NORTH-HOLLAND

Characterizing Homotopy of Systems of Curves on a Compact Surface by Crossing Numbers

Maurits de Graaf
Department of Mathematics
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands
and
Alexander Schrijver
CWI
Kruislaan 413
1098 SJ Amsterdam, The Netherlands
and
Department of Mathematics
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Dedicated to J. J. Seidel

Submitted by Willem H. Haemers

ABSTRACT

Let C_{1}, \ldots, C_{k} and $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ be closed curves on a compact surface S. We characterize (in terms of counting crossings) when there exists a permutation π of $\{1, \ldots, k\}$ such that $C_{\pi(i)}^{\prime}$ is freely homotopic to C_{i} or C_{i}^{-1}, for each $i=1, \ldots, k$.

1. INTRODUCTION

Let S denote a compact surface without boundary. A closed curve C on S is a continuous function $C: S^{1} \rightarrow S$, where S^{1} is the unit circle $\{\approx \in \mathbb{C} \mid$
$|z|=1\}$. Two closed curves C and C^{\prime} are called freely homotopic, in notation $C \sim C^{\prime}$, if there exists a continuous function $\Phi:[0,1] \times S^{1} \rightarrow S$ such that $\Phi(0, z)=C(z)$ and $\Phi(1, z)=C^{\prime}(z)$, for all $z \in S^{1}$.

Two systems of closed curves C_{1}, \ldots, C_{k} and $C_{1}^{\prime}, \ldots, C_{k^{\prime}}^{\prime}$, are called homotopically equivalent if $k=k^{\prime}$ and there exists a permutation π of $\{1, \ldots, k\}$ such that, for each $i=1, \ldots, k$, one has $C_{\pi(i)}^{\prime} \sim C_{i}$ or $C_{\pi(i)}^{\prime} \sim C_{i}^{-1}$.

In this paper we characterize homotopic equivalence of systems of curves in terms of minimum crossing numbers of curves. This generalizes the result of [6], where a characterization is given for compact orientable surfaces.

To describe the characterization, define for closed curves C and D,

$$
\begin{align*}
\operatorname{cr}(C, D) & :=\left|\left\{(y, z) \in S^{1} \times S^{1} \mid C(y)=D(z)\right\}\right| \tag{1}\\
\operatorname{mincr}(C, D) & :=\min \left\{\operatorname{cr}\left(C^{\prime}, D^{\prime}\right) \mid C^{\prime} \sim C, D^{\prime} \sim D\right\} .
\end{align*}
$$

A closed curve C is called orientation-preserving if passing once through C does not change the meaning of "left" and "right." Otherwise, C is called orientation-reversing. C is called orientation-primitive if there do not exist an orientation-preserving curve D and an integer $n \geqslant 2$ so that $C \sim D^{n}$. [For a closed curve C and an integer n, C^{n} is the closed curve defined by $C^{n}(z):=C\left(z^{n}\right)$ for $z \in S^{1}$.] So each orientation-reversing closed curve is orientation-primitive.

We show the following theorem:

Theorem 1. Let C_{1}, \ldots, C_{k} and $C_{1}^{\prime}, \ldots, C_{k^{\prime}}^{\prime}$, be orientation-primitive closed curves on a compact surface S. Then the following are equivalent:
(i) C_{1}, \ldots, C_{k} and $C_{1}^{\prime}, \ldots, C_{k^{\prime}}^{\prime}$, are homotopically equivalent.
(ii) For each closed curve D on S,

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{mincr}\left(C_{i}, D\right)=\sum_{i=1}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}, D\right) \tag{2}
\end{equation*}
$$

2. A LINEAR ALGEBRAIC FORMULATION

The theorem can be formulated equivalently as the nonsingularity of a certain infinite symmetric matrix. Let \mathscr{E} be the family of free homotopy classes of closed curves on S. For $\Gamma, \Delta \in \mathscr{C}$, define mincr $(\Gamma, \Delta):=$ mincr (C, D) for (arbitrary) $C \in \Gamma$ and $D \in \Delta$. So mincr is considered here
as a function from $\mathscr{E} \times \mathscr{E}$ to \mathbb{Z}_{+}. We can represent this function as an infinite symmetric matrix M with both rows and columns indexed by \mathscr{C}.

The rows of M are not linearly independent. First of all, the row corresponding to the trivial class $\langle 0\rangle$ is all-zero (where 0 denotes a homotopically trivial closed curves and where $\langle\cdots\rangle$ denotes the equivalence class containing $\cdot \cdot$). Moreover, the rows corresponding to $\langle C\rangle$ and $\left\langle C^{-1}\right\rangle$ are the same, as mincr $(C, D)=\operatorname{mincr}\left(C^{-1}, D\right)$ for each closed curve D. Moreover, it is shown in [7] that for each pair of orientation-preserving closed curves C, D and each $n \in \mathbb{Z}$ one has mincr $\left(C^{n}, D\right)=|n|$ mincr (C, D). In fact, this also holds if D is orientation-reversing, so the row corresponding to $\left\langle C^{n}\right\rangle$ is a multiple of the row corresponding to $\langle C\rangle$.

Now the theorem states that if we restrict ourselves to orientation-primitive closed curves, then the rows of M are linearly independent. To formulate this precisely, choose $\mathscr{C}^{\prime} \subseteq\{\langle C\rangle \mid C$ orientation-primitive $\}$ such that for each orientation-primitive closed curve, exactly one of $\langle C\rangle$ and $\left\langle C^{-1}\right\rangle$ belongs to \mathscr{C}^{\prime}. Let M^{\prime} be the $\mathscr{C}^{\prime} \times \mathscr{E}^{\prime}$ submatrix of M. Then the following theorem is equivalent to the theorem above:

Theorem 2. The matrix M^{\prime} is nonsingular, i.e., the rows of M^{\prime} are linearly independent.

Proof. The proof is similar to that in [6].

3. CLOSED CURVES IN GRAPHS

Let $G=(V, E)$ be an undirected graph, without loops and parallel edges, embedded on a compact surface S and where each vertex of G has degree 2 or 4 . Let W be the set of vertices of degree 4 . For each vertex $v \in W$, we can order the edges incident with v cyclically. For each $v \in W$, we fix one such ordering $e_{1}^{v}, e_{2}^{v}, e_{3}^{v}, e_{4}^{v}$. We say that e_{1}^{v} and e_{3}^{v} are opposite in v, and similarly for e_{2}^{v} and e_{4}^{v}.

We identify G with its embedding on S. (An edge is considered as an open line segment.) So we can speak of a closed curve C in G, which is a continuous function $C: S^{1} \rightarrow G$. We say that C is nonreturning if $C \mid K$ is one-to-one, for each edge e of G and each component K of $C^{-1}(\bar{e})$. (Here \bar{e} is the closure of e.)

We say that C is straight if C is nonreturning and in each vertex $v \in W$, if C arrives in v over an edge e, it leaves v over the edge opposite in v to e.

A straight decomposition of G is a collection of straight closed curves such that each edge is traversed exactly once. Such a straight decomposition is unique up to a number of trivial operations.

Let C be a closed curve in G. For any edge e of G, we define

$$
\begin{equation*}
\operatorname{tr}_{C}(e):=\text { number of times } C \text { traverses } e . \tag{3}
\end{equation*}
$$

[More precisely, it is the number of components of $C^{-1}(e)$.] For any vertex of degree 4 in G, we define

$$
\begin{align*}
\alpha_{i j}^{v}(C):= & \text { number of times } C \text { traverses } v \\
& \text { by going from } e_{i}^{v} \text { to } e_{j}^{v} \text { or from } e_{i}^{v} . \tag{4}
\end{align*}
$$

The following two propositions generalize Lemma A in [6], and the proofs are similar (note that Lemmas A and B in [6] do not use the orientability of the surface).

We define for any closed curve C on a surface S,

$$
\begin{align*}
\operatorname{cr}(C) & : \left.\left.=\frac{1}{2} \right\rvert\,\left\{(y, z) \in S^{1} \times S^{1} \mid C(y)=C(z) \text { and } y \neq z\right\} \right\rvert\,, \tag{5}\\
\operatorname{mincr}(C) & :=\min \left\{\operatorname{cr}\left(C^{\prime}\right) \mid C^{\prime} \sim C\right\} .
\end{align*}
$$

Proposition 1. For any nonreturning closed curve C in G,

$$
\begin{align*}
\operatorname{mincr}(C) \leqslant \sum_{v \in W}[& \alpha_{13}^{v}(C) \alpha_{24}^{v}(C) \\
& \left.+\frac{1}{4} \sum_{1 \leqslant g<h \leqslant 4} \sum_{\substack{1 \leqslant k<l \leqslant 4 \\
\mid g, h\} \cap\{k, l l\}=1}} \alpha_{\dot{y})}^{v}(C) \alpha_{k l}^{v}(C)\right] . \tag{6}
\end{align*}
$$

Proposition 2. For any pair of nonreturning closed curves C, D in G with $C \neq D$,

$$
\left.\begin{array}{rl}
\operatorname{mincr}(C, D) \leqslant & \sum_{v \in W}[
\end{array} \alpha_{1.3}^{v}(C) \alpha_{24}^{v}(D)+\alpha_{24}^{v}(C) \alpha_{13}^{v}(D)\right] .
$$

If C_{1}, \ldots, C_{s} are edge-disjoint closed curves in G, then clearly $|W| \geqslant$ $\sum_{i=1}^{s} \operatorname{mincr}\left(C_{i}\right)+\sum_{\mathrm{i}<\mathrm{j}} \operatorname{mincr}\left(C_{i}, C_{j}\right)$. The next proposition gives a lower bound for $|W|$ in case the closed curves C_{1}, \ldots, C_{s} are "fractionally" edgedisjoint as described in (8) below.

Proposition 3. Let C_{1}, \ldots, C_{s} be nonreturning closed curves in G and let $\lambda_{1}, \ldots, \lambda_{s}>0$ be such that

$$
\begin{equation*}
\sum_{j=1}^{s} \lambda_{j} \operatorname{tr}_{C_{j}}(e) \leqslant 1, \quad \text { for each } e \in E \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{s} \lambda_{i}^{2} \operatorname{mincr}\left(C_{i}\right)+\sum_{\substack{i, j=1 \\ i<j}}^{s} \lambda_{i} \lambda_{j} \operatorname{mincr}\left(C_{i}, C_{j}\right) \leqslant|W| \tag{9}
\end{equation*}
$$

Equality in (9) implies that each C_{i} is straight.
Proof. By Propositions 1 and 2, we obtain

$$
\begin{align*}
& \sum_{i=1}^{s} 2 \lambda_{i}^{2} \operatorname{mincr}\left(C_{i}\right)+ \sum_{\substack{i, j=1 \\
i \neq j}}^{s} \lambda_{i} \lambda_{j} \operatorname{mincr}\left(C_{i}, C_{j}\right) \\
& \leqslant \sum_{v \in W} \sum_{i, j=1}^{s} \lambda_{i} \lambda_{j}\left[\alpha_{13}^{\mathrm{e}}\left(C_{i}\right) \alpha_{24}^{v}\left(C_{j}\right)+\alpha_{24}^{v}\left(C_{i}\right) \alpha_{13}^{v}\left(C_{j}\right)\right. \\
&\left.+\frac{1}{2} \sum_{g<h} \sum_{\substack{k<l \\
k g, h\} \cap\{k, l\} \mid=1}} \alpha_{g h h}^{v}\left(C_{i}\right) \alpha_{k l}^{v}\left(C_{j}\right)\right] . \tag{10}
\end{align*}
$$

For any vertex $v \in W$ and $g, h \in\{1,2,3,4\}$, define

$$
\begin{equation*}
\alpha_{g h}^{v}:=\sum_{j=1}^{s} \lambda_{j} \alpha_{g_{h}}^{v}\left(C_{j}\right) \tag{11}
\end{equation*}
$$

The right-hand side of (10) is equal to

$$
\sum_{v \in W}\left[2 \alpha_{13}^{v} \alpha_{24}^{v}+\frac{1}{2} \sum_{g<h} \sum_{\substack{k<l \\ \mid g, h\} \cap\{k, l\} \mid=1}} \alpha_{g h}^{v} \alpha_{k l}^{v}\right]
$$

so it is sufficient to show that for any fixed vertex $v \in W$,

$$
\begin{equation*}
2 \alpha_{13}^{v} \alpha_{24}^{v}+\frac{1}{2} \sum_{g<h} \sum_{\substack{k<l \\ k g, h\} \cap\{k, l\}\}=1}} \alpha_{g h}^{v} \alpha_{k l}^{v} \leqslant 2 . \tag{12}
\end{equation*}
$$

This follows from Lemma B in [6], which lemma also implies that equality in (12) is attained only if $\alpha_{13}^{v}=\alpha_{24}^{v}=1$ and $\alpha_{12}^{v}=\alpha_{14}^{v}=\alpha_{23}^{v}=\alpha_{34}^{v}=0$. This shows the proposition.

4. CROSSINGS OF CLOSED CURVES ON SURFACES

We need a few observations on crossing numbers on surfaces, for which we make use of formulas given in [3], expressing mincr (C) and mincr (C, D) in mincr (J) and mincr (J, K), where J and K are geodesic; that is, J is a closed curve for which $C \sim J^{n}$ for some $n \geqslant 1$ and such that J is shortest with respect to a euclidean or hyperbolic distance on the surface (cf. [4]). First we have the following proposition:

Proposition 4. Let C be an orientation-reversing closed curve on S. Then mincr $\left(C, C^{2}\right)<2 \operatorname{mincr}(C, C)$.

Proof. Let J be the geodesic such that $C \sim J^{n}$, for some $n \in \mathbb{N}$. So J is orientation-reversing and n is odd. Then mincr $(C, C)=2 n^{2} \operatorname{mincr}(J)+n$ and mincr $\left(C, C^{2}\right)=4 n^{2} \operatorname{mincr}(J)$.

Moreover:

Proposition 5. Let C and D be closed curves on S. Then mincr (C, D^{2}) $\leqslant 2 \operatorname{mincr}(C, D)$.

Proof. Choose C, D such that $\mathrm{cr}(C, D)=\operatorname{mincr}(C, D)$. Then $\operatorname{mincr}\left(C, D^{2}\right) \leqslant \operatorname{cr}\left(C, D^{2}\right)=2 \operatorname{cr}(C, D)=2 \operatorname{mincr}(C, D)$.

For a closed curve C on S, let $\operatorname{odd}(C):=1$ if C is orientation-reversing, and $\operatorname{odd}(C):=0$ if C is orientation-preserving.

Proposition 6. Let C be an orientation-primitive closed curve on S. Then mincr $(C, C)=2$ mincr $(C)+\operatorname{odd}(C)$.

Proof. Let J be a geodesic such that $C \sim J^{n}$ for some $n \in \mathbb{N}$. If C is orientation-reversing, then J is orientation-reversing and n is odd, and hence $\operatorname{mincr}(C, C)=2 n^{2} \operatorname{mincr}(J)+n=2 \operatorname{mincr}(C)=1$. If C and J are orien-tation-preserving, then $n=1$ (as C is orientation-primitive), and hence $\operatorname{mincr}(C, C)=2 n^{2} \operatorname{mincr}(J)=2 \operatorname{mincr}(C)$. If C is orientation-preserving and J is orientation-reversing, then $n=2$, and hence mincr $(C, C)=$ $2 n^{2} \operatorname{mincr}(J)=2 \operatorname{mincr}(C)$.

5. PROOF OF THEOREM 1

The implication (i) \Rightarrow (ii) in Theorem 1 is trivial as mincr $\left(C^{-1}, D\right)=$ mincr (C, D) for any pair of closed curves C, D on S. We show (ii) \Rightarrow (i).

Suppose by contradiction that C_{1}, \ldots, C_{k} and $C_{1}^{\prime}, \ldots, C_{k^{\prime}}^{\prime}$ are two systems of curves satisfying (ii) but not (i) such that $k+k^{\prime}$ is minimal. This implies that:
there are no $i \in\{1, \ldots, k\}$ and $j \in\left\{1, \ldots, k^{\prime}\right\}$ such that

$$
\begin{equation*}
C_{i} \sim C_{j}^{\prime} \text { or } C_{i}^{-1} \sim C_{j}^{\prime} \tag{13}
\end{equation*}
$$

By symmetry we may assume that

$$
\begin{align*}
\sum_{i=1}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}\right)+\sum_{\substack{i, j=1 \\
i<j}}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}, C_{j}^{\prime}\right) \leqslant & \sum_{i=1}^{k} \operatorname{mincr}\left(C_{i}\right) \\
& +\sum_{\substack{i, j=1 \\
i<j}}^{k} \operatorname{mincr}\left(C_{i}, C_{j}\right) \tag{14}
\end{align*}
$$

It is a basic fact (cf. $[1,5,8]$), that there exist $\tilde{C}_{1} \sim C_{1}^{\prime}, \ldots, \tilde{C}_{k^{\prime}} \sim C_{k}^{\prime}$, such that

$$
\begin{align*}
\operatorname{cr}\left(\tilde{C}_{i}\right) & =\operatorname{mincr}\left(C_{i}^{\prime}\right), \quad \text { for } i=1, \ldots, k^{\prime} \\
\operatorname{cr}\left(\tilde{C}_{i}, \tilde{C}_{j}\right) & =\operatorname{mincr}\left(C_{i}^{\prime}, C_{j}^{\prime}\right), \quad \text { for } i, j=1, \ldots, k^{\prime} \text { and } i \neq j \tag{15}
\end{align*}
$$

The result being invariant under homotopies, we may assume that $\tilde{C_{i}}=C_{i}^{\prime}$, for $i=1, \ldots, k^{\prime}$, and that each point of S is traversed at most twice by the C_{i}^{\prime} (so no two crossings of the C_{i}^{\prime} coincide).

Let $G=(V, E)$ be the graph made up by the curves C_{i}^{\prime}. So G is a graph embedded on S. Each point of S traversed twice by the C_{i}^{\prime} is a vertex of degree 4 of G. Moreover, we take as vertices some of the points of S traversed exactly once by the C_{i}^{\prime}, in such a way that G will be a graph without loops or parallel edges. So each vertex of G has degree 2 or 4 and $C_{1}^{\prime}, \ldots, C_{k^{\prime}}^{\prime}$, is a straight decomposition of G. Let W denote the set of vertices of degree 4. We obtain:

$$
\begin{equation*}
|W|=\sum_{i=1}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}\right)+\sum_{\substack{i, j=1 \\ i<j}}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}, C_{j}^{\prime}\right) \tag{16}
\end{equation*}
$$

By (2) for each closed curve $D: S^{1} \rightarrow S \backslash V$,

$$
\begin{equation*}
\operatorname{cr}(G, D)=\sum_{i=1}^{k^{\prime}} \operatorname{cr}\left(C_{i}^{\prime}, D\right) \geqslant \sum_{i=1}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}, D\right)=\sum_{i=1}^{k} \operatorname{mincr}\left(C_{i}, D\right) \tag{17}
\end{equation*}
$$

where $\operatorname{cr}(G, D):=\left|\left\{z \in S^{\prime} \mid D(z) \in G\right\}\right|$. Hence, by the "homotopic circulation theorem" in [2], there exist closed curves D_{1}, \ldots, D_{s}, with rationals $\lambda_{1}, \ldots, \lambda_{s}>0$ and a partition S_{1}, \ldots, S_{k} of $\{1, \ldots, s\}$ such that

$$
\begin{align*}
& D_{j} \sim C_{i}, \quad \text { for } i=1, \ldots, k \text { and } j \in S_{i}, \\
& \sum_{j \in S_{i}} \lambda_{j}=1, \text { for } i=1, \ldots, k, \tag{18}\\
& \sum_{j=1}^{s} \lambda_{j} \operatorname{tr}_{D_{j}}(e) \leqslant 1, \quad \text { for } e \in E .
\end{align*}
$$

Clearly, we may assume the D_{j} to be nonreturning. This implies with Propositions 3 and 6,

$$
\begin{align*}
& 2 \sum_{i=1}^{k} \operatorname{mincr}\left(C_{i}\right)+\sum_{\substack{i, j=1 \\
i \neq j}}^{k} \operatorname{mincr}\left(C_{i}, C_{j}\right) \\
&= \sum_{i, j=1}^{k} \operatorname{mincr}\left(C_{i}, C_{j}\right)-\sum_{i=1}^{k} \operatorname{odd}\left(C_{i}\right) \\
&= \sum_{g, h=1}^{s} \lambda_{g} \lambda_{h} \operatorname{mincr}\left(D_{g}, D_{h}\right)-\sum_{i=1}^{k} \operatorname{odd}\left(C_{i}\right) \\
&= \sum_{g, h=1}^{s} \lambda_{g} \lambda_{h} \operatorname{mincr}\left(D_{g}, D_{h}\right)+\sum_{g=1}^{s} \lambda_{g}^{2} \operatorname{mincr}\left(D_{g}, D_{g}\right) \\
&-\sum_{i=1}^{k} \operatorname{odd}\left(C_{i}\right) \\
&= \sum_{g, h=1}^{s} \lambda_{g} \lambda_{h} \operatorname{mincr}\left(D_{g}, D_{h}\right)+\sum_{g=1}^{s} \lambda_{g}^{2}\left(2 \operatorname{mincr}\left(D_{g}\right)+\operatorname{odd}\left(D_{g}\right)\right) \\
&-\sum_{i=1}^{k} \operatorname{odd}\left(C_{i}\right) \\
& \leqslant 2|W|+\sum_{i=1}^{k} \operatorname{odd}\left(C_{i}\right)\left(-1+\sum_{g \in S_{i}} \lambda_{g}^{2}\right) \leqslant 2|W| . \tag{19}
\end{align*}
$$

(The first inequality follows from Proposition 3.)
By our assumption (14) and by (16), we should have equality throughout in (19). Hence by Proposition 3, each curve $D_{j}(j=1, \ldots, s)$ is straight. So there exists a function $\pi:\{1, \ldots, s\} \rightarrow\left\{1, \ldots, k^{\prime}\right\}$ and n_{1}, \ldots, n_{s} such that

$$
\begin{equation*}
D_{j}=C_{\pi(j)}^{\prime n_{j}} \quad \text { or } \quad D_{j}=C_{\pi(j)}^{\prime-n_{j}}, \quad \text { for } j=1, \ldots, s \tag{20}
\end{equation*}
$$

For each $j=1, \ldots, s$, by (13), $n_{j} \geqslant 2$, and, as each C_{i} is orientation-primitive, $C_{\pi(j)}^{\prime}$ is orientation-reversing.

Suppose that C_{i} is orientation-reversing for some $i \in\{1, \ldots, k\}$. It follows from

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{odd}\left(C_{i}\right)\left(-1+\sum_{g \in S_{i}} \lambda_{g}^{2}\right)=0 \tag{21}
\end{equation*}
$$

that $\left|S_{i}\right|=1$, say $S_{i}=\{j\}$. We now obtain $\lambda_{j}=1$ and $D_{j}=C_{i}^{\prime}$ or $D_{j}=C_{i}^{\prime-1}$, contradicting (13). Hence C_{i} is orientation-preserving for $i=1, \ldots, k$.

So for $j=1, \ldots, k^{\prime}$ we have that n_{j} is even and, hence, as C_{i} is orientation-primitive, $n_{j}=2$ and $C_{\pi(j)}^{\prime}$ is orientation-reversing for $j=$ $1, \ldots, s$. Hence, using Propositions 4 and 5, and assuming without loss of generality that $\pi(1)=1$,

$$
\begin{align*}
\sum_{i=1}^{k} \operatorname{mincr}\left(C_{i}, C_{1}^{\prime}\right) & =\sum_{j=1}^{s} \lambda_{j} \operatorname{mincr}\left(D_{j}, C_{1}^{\prime}\right)=\sum_{j=1}^{s} \lambda_{j} \operatorname{mincr}\left(C_{\pi(j)}^{\prime 2}, C_{1}^{\prime}\right) \\
& <\sum_{j=1}^{s} 2 \lambda_{j} \operatorname{mincr}\left(C_{\pi(j)}^{\prime}, C_{1}^{\prime}\right) \leqslant \sum_{i=1}^{k^{\prime}} \operatorname{mincr}\left(C_{i}^{\prime}, C_{1}^{\prime}\right) \tag{22}
\end{align*}
$$

Here the last inequality follows from the fact that, for any $i=1, \ldots, k$, the sum of those λ_{j} for which $\pi(j)=i$ is at most $\frac{1}{2}$, by (8). However, (22) contradicts (2).

REFERENCES

1 R. Baer, Kurventypen auf Flächen, J. Reine Angew. Math. 156:231-246 (1927).
2 M. de Graaf and A. Schrijver, Decomposition of Graphs on Surfaces and a Homotopic Circulation Theorem, Preprint, 1994.
3 M. de Graaf and A. Schrijver, Making Curve Systems Minimally Crossing by Reidemeister Moves, Preprint, 1994.
4 P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raumformen (Vierte Mitteilung), Sitzungsber. Deutsche Akad. Wiss. Berlin, Math.-Phys. Klasse 414-457 (1929).
5 B. L. Reinhart, Algorithms for Jordan curves on compact surfaces, Ann. Math. 75:209-222 (1962).
6 A. Schrijver, Homotopy and crossings of systems of curves on a surface, Linear Algebra Appl. 114/115:157-167 (1989).
7 A. Schrijver, Decomposition of graphs on surfaces and a homotopic circulation theorem, J. Combin. Theory Ser. B 51:161-210 (1991).
8 J. Stillwell, Geometry of Surfaces, Springer, New York, 1992.

