on the boundary of I. If so, delete all edges on the boundary of I, and 
repeat step 3. If not, go to step 4. 

Step 4. If there is no curve C; left, stop. If there are curves C1 left, we 
know that there is a packing of paths as required (as the cut condition 
holds), and that one of the curves should use an edge on the boundary of 
I (as we have performed step 3 ), without being itself homotopic to this 
edge (as we have performed step 2 ). Hence some curve C; can be replaced 
by two curves c;, C;' such that c; and C;' are homotopic nontrivial, such 
that C; is homotopic to c; · C;', and such that the cut condition is preser
ved. As the cut condition is preserved, we know moreover that we can take 
c; and c;' such that they do not intersect the edges of R more than e(R) 
times. So we can find for some curve C; curves c; and C;' which are 
homotopic nontrivial, such that C; is homotopic to c; · C;', such that c; 
and C;' intersect Rat most e(R) times, and such that the cut condition is 
preserved after replacing C; by c; · C;'. There are at most I VI · e(R) paths 
c; to consider (up to homotopy); similarly for c;'. Replace C1 by c; and 
C:', and go to step 2. (In the final packing, replace paths P; ~ c; and 
P;' ~ c;' by P; · P;' ~ C,.) 

The polynomially bounded running time of this algorithm follows from 
the facts that the cut condition can be checked in polynomial time, that 
steps 2 and 3 are performed at most I El times, and that step 4 is performed 
at most IEI -k = 1 .L,'E v (degG(v)-degc, .. 0 (v)) times (as by splitting C; 
into c; and C;' this last sum is decreased by 1 ). 

4. FURTHER REMARKS 

The parity condition (1) cannot be deleted in the theorem, as is shown 
by Fig. 4, (in which dotted lines represent curves). 
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The obvious extension of our theorem to more than one "'hole" does not 
hold, as is shown by the example in Fig. 5. Kaufmann and Mehlhorn [I] 
showed that an extension to arbitrarily many holes holds in the case of 
so-called grid graphs. See [5] for a generalization. 

There is another extension of the Okamura-Seymour theorem, due to 
Okamura [3 ], which resembles our theorem, but which is different: Let 
G = ( V, E) be a planar graph embedded in the plane C, let 0 be the 
interior of the unbounded face, let I be the interior of some other face, let 
r 1 , ••. , r,,,, s 1 , ... , s,,, E V n bd(O), and let r,,, + 1 , ..• , rk, s,,,+ 1 , ..• , sk E V n bd(J), 
so that the parity condition ( 6) holds. Then there exist pairwise edge
disjoint paths P 1 , ••• , Pk such that P; connects r, and s; ( i = 1, ... , k) if and 
only if the cut condition ( 7) holds. 

We did not see an implication, one way or the other, between our 
theorem and Okamura's. 
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