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ABSTRACT

Let Cp,....C, and Cf,...,C; be closed curves on a compact surface S. We
characterize (in terms of counting crossings) when there exists a permutation 7 of
{1...., k} such that CZ,, is freely homotopic to C, or C[ ', for each i = 1,... k.

1. INTRODUCTION

Let S denote a compact surface without boundary. A closed curve C on S
is a continuous function C:S' — S, where S' is the unit circle {z € C|
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|z| = 1}. Two closed curves C and C' are called freely homotopic, in notation
C ~ C’', if there exists a continuous function ®:[0,1] X S! — S such that
®(0, z) = C(z) and ®(1, z) = C'(2), for all z € S'.

Two systems of closed curves C,,...,C; and Ci,...,C}, are called
homotopically equivalent if k =k’ and there exists a permutation 7 of
{1,..., k} such that, foreach i = 1,..., k, one has C_,;, ~ C, or Cp, ;) ~ C;".

In this paper we characterize homotopic equivalence of systems of curves
in terms of minimum crossing numbers of curves. This generalizes the result
of [6], where a characterization is given for compact orientable surfaces.

To describe the characterization, define for closed curves C and D,

er(C, D) =1{(y,z) € 8" x $YC(y) = D(=)}I, o
mincr(C, D) == min{cr(C’, D')IC’ ~ C, D" ~ D}.

A closed curve C is called orientation-preserving if passing once through
C does not change the meaning of “left” and “right.” Otherwise, C is called
orientation-reversing. C is called orientation-primitive if there do not exist an
orientation-preserving curve D and an integer n > 2 so that C ~ D". [For a
closed curve C and an integer n, C" is the closed curve defined by
C"(z) == C(z") for z € §".] So each orientation-reversing closed curve is
orientation-primitive.

We show the following theorem:

THEOREM L. Let C,...,C, and Ci,...,C}, be orientation-primitive
closed curves on a compact surface S. Then the following are equivalent:

@ C,,....C, and C\,...,C}., are homotopically equivalent.
(i) For each closed curve D on S,

k k'
Y miner(C,, D) = Y miner(C), D). (2)

i=1 i=1

2. A LINEAR ALGEBRAIC FORMULATION

The theorem can be formulated equivalently as the nonsingularity of a
certain infinite symmetric matrix. Let € be the family of free homotopy
classes of closed curves on S. For A € @, define miner (I, A) ==
miner (C, D) for (arbitrary) C € T’ and D € A. So minecr is considered here
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as a function from & X & to Z,. We can represent this function as an
infinite symmetric matrix M with both rows and columns indexed by &.

The rows of M are not linearly independent. First of all, the row
corresponding to the trivial class {0) is all-zero (where 0 denotes a homotopi-
cally trivial closed curves and where (--) denotes the equivalence class
containing - ). Moreover, the rows corresponding to {(C) and {(C~') are the
same, as mincr (C, D) = miner(C ™}, D) for each closed curve D. Moreover,
it is shown in [7] that for each pair of orientation-preserving closed curves
C, D and each n € Z one has mincr (C*, D) = |n|mincr (C, D). In fact, this
also holds if D is orientation-reversing, so the row corresponding to {(C") is a
multiple of the row corresponding to (C).

Now the theorem states that if we restrict ourselves to orientation-primi-
tive closed curves, then the rows of M are linearly independent. To formulate
this precisely, choose &’ < {(C)|C orientation-primitive} such that for each
orientation-primitive closed curve, exactly one of {C) and {C -1 belongs to
@'. Let M' be the &' X @' submatrix of M. Then the following theorem is
equivalent to the theorem above:

THEOREM 2. The matrix M' is nonsingular, i.e., the rows of M’ are
linearly independent.

Proof. The proof is similar to that in [6]. u
3. CLOSED CURVES IN GRAPHS

Let G = (V, E) be an undirected graph, without loops and parallel edges,
embedded on a compact surface S and where each vertex of G has degree 2
or 4. Let W be the set of vertices of degree 4. For each vertex v € W, we
can order the edges incident with v cyclically. For each v € W, we fix one
such ordering e}, €5, e}, ej. We say that e} and e are opposite in v, and
similarly for e§ and ef.

We identify G with its embedding on S. (An edge is considered as an
open line segment.) So we can speak of a closed curve C in G, which is a
continuous function C: S' = G. We say that C is nonreturning if C|K is
one-to-one, for each edge e of G and each component K of C~'(2). (Here &
is the closure of e.)

We say that C is straight if C is nonreturning and in each vertex v € W,
if C arrives in v over an edge e, it leaves v over the edge opposite in v to e.

A straight decomposition of G is a collection of straight closed curves
such that each edge is traversed exactly once. Such a straight decomposition
is unique up to a number of trivial operations.
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Let C be a closed curve in G. For any edge e of G, we define
tro () = number of times C traverses e. (3)

[More precisely, it is the number of components of C~'(¢).] For any vertex
of degree 4 in G, we define

a;(C) = number of times C traverses v
by going from e; to €] or from é;. )

The following two propositions generalize Lemma A in [6], and the proofs are
similar (note that Lemmas A and B in [6] do not use the orientability of the
surface).

We define for any closed curve C on a surface S,

er(C) = 3l{(y,z) € $' x $'|C(y) = C(=) and y * z}|,

(5)

i

miner(C) = min{cr(C")IC" ~ C}.

PROPOSITION 1. For any nonreturning closed curve C in G,

miner(C) < Y. | ai(C)ai,(C)

veWw

+3 Y au(C)ei(C)| (6)
l<g<h<4 I<k<lig4
Kg, hYn{k, =1

PROPOSITION 2. For any pair of nonreturning closed curves C, D in G
with C # D,

miner (C, D) < 2 | a3(C)ag, (D) + aj,(C)ajy( D)
veEW

+

of—

Z Z ag,[(C)oz,f’,(D) (7

lgg<h<4 I<k<l<4
K, mYn{k, =1
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If C),...,C, are edge-disjoint closed curves in G, then clearly (W] >
X!_, miner(C,) + Ei<jmincr(Ci,Cj). The next proposition gives a lower
bound for [W|in case the closed curves C, ..., C, are “fractionally” edge-
disjoint as described in (8) below.

PROPOSITION 3. Let C\,...,C, be nonreturning closed curves in G and
let A,..., A, > O be such that

'Zl A trcj(e) <1, foreache € E. (8)
j=
Then
S S
2 A2 miner(C;) + Y AA; miner(C,, C)) < [W. (9)
i=1 ~ ij=1 '
i]<_j

Equality in (9) implies that each C, is straight.

Proof. By Propositions 1 and 2, we obtain

Z 2A? miner(C,) + Z A A; miner(C,, C))
i=1 ij=1
i

<X X AjA af:}(ci)azc4(cj) + a:§4(ci)alv:}(cj)
veEW i, j=1

+3 L L au(Clan(c)|. (10)

g<h k<!
{g, hIn{k, =1

For any vertex v € W and g, h € {1,2,3,4}, define

ay, = X hau(C)). (11)

Jj=1
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The right-hand side of (10) is equal to

N 1 N

L |2aa5, + 3 ) r Agn ¥ |

veW g<h k<l
Kg.hin{k, D=1

so it is sufficient to show that for any fixed vertex v € W,

2afy05, + 3 ) Y apap <2 (12)
o<

g<h k<l
{g. ik, }=1

This follows from Lemma B in [6], which lemma also implies that equality
in (12) is attained only if afy; = af, =1 and af, = aj, = a5; = aj, = 0.
This shows the proposition. |

4. CROSSINGS OF CLOSED CURVES ON SURFACES

We need a few observations on crossing numbers on surfaces, for which
we make use of formulas given in [3], expressing mincr (C) and miner (C, D)
in miner (J) and miner(J, K), where J and K are geodesic; that is, [ is a
closed curve for which C ~ J" for some n > 1 and such that | is shortest
with respect to a euclidean or hyperbolic distance on the surface (cf. [4].
First we have the following proposition:

PROPOSITION 4. Let C be an orientation-reversing closed curve on S.
Then miner (C, C?) < 2 miner(C, C).

Proof. Let | be the geodesic such that C ~ J", for some n € N. So | is
orientation-reversing and n is odd. Then miner(C,C) = 2n* miner (J) + n
and miner (C, C*) = 4n*mincr (). |

Moreover:

PROPOSITION 5. Let C and D be closed curves on S. Then miner (C, D*)
< 2mincer (C, D).
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Proof. Choose C, D such that cr(C, D) = mincr (C, D). Then
miner (C, D?) < cr(C, D?) = 2¢r(C, D) = 2 miner (C, D). ]

For a closed curve C on S, let odd(C) := 1 if C is orientation-reversing,
and odd(C) = 0 if C is orientation-preserving.

PROPOSITION 6. Let C be an orientation-primitive closed curve on S.
Then mincr(C, C) = 2 miner(C) + odd(C).

Proof. Let | be a geodesic such that C ~ " for some n € N. If C is
orientation-reversing, then | is orientation-reversing and n is odd, and hence
miner (C, C) = 2n® miner (J) + n = 2miner(C) = 1. If C and J are orien-
tation-preserving, then n =1 (as C is orientation-primitive), and hence
miner (C, C) = 2n® miner (J) = 2miner(C). If C is orientation-preserving
and ] is orientation-reversing, then n =2, and hence mincr(C,C) =
2n® miner (J) = 2 miner (C). n

5. PROOF OF THEOREM 1

The implication (i) = (ii) in Theorem 1 is trivial as mincr(C~', D) =
mincr (C, D) for any pair of closed curves C, D on S. We show (ii) = (i).

Suppose by contradiction that C,, ..., C, and C{, ..., C} are two systems
of curves satisfying (ii) but not (i) such that k + k' is minimal. This implies
that:

there are no i € {1,..., k} and j € {1,...,k'} such that

C, ~Clor Gl ~Cj. (13)

By symmetry we may assume that

K K K

2 miner(C;) + ) miner(C;, C}) < Y miner(C,)
=1 P = =1

13 llj<j 1

k
+ 2 miner(C,,C;). (14)
z,ij<=jl
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It is a basic fact (cf. [1,5,8)), that there exist C, ~ C},...,C;. ~ C}. such
that

cr(éi) = miner(C}), fori=1,...,k’,

- (15)
cr(Ci,Cj) = mincr(C}, Cj), fori,j=1,....k"and i #

The result being invariant under homotopies, we may assume that éi = Cj,
for i = 1,...,k’, and that each point of S is traversed at most twice by the
C; (so no two crossings of the C; coincide).

Let G = (V, E) be the graph made up by the curves C[. So G is a graph
embedded on S. Each point of § traversed twice by the C| is a vertex of
degree 4 of G. Moreover, we take as vertices some of the points of S
traversed exactly once by the C}, in such a way that G will be a graph without
loops or parallel edges. So each vertex of G has degree 2 or 4 and C1,..., C},,
is a straight decomposition of G. Let W denote the set of vertices of degree
4. We obtain:

k' k'

W|= Y mincr(C}) + Zlmincr(le, Cj)- (16)
i=1 ij=
i<

By (2) for each closed curve D: §' = S\ 'V,

k! k' k
er(G, D) = Y er(Cl, D) = Y, miner(C), D) = Y miner(C,, D), (17)

i=1 i=1 i=1

where cr (G, D) = [z € S'|D(z) € G}|. Hence, by the “homotopic circula-
tion theorem” in [2], there exist closed curves D, ..., D, with rationals
Alens, A, > 0 and a partition S,..., S; of {1,..., s} such that

Dj~C,., fori=1,...,kand j €S,
Y Ay=1, fori=1,..k,
JES; (18)

XA trp(e) <1, fore €E.
Jj=1
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Clearly, we may assume the D, to be nonreturning. This implies with
Propositions 3 and 6,

k k
2 )" miner(C,) + Y. miner(C,, C;)

i=1 ij=1
i)
k k .
= Y miner(C;,C;) — X 0dd(C,)
i,j=1 i=1

I

s k
%: Ag Ay, miner(D,, D) — Y odd(C))
g h=1 i=1

[\’]m

s

X AN, mincr(D,, D) +
g h=1 g
h+g

1 )\gg miner( D,, Dg)

]

- iOdd(Ci)
i=1

s
?:_ 1 AgAy, miner( D,, Dh) +

h#g

)\2 (2 mincr( Dg) + odd( D, ))
1

ml:ll\’]%

- i odd(C;)

i=1

k
<2AWl+ Y odd(c,.)(—l + 3 Af_,) < 2w, (19)
i=1 g€ES;
(The first inequality follows from Proposition 3.)
By our assumption (14) and by (16), we should have equality throughout
in (19). Hence by Proposition 3, each curve D, (j = 1,..., s) is straight. So

there exists a function 7:{1,..., st = {1,..., é’} and ny, ..., n, such that
- m _— r—n PR
Dj—Cw(fj) or D;=Cpy, forj=1...5s. (20)
For each j =1,....,s, by (13), n; > 2, and, as each C; is orientation-primi-
tive, C7 jy is orientation-reversing.
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Suppose that C; is orientation-reversing for some i € {1,..., k}. It fol-
lows from

k
Zodd(c,.)(—1 + ¥ /\2) =0 (21)

i=1 geESs;

that |S;| = 1, say S; = {j}. We now obtain A, = 1and D; = C{ or D, = c
contradicting (13). Hence C, is orientation-preserving for i = 1,..., k.

So for j=1,...,k" we have that n, is even and, hence, as C; is
orientation-primitive, n; = 2 and C; jy Is orientation-reversing for j =
1,...,s. Hence, using Propositions 4 and 5, and assuming without loss of
generality that 7(1) = 1,

k s s
21 miner(C,,C}) = -21 A; miner(D;, C) = ‘ZI A mincr(Cf(j),C'l)
i= j= j=
s k'
<y 24 mincr(C;(j),C;) < Y miner(C;, Ch). (22)
j=1 i=1

Here the last inequality follows from the fact that, for any i = 1,..., k, the
sum of those A; for which 7(j) =i is at most 3, by (8). However, (22)

contradicts (2). ]
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