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We prove the following theorem, conjectured by K. Mehlhorn: Let G=(V, E) be
a planar graph, embedded in the plane C. Let O denote the interior of the
unbounded face, and let I be the interior of some fixed bounded face. Let C,, ..., Cy
be curves in C\(/w O), with end points in V' nbd(/u O), so that for each vertex
v of G the degree of v in G has the same parity as the number of curves C,
beginning or ending in v (counting a curve beginning and ending in v for two).
Then there exist pairwise edge-disjoint paths P, ..., P, in G so that P, is homotopic
to C, in the space C\(/u O) for i = 1, ..., k. if and only if for each dual walk Q from
11,0} to {1, O} the number of edges in Q is not smaller than the number of times
Q necessarily intersects the curves C,. The theorem generalizes a theorem of
Okamura and Seymour. We demonstrate how a polynomial-time algorithm finding
the paths can be derived. ¢ 1990 Academic Press, Inc.

1. THE THEOREM

We prove the following theorem, conjectured by K. Mehlhorn in relation
to the automatic design of integrated circuits (cf. [1]).

THEOREM. Let G=(V, E) be a planar graph, embedded in the plane C.
Let O denote the interior of the unbounded face. Let 1 be the interior of some
Jixed bounded face. Let C, ..., C, be curves in C\(I'u Q), with end points in
VAbA(I L O), so that for each vertex v of G

degg(v)+deg,. . (- (v) is even (“parity condition™). (1)
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Then there exist pairwise edge-disjoint paths P, .., P, in G so that P,~C,
in C\(Iu O) (i=1, .., k)if and only if for each dual walk Q from {I, 0} to
{I,0} we have

B
e(Q)= ) er(Q,C)) (“cut condition™). (2)
i=1

We here use the following terminology and conventions. A graph may
have multiple edges. We denote

bd(F) :=boundary of F;
deg(v) :=the degree of v in G;

(';,(U) = f:l Pis where (3)

p, :=the number of end points of C,
equal to v (so p; € {0, 1,2}).

By a path we mean a path not containing the same edge twice (it may
contain vertices more than once). Each of the curves C, is allowed to have
self-intersections. By P~ C in C\(/u O), or just P~ C, we mean that P
and C are homotopic in the space C\(/u O) (i.e, there exists a continuous
function F:[0,1]x[0,1]->C\(/uO) so that F(0,-) follows P, F(1,.)
follows C, F(-,0) is constant, and F(-, 1) is constant; it implies that P and
C have the same beginning point and have the same end point).

A dual walk (from {I,0} to {I, O}) means a walk from one of 7,0 to
one of 1, O in the dual graph

Q=(F0,€],F1,E’2,Fg_,...,F,_|,€,,F,), (4)

where Fy, .., F, are faces, where e; is an edge separating £, , and F,
(j=1,..,t), and where F, and F, are the only faces among F,,..F,
which belong to {1, O}. (The edges ¢, .., e, and faces F,, .., F, need not
be distinct.) We denote by ¢(Q) the number of edges in Q, counting multi-
plicities (so e(Q) =1 in (4)). Moreover,

er(Q. C)=min{|J AT 0~ 0, T~C). (5)

Here we identify a dual walk in the obvious way with a curve in C\(/u 0),
which is unique up to homotopy and up to the choice of the beginning and
end points on the first and last edges of Q. (In |O n C| we count multi-
plicities.)

Note that / and O play a symmetric role: if the configuration is turned
inside out, 7 and O can be interchanged.

It is not difficult to see that our theorem implies the following theorem
due to Okamura and Seymour [4]:
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OKAMURA-SEYMOUR THEOREM. Let G=(V, E) bhe a planar graph,
embedded in the plane C. Let O denote the unbounded fuce. Let

Fis 81y Ty S, be vertices on the boundary of O, so that for each vertex v
of G

degg(v) + p({v}) is even. (6)

Then there exist pairwise edge-disjoint paths P, .., P, in G so that P,
connects r; and s, (i=1, .., k), if and only if for each U< V

dg(U) = p(U). (7)
Here we denote

di(U) :=number of edges of G having exactly one end

point in U,
(8)

p(U) :=number of i=1,..,k with exactly one of r, s,
in U.

The Okamura-Seymour theorem can be derived from our theorem by
replacing each pair r;, s; by an arbitrary curve in C\O connecting r; and
$;, and by adding, somewhere in O, a new vertex with a loop, whose
interior we call /. We should remark however that our proof below makes
use of the Okamura-Seymour theorem.

2. PROOF OF THE THEOREM

Since necessity of the cut condition (2) is trivial, we only show
sufficiency. Suppose the implication does not hold. Then there exists a
counterexample G=(V, E), I, C,, .., C, such that each of the curves C, is
homotopically nontrivial and such that 2|E| —k is as small as possible.
(Since 2|E|—k=|E|+ 5%, ., (dego(v)—deg., _ (v))=|E| =0, such a
smallest counterexample exists.)

We may assume that G is embedded in the complex plane C so that 0
belongs to 1. We identify G with its topological image.

For convenience we first show:

Claim 1. No edge of G is incident at both of its sides to face O.
Similarly for face 1.

Proof of Claim 1. Suppose to the contrary that edge e is incident at
both sides to O. Then for the dual walk Q =(0, ¢, O) we have e(Q) = 1.
Hence, by the parity and cut conditions, there is exactly one C, with
cr(Q, C,)#0, for which C, we have cr(Q, C,)=1. Without loss of
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generality, i=1. So C, passes edge ¢, and hence it can be decomposed as
C, e, Cy for certain curves ('} and C7. Then after deleting edge ¢ and
replacing €, by €} and C| we are again in a situation where the parity
and cut conditions hold. As in the new situation the number 2|E| -k
is smaller, there exist pairwise edge-disjoint paths P\~ Cy, P{~Cj,
Py~C,, .., P~ C,. Defining P, := P}, e, P{ we obtain a packing of paths
as required.
Similarly for face I. §

Claim | implies that we may assume that both / and C\O are convex
subsets of C. We next consider the “projection function” :C — C\{0}
given by t(z):=e’. So for each jeZ, the restriction t|{zeC|j<
Imz<j+1} is a bijection onto C\{0}. Then, as is well-known, for any
curve C: [0, 1] - C\{0} and any pet '(C(0)), there exists a unique curve
C'": [0, 1] - C such that C'(0)=p and C=1-C’" (Lemma 3.1 in Chapter 5
of Massey [2]). The curve (' is called a lifting of C to C.

For any i=1,..,k and jeZ, let C’/ be the lifting of C; to C with
j<Im(Ci(0))<j+1. Let r/:=C’(0) and s/:=C’1). Consider the
(infinite) graph G':=t '[G], with vertex set V':=t '[V] Then
O’ :=17'[0] and I’ :=t '[I] are the two unbounded faces of G’. Now
the cut condition (2) for G is equivalent to the “cut condition” for G’

for each dual walk Q in G’ from {I',0'} to {I',0'} we
have e(Q) = p(Q), 9)
where

p(Q) :=the number of pairs (i, j) such that Q separates r/
and s/ (i=1, ., k; je Z). (10)

Here Q separates vertices v’ and v” if v" and v” belong to different com-
ponents when we delete from G’ all edges occurring in Q.

We now first derive from the Okamura-Seymour theorem that (9)
implies

Claim 2. There exist pairwise edge-disjoint paths P/ in G’ such that P/
connects r/ and s/ (i=1, .., k; jeZ).

Proof of Claim 2. Let Q be a dual walk in G’ from I’ to O’ with
e(Q)— p(Q) as small as possible. Clearly, Q is a simple walk (i.e., no face
or edge occurs more than once in Q). For jeZ, let Q,:=Q + ji be the
“copy” of Q obtained by replacing any edge ¢ and face F in Q by their
translate e + jiand F + ji (i denotes the complex number). Let N :=e(Q)!. Let

D :=sup{Im p| p belongs to some edge in Q} + Ni, (1)
C :=inf{Im p| p belongs to some edge in Q}.
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Let V':={veV'|C<Imuv< D} Contract all vertices ¢ of G’ with
Imv> D to one new vertex w. Contract all vertices v of G’ with Imvr < C
to one new vertex u. This gives the finite graph G” embedded in C. Let for
any vertex v of G":

D=0 if C<Imov<gD,
=w if Imv>D,
=u if Imv<C. (12)

Let K:={(/)li=1,.,ki jeZ, F#3}

. Then K 1is finite. Let
ri=e(Q)—p(Q). Then for each U< V" U {u, w}

(1) dg(U)zp(U), if U does not separate u and w,
. . (13)
(i) dg(U)zp(U)+r, if U separates u and w,

where

dg(U) :=number of edges of G” with exactly one end
point in U,

p(U) := number of pairs (i, j) in K so that U separates 7/
and §7. (14)
Here U separates v’ and v” if U contains exactly one of ¢’ and ¢v".
Since by the parity condition (1),
de(v)=p({v}) (mod 2) for each vel”,
de(u)y=p({ul)+r (mod 2), (15)
de-(w)=p({w})+r (mod 2),
the Okamura-Seymour theorem gives us that in G” there exist pairwise
edge-disjoint paths P/ (for (i, j)e K) and R, (for i=1,...r) such that P’/
connects #/ and §/ and each R, connects u and w.
Since e(Q)=p(Q)+r, and similarly e(Q,)=p(Q,)+r for each hel,

each edge in O, is contained in a unique path P/*", with (i, j)e L, or R;,
for h=0, ..., N. Here

L :={(i, j)e K| Q separates 7/ and §/}. (16)
Since e(Q)=p(Q)+r=|L| +r, for each h=0, ..., N there exists a bijection

F,: E(Q)—=Lu{l,..r} (17)
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(where E(Q) denotes the set of edges in Q), given by

F,(e):= (i, j)e L if e + hi belongs to P/* ", g
. (1
:=je{l,..,r} if e+ hi belongs to R;. )

Therefore there exist two different h, 4" € [0, .., N} such that F,=F,.

Having this, we can “glue” together copies of the part of G” in between
Q, and Q, to obtain G'. The packing of the paths P/ as it is between Q,
and Q, extends to a packing of paths P’ as required. More precisely, path
P’ is the path in G’ consisting of those edges ¢ for which the unique edge
e+ k(h—h')i satisfying: e +k(h—h')i is between Q, and O, and keZ,
belongs to path P/+A" 7§

What in fact is equivalent to what must be proved is that there exists a
periodic packing of paths P’ of period 1; that is, one for which P/* ' arises
from P/ by the translation = — = +i.

Since [ is a convex subset of C, we know that the boundary of I' is
linearly ordered by Im p<Im g for p, g€ bd(l'). Similarly for bd(O’). We
next claim:

Claim 3. We may assume that r{ e bd(O’), that P{ contains a vertex v
on bd(0’) with Im(r{)<Im(v), and that, if sYebd(0Q’), then Im(v)<
Im(s").

Proof of Claim 3. First note that for no i, j are the vertices r/ and s/
adjacent. Otherwise the curve C; would be homotopic to one of the edges
of G, and then deleting this edge and deleting this curve C; would yield a
counterexample with smaller value of 2|E| — k.

If no P/ in the packing found in Claim 2 contains any edge ¢ on bd(0'),
we can delete in G all edges on bd(O) without violating the cut condition
(2) (as deleting all edges on bd(O’) from G’ does not violate condition (9),
since a packing of paths P’ exists also in the remaining graph). This would
yield again a counterexample with smaller value of 2| E| — k. So at least one
of the edges on bd(0’) is used by one of the P/. Similarly for bd(!’).

Suppose now there is a path P/ having exactly one of its end points on
bd(O’) and containing a vertex v on bd(0') with v # r/ and v #s/. Then by
renaming (/ — 1, j —» 0) and possibly reorienting, we can arrive at the situa-
tion described in the claim.

So we may assume that no path P/ with exactly one of its end points on
bd(0’) has another point on bd(O’). Similarly for bd(/"). Since we know
that at least one edge on bd(0O’) is used by some P’, there must exist P/
with end points both on bd(O’) or both on bd(/’). Without loss of
generality, let there exist paths P/ with both end points on bd(O’). By
interchanging r/ and s/ if necessary, we may assume Im(r/) <Im(s/) for
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each of these paths. Choose i', j', i", j” such that r/., s/, r/., sl all belong
to bd(O’), such that Im(r/) <Im(s/"), and such that Im(s/) — Im(r/) is as
small as possible (possibly i"=i", j'=j"). Consider the edge ¢ on bd(O’)
adjacent to r! in between r/. and s/. (ie., Im(r/)<Im(p)<Im(s/.) for all
points p on ¢).

If ¢ is not used by any path P/, then (by the parity condition (1)) e is
contained in a circuit or in an infinite path consisting of edges all not used
by any P’. Then we can insert this circuit into P/. or we can replace part
of P4, by part of this infinite path, so as to obtain that P/, contains e.
Hence we satisfy the claim (after renaming i’ — 1, j' — 0).

So we may assume that e is used by some path P/. This path cannot
have exactly one of its end points on bd(0') (by the above), and hence r/,
s7ebd(0’) or r!,slebd(l'). Write P/=(a,r/, e, f) for strings o, . If f
intersects P/, say in vertex w, we can exchange the parts r/., .., w of P/ and
P/, thus satisfying the claim (after renaming i’ — 1, j' = 0).

If § does not intersect P/, then r/, s/ebd(Q’) and for the end point p of
B we have Im(p)>Im(r/). Hence Im(s/)>Im(p)>Im(r/), and therefore
Im(s/) = Im(s/.) (by the minimality of Im(s/.) —Im(r!)). If also Im(r/) =
Im(s/’) then P/ and P’. intersect each other at least twice, and we can
exchange parts of P/ and P’. so as to obtain that P/. contains edge e, thus
satisfying the claim (after renaming i” — 1, j” — 0).

If Im(r/)<Im(s/.) then Im(r/)<Im(r/) (by the minimality of
Im(s/.) —Im(r!)), and hence the claim is satisfied (after renaming i/ — 1,

We now distinguish three cases.

Case 1. sYebd(0’') and

Im(v) < Im(r)) + 1 or Im(v)zIm(s{)~—1. (19)
(See Fig. 1.)
Define
Flo=r, Fhi=v+ji (jeZ),
Fli=v+ji, §:=s] (jeZ), (20)
Fli=rl, §li=gs! (i=2, .. kijeZ)

We claim that we have the analogue of (9) for the new situation. That is,
e(Q)=p(Q) for each dual walk in G’ from {I', O’} to {I', 0"}, (21)

where
p(Q) :=numer of pairs (i, j) such that Q separates 7/ and
§(i=0, .. k; je). (22)
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Note that

p(Q)=p(Q)+2 - (number of je Z such that Q separates
both 7} and §), and 7] and §}) (23)

(as Q separates exactly one of the pairs 7}, 5 and 7{, §] if and only if Q
separates r} and s7).

If we have proved (21), Case | is done, as in the new situation the value
of 2|E| —k is decreased (in the graph G), and hence there would exist
a periodic packing of paths P’ connecting 7! and 5/ (i=0, .., k; je Z).
Replacing the paths P/ and P/ by the path P{ P’ (for jeZ), we would
obtain a periodic packing of paths for the original situation.

To show (21), let O be any dual walk in G’ from {/’, 0’} to {I',0"}. If
for no jeZ, Q separates both 7}, §, and F|, §{, then p(Q)=p(Q), and
hence e(Q) > p(Q) = p(Q). o o

If for some je Z, Q separates both 7}, 5, and 7/, §/, then we may assume
that j=0 (by translating Q). By (19), for no other value of je Z, O does
separate both 7, §) and 7/, §|. So by (23), p(Q)=p(Q)+ 2. Moreover,
e(Q)=p(Q) +2, since path PY intersects Q twice (as P passes vertex v),
while Q does not separate r{ and s{. Hence ¢(Q) = p(Q).

Case 2. s)ebd(0') and Im(r) + 1 <Im(v) < Im(s%) — 1. (See Fig. 2.)
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Now let b :=[Im(v)—Im(r})7—1 (where [ 7| denotes upper integer
part). Put

Fh=r, Spr=v+(j=b)i (el
Fli=v4+(j—b)i, 3= (JeZ). (24
f.l/_':=r.'/:’ S“,( t= _g" (i=2, ..k jel).

We claim that again (21) holds, which would finish this case as before.
Note that again (23) holds. Moreover, Im(5)) <Im(F}) + 1.

To show (21) in this case, let Q again be a dual walk in G’ from {1, 0"}
to {I,0'). If for no jeZ, Q separates both 7§, 5) and F{. §{. then
p(Q)=p(Q), and hence ¢(Q) = p(Q)=p(Q). If for some je Z, Q separates
both 7, §) and 7}, §|, then again this j is unique (as Im(sy) < Im(rj) +1).
We may assume j=0. So p(Q)=p(Q)+ 2. Moreover, e(Q)=pl(Q)+2.
This can be seen as follows.

As Q separates both 7§, 5§ and 7, 5V, as v=3§+bi, and as
Im(v)<Im(5%)—1, we know that there exists a reZ such that QO+
separates both 7y, v and v, §V. Hence e(Q +1i) = p(Q +1i)+ 2. as Q+i

FIGURE 2
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-0 =0
F178y

FIGURE 3

intersects P! twice (as P{ passes v, while Q does not separate r{ and s9).

Hence ¢(Q) = p(Q) + 2.
Concluding, we have ¢(Q) = p(Q).

Case 3. sYebd(!l’). (See Fig. 3.)
Again let b :=[Im(v)—Im(r{)]— 1, and define as in (24). We claim that
again (21) holds, finishing this case as before. Again (23) holds, and
Im(54) < Im(7)) + 1.
Proving (21) in this case is similar to Case 2. Note that again, if O
separates both 7y, 5 and 7, §¥, then there exists a ¢ so that Q-+
=0

separates both 7y, v and v, §¥, implying e(Q + i) = p(Q + 1i)+2. 1]

3. POLYNOMIAL-TIME SOLVABILITY

Our theorem characterizes the existence of pairwise edge-disjoint paths
of given homotopies (if the parity condition holds). Although our proof is
constructive, it does not yield directly a polynomial-time algorithm to find
these paths (if they exist), mainly by the very large auxiliary graph G"
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(used in proving Claim 2). We will show however that the theorem implies
that the paths can be found in polynomial time.

First note that it is not even immediate that our theorem yields a “good
characterization™, i.e. that the problem of deciding if the paths exist
belongs to NP nco-NP. However, the following lemma implies that our
theorem gives a good characterization.

Again, let G=(V, E) be a planar graph embedded in C. Let O be the
unbounded face, and let I be some other face, including 0. Let C,, ..., C, be
curves in C\(/u O) with end points in ¥ nbd({/u O). Consider again the
graph G’ described in the proof above. Le., let 7(z) :=e>™ for zeC, and let
G :=1t"'[G], a graph with vertex set V':=t '[V]. For i=1,..,k and
jeZ, let r/ be the unique point in C with (/)= C(0) and j<Im(r/)<
j+1, let C’ be the unique curve in C with C/(0)=r/ and t-C/=C,, and
let s/ :=C/(1). Let O' :=1 '[O] and I' := 1 '[I]. Trivially, the cut condi-
tion (2) is equivalent to

e(Q)=p(Q) for each dual walk Q in G’ from {Z’, 0"}
to {I',0'}, (25)

where p(Q) :=number of (i, j) for which Q separates r/ and s..

Let R be a shortest dual walk from I’ to O’ (i.e., with a minimum
number of edges). Again, let R+ ji denote the translation of R by
z+> 2+ ji. Note that by the minimality of R, the paths R+ ji do not have
faces or edges in common (except for /', O'), provided G is connected.

LEMMA. Let G be connected. Then (25) holds, if and only if e(Q) = p(Q)
Sor each dual walk Q in G’ from {I', 0"} to {I', 0"} so that Q intersects at
most 4|E| of the walks R+ ji in faces distinct from I', O'.

Proof. Necessity being trivial, we only show sufficiency. Suppose
e(Q)< p(Q) for some dual walk Q from {I', O’} to {I', O'}, and suppose
we have chosen this Q so that it intersects the minimum number ¢ of the
R+ji. If t<4|E| we are done, so assume f>4|E|. In particular > 1,
implying

e(R)= p(R). (26)

By translation, we may assume that Q intersects R+1, R+2i, .., R+ 1i
Moreover, we may assume that it first intersects R +1i, next R+ 2i, next
R+ 3, ..., finally R + ri. Otherwise we would have that, for some j, Q inter-
sects R + ji (in face F say), next R+ (j+ 1)i, and then R + ji again (in face
F’ say). But then we can replace the part of Q between F and F’ by the
part of R+ ji between F and F'. This does not change p(Q), and does not

582b 48 1-7
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increase ¢(Q), since R, and hence R+ ji also, is a shortest dual walk from
I'to O'.

We next prove that Q contains faces F', F”" ¢ {I', O’} so that F" = F’ +1i.
Let

R=(I',ey, F, ey, s, 1, Foise,,, O). 27)

Choose for each j=1, ..., t an element A; from {1, .., m} so that Q intersects
R+ ji in face F, +ji. Smce t>4|E|>m (as ‘C[é’o] ., Tle,,] are distinct
edges of G), there exists a je{2, .., t—1} such that elther h;_y<h; and
hi 1 <hjorh;,_=h;and h,, , =h, (lndeed ifh =h,letj=2;ifh <h,let
J be the largest value so that h) <h, < --- <h, (SOj<m <tr—-1); 31m11arly,
if hy>h, let j be the largest value such that 7, >hy,> -~ >h;.)
It follows that part F,  +(j—1)i,..,F,+ji of Q intersects part
Fy+ (=i, .., F,  +jiof Q—i So Q and Q —i have a face in common,
implying that Q contains faces F', F"¢ {I', O’} such that F" = F'+1i.
Hence Q can be decomposed as Q'Q"Q", where Q' connects {I’, 0"}

with F’, Q" connects F' and F" = F’ +i, and Q" connects F" and {I’, 0'}.
Now let Q¢ := Q" —i. Then Q'Q° is a dual walk from {/’,0'} to {I', 0’}
satisfying

e(Q'0%)=e(Q)—e(Q"),

p(Q'Q°) = p(Q)—number of i =1, ..., k for which (28)

C, connects bd(0O) and bd([).

The second equation follows from the fact that Q intersects more than
|E| +2 of the R+ ji, whereas each pair r/, s/ is separated by at most
e(R)< |E| of the R+ ji (by (26)). As Q'Q° intersects  — 1 of the R + ji, we
know that ¢(Q'Q°)= p(Q’'Q") holds, and hence (as e(Q) < p(Q))

e(Q")< (number of i=1,...,k: C; connects bd(0O) and
bd(1))— 1. (29)

Now let L be a shortest dual path in G’ from [' to F'. So e(L)<|E|.
Consider the dual walk

Q:=L-Q"-(Q"+i)-(Q"+2i)- --- -(Q"+ (3|E| - 1)i)}L '+ 3|Eli) (30)
(where L' denotes the path reverse to L). Then
e(Q)=2e(L)+3|E|-e(Q")<2|E| +3|E| - [(number of i= 1, ..., k:
C, connects bd(0) and bd(l))—1]
< 3|E|(number of i=1, .., k: C, connects bd(O) and bd(/))
<p(0). (31)
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However, O intersects at most 3|E| + 2 <4|E| of the R + ji. thus proving
the Lemma.

Now consider the finite graph G” = (V”, E") (analogous to that occur-
ring in the proof of the theorem) obtained from G’ by contracting all ver-
tices not “in between of” R and R +4|E|i to two vertices. Again, by 7/ and
5/ we denote the vertices r/ and s/ after

' , contraction. Let
K:={(i, j)| F/ #5!}. Consider the cut condition for G":

dg(U) = p(U) for each subset U of 1, (32)

where dg-(U) is the number of edges having exactly one of its end points
in U, and p(U) is the number of pairs (i, j) in K for which U separates 7/
and §/. By the Lemma we have, if G is connected,

the cut condition holds for G, I, C,, .., C, if and only if
(32) holds. (33)

In particular

the theorem gives a good characterization, (34)

since if the cut condition for G is violated we can show this by specifying
a violated cut for G” (if G is not connected, then the cut condition (2) is
violated by one of the components of G).

The Lemma also implies

the cut condition (2) can be checked in polynomial time. (35)

Indeed, checking the cut condition (2) reduces to testing if d-(U) = p(U)
holds for each subset U of V", which can be done easily in polynomial
time. (For each pair of edges ¢, ¢” on bd(0O") (where O" denotes the
unbounded face of G”), we find a shortest dual walk Q" in G" from O” to
0" such that Q" starts with O”, ¢’ and ends with ¢”, O". Then Q" deter-
mines a subset U of V" such that the only two edges on bd(O’) leaving U
are ¢’ and ¢”, and such that d,,.(U) is minimal. Since ¢’, ¢” determine p(U).
the inequality e(Q) > p(Q) is easily checked. If this inequality holds for
each pair of edges ¢’, ¢” on bd(0") then (32) holds, and otherwise not.)

So our theorem together with (35) implies that the problem of deciding
if paths as required exist belongs to the complexity class # (if the parity
condition holds). How are we to find these paths in polynomial time when
they exist? We describe a brute-force polynomial-time method.

Consider any shortest dual walk R in G from / to 0. We may assume
that the curves C, are given as walks in G. The steps of the algorithm are
as follows.

Step 1. Check if the cut condition holds. If not, stop (the required
paths do not exist). If so, go to step 2 (the required paths exist).
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Step 2. Check if there exist a curve C; and an edge ¢ of G such that C,
is homotopic to e. If so, delete C; and ¢, and repeat step 2. (Add P,:=e to
the final packing of pairs.) If not, go to step 3.

Step 3. Check if the cut condition is preserved after deleting all edges
on the boundary of /. If so, delete all edges on the boundary of 7, and
repeat step 3. If not, go to step 4.

Step 4. 1If there is no curve C, left, stop. If there are curves C, left, we
know that there is a packing of paths as required (as the cut condition
holds), and that one of the curves should use an edge on the boundary of
I (as we have performed step 3), without being itself homotopic to this
edge (as we have performed step 2). Hence some curve C; can be replaced
by two curves C;, C/ such that C; and C; are homotopic nontrivial, such
that C, is homotopic to C; -/, and such that the cut condition is preser-
ved. As the cut condition is preserved, we know moreover that we can take
C} and C; such that they do not intersect the edges of R more than ¢(R)
times. So we can find for some curve C, curves C; and C/ which are
homotopic nontrivial, such that C; is homotopic to C;-C/, such that C;
and C/ intersect R at most ¢(R) times, and such that the cut condition is
preserved after replacing C, by C;-C;. There are at most | V| -e(R) paths
C! to consider (up to homotopy); similarly for C;. Replace C, by C; and
C/, and go to step 2. (In the final packing, replace paths P;~ C; and
P/~ C! by P,-P!~C,.)

The polynomially bounded running time of this algorithm follows from
the facts that the cut condition can be checked in polynomial time, that
steps 2 and 3 are performed at most |E| times, and that step 4 is performed
at most |E| —k=131%,., (deg,(v) —degc, . ((v)) times (as by splitting C,
into C; and C/ this last sum is decreased by 1).

4. FURTHER REMARKS

The parity condition (1) cannot be deleted in the theorem, as is shown
by Fig. 4, (in which dotted lines represent curves).

FIGURE 4
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FIGURE 5

The obvious extension of our theorem to more than one “hole” does not
hold, as is shown by the example in Fig. 5. Kaufmann and Mehlhorn [1]
showed that an extension to arbitrarily many holes holds in the case of
so-called grid graphs. See [5] for a generalization.

There is another extension of the Okamura-Seymour theorem, due to
Okamura [3], which resembles our theorem, but which is different: Let
G=(V,E) be a planar graph embedded in the plane C, let O be the
interior of the unbounded face, let 7 be the interior of some other face, let
Fls s Fos S1s wn S € VN bd(0), and et £,y 1 oy Py Sy 15 o S € V0 bA(]),
so that the parity condition (6) holds. Then there exist pairwise edge-
disjoint paths P,, .., P, such that P; connects r, and s; (i=1, .., k) if and
only if the cut condition (7) holds.

We did not see an implication, one way or the other, between our
theorem and Okamura’s.
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