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ABSTRACT
The evaluation of recommender systems is crucial for their
development. In today’s recommendation landscape there
are many standardized recommendation algorithms and ap-
proaches, however, there exists no standardized method for
experimental setup of evaluation – not even for widely used
measures such as precision and root-mean-squared error.
This creates a setting where comparison of recommenda-
tion results using the same datasets becomes problematic.
In this paper, we propose an evaluation protocol specifi-
cally developed with the recommendation use-case in mind,
i.e. the recommendation of one or several items to an end
user. The protocol attempts to closely mimic a scenario of a
deployed (production) recommendation system, taking spe-
cific user aspects into consideration and allowing a compar-
ison of small and large scale recommendation systems. The
protocol is evaluated on common recommendation datasets
and compared to traditional recommendation settings found
in research literature. Our results show that the proposed
model can better capture the quality of a recommender sys-
tem than traditional evaluation does, and is not affected by
characteristics of the data (e.g. size. sparsity, etc.).
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1. INTRODUCTION & RELATED WORK
Recommender system research has seen a large increase in
the development of algorithms, scalability and areas of ap-
plication during the last two decades. One aspect of recom-
mender systems that has not evolved as fast is their evalua-
tion. Most early recommendation approaches were inspired
by related concepts from machine learning and/or informa-
tion retrieval. Today, many evaluation concepts are brought
verbatim from these and related fields [6–8]. We empha-
size that one should take into consideration the conceptual
differences between an item being recommended to a user
(recommendation) and a query being posted in order to find
a relevant item (information retrieval), and other similar as-
pects.

Traditional evaluation of recommender systems is based on
the training/test paradigm, where a fraction of the avail-
able data is used for algorithm training, and the remaining
part is used to evaluate, or test, the quality of said recom-
mendation algorithm. Methods to mitigate the effects of
overfitting, like n-fold (or random) cross validation [6, 16],
are often applied in conjunction with this. More elaborate
techniques where the data is merged or altered to produce
better results also exist, e.g. the “One+Random” evalua-
tion methodology by Cremonesi et al. [5] which proposes
the addition of randomly selected items to the one most
relevant item for each user. However, even with these miti-
gation techniques, there remains a discrepancy in the offline
evaluation protocols, and the online deployment and accu-
racy estimate of the algorithms in a real-life setting. In
several cases it has even been shown that high predictive
accuracy can be detrimental to the users’ perceived qual-
ity of the systems [4, 11, 15]. Several methods attempt to
overcome this discrepancy, including multiple user-centric
evaluation approaches, A/B-testing, guidelines and frame-
works [9,12,13]. Many of these require that the systems are
evaluated through time-consuming user studies and surveys,
often involving the prerequisite of a recommender system al-
ready in use.

In this paper we present an empirical evaluation protocol for
recommender systems based on offline evaluation concepts
such as top-N and leave one out. The protocol is developed
with the “Find good items” and “Find all good items” user
tasks in mind, as defined by Herlocker et al. [6], it is how-
ever general enough to be applied to other defined user tasks,
e.g. “Recommend Sequence” and “Just Browsing”. The pro-
tocol attempts to mimic the data properties in live recom-
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mender system evaluation by creating more realistic training
and test data splits allowing the recommender system to be
evaluated in a setting which is more similar to a deployed
(production) system.

Our results show that, in comparison to a traditional eval-
uation approach, the introduced model gives more insight
into the quality of recommendations in different scenarios
(e.g. the length of the recommended list), and may even
lower the evaluation time in some evaluation scenarios.

The main contributions of this paper are an evaluation pro-
tocol simplifying the comparison and replication of the re-
sults obtained in a recommender system evaluation and a
model for more accurately capturing the quality of a recom-
mender system for different types of users.

2. EVALUATION PROTOCOL
The proposed evaluation protocol attempts to capture as-
pects from real, product-oriented recommendation systems
which interact with users, e.g. services such as Netflix 1,
Movielens2, etc. It does so by specifying what data will be
available for the training and for the evaluation of the sys-
tem, as well as the type of items the system recommends.
As stated above, the protocol has been developed specifi-
cally with a “find good items” scenario in mind [6], which
is reflected in the method for training and test splitting,
candidate item selection and candidate user filtering below.

2.1 Personalized Training & Test Datasets
When considering a deployed recommendation system, it
should be safe to assume that the complete interaction his-
tory (the given ratings or previous clicks/purchases) of each
user is available for training the recommendation algorithm.
In a traditional evaluation setting, like those described in [6],
the training and test split is performed on the complete pop-
ulation of users. Usually this is done regardless of how many
ratings (or other interactions) are recorded for each user.
The strategy comes with the risk of creating a training model
with users having no or very few items in the training or test
sets. This aspect is however commonly overlooked, instead
a random sample of the candidate user’s interactions is se-
lected as a test set, and the rest is kept for training [16]. This
type of training and test split is visualized in Fig. 1a which
shows an 80% − 20% split where white and black squares
represent the training and test sets respectively.

In order to mimic the recommendation accuracy of a de-
ployed system, we need to take several factors into consider-
ation. For instance, the most accurate recommendations for
each user will only be found if all of the available data is used
to train the recommendation algorithm. To achieve this,
personalized training and test splits must be created. This
allows the algorithm to be trained on all available ratings
or interactions, with the exception of the candidate user’s
test set. Fig. 1b shows an example of this splitting strat-
egy; black and white squares represent the test and training
items for one user respectively. The actual splitting can be
based on some predefined conditions, e.g. a rating value, at
random, or based on a temporal threshold such that only

1http://www.netflix.com
2http://www.movielens.org

item interactions up to a certain point in time are selected
into the test set [2], as illustrated in Fig. 1c. The end ef-
fect of this splitting procedure is that instead of one global
training and test split, we have one instance of the training
and test split per user. These personal data splits are then
used to train and evaluate each user separately.

2.2 Candidate Item Selection
Before performing the training/test splits described above,
two aspects of our test sets (the candidate items) need to
be considered. First, whenever the evaluation metrics are
calculated at a given cutoff point, e.g. precision@N , the
calculation of an accuracy at N when there are fewer than
N potentially good recommendations is problematic. The
reason for this is that even an optimal recommender that
“cheats” and peeks into the test set – an oracle – will not
be able to achieve a perfect precision score (i.e. 1.0). As a
means of overcoming this issue, we propose that each test
set contains exactly N relevant items for the candidate user.
When precision is used as the evaluation metric, the effect
will be precision at the level of recall, i.e. R-precision [10].

The second aspect to be considered ties to the type of eval-
uation we want to perform. If the focus is “find good items”,
a lower bound on the ratings given to potential test items
can be employed, we refer to this approach as the relevance
threshold. The definition of relevance can be tailored to the
underlying data and/or recommendation scenario, e.g. a
global or personalized rating, a random selection, a selec-
tion based on item popularity, etc.

2.3 Candidate User Filtering
Similarly to the candidate item selection described above,
in order to ensure a realistic measure of recommendation
accuracy, there are some constraints on our candidate users
as well.

Let us consider the evaluation of a recommendation algo-
rithm using precision at N as the accuracy metric. We can
assume that all users will not have rated the same amount
of items. More realistically, this will likely range from some
users having rated very few items to some users having rated
very many items [3,14,17]. If we select a low N , users with
many ratings in the test set will most likely achieve a higher
level of accuracy than users with few ratings in the test set,
and vice versa. In order to mitigate the effect of this, we
suggest that a minimum rated items constraint, M , is intro-
duced. M needs to be larger than N to allow a non-empty
training set. This constraint is used for selecting which users
will be available for accuracy evaluation at different N ’s.
The ratio between M and N specifies how many items the
candidate user needs to have in the training set with respect
to the test set, since predicting recommendations for users
with no or few items in the test set will result in low accuracy
scores.

2.4 Proposed Evaluation Setting
To ensure more realistic accuracy values, we propose that
the evaluation process be adapted to the deployed system
concept as well. With this goal in mind, we instantiate the
proposed evaluation protocol as presented in Algorithm 1.
Here, we can observe that different training and test splits

http://www.netflix.com
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(a) A random 80%− 20% (machine learn-
ing type) training and test data split for
all users. The split is random, items are
not sorted. Only one split is performed for
the complete user population.
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(b) The proposed training and test data
split for one user. Items can be sorted by
random, or by relevance (per user) select-
ing only the n most relevant items to the
test set.
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(c) The proposed split for one user when
considering time. Items in the gray area
correspond to interactions by other users
in the same time span the candidate user
has interacted with the black items.

Figure 1: The traditional training test split for the whole population of users Fig. 1a and the proposed split for one user
Fig. 1b as well as for one user when taking temporal aspects into consideration Fig. 1c. The white area corresponds to the
training set, the black area corresponds to the test set and the gray area corresponds to unused items.

are generated for each user u ∈ U , where U is the complete
set of users. Furthermore, to select candidate items for user
u we use a time-agnostic relevance threshold (Line 16 of Al-
gorithm 1) where only items having ratings higher than u’s
mean rating µ(u) plus a fraction of u’s standard deviation
(σ(u)) are deemed relevant. It should be noted that due
to user’s ratings being “. . . aspirational rather than reflect-
ing [their] daily activity . . . ” [18] this relevance threshold
might not be suitable in all cases. Additionally, we acknowl-
edge that taking time into consideration when performing
the split is more realistic, it would however make the com-
parison to a traditional evaluation approach impractical and
is thus omitted (Section 3). Finally, we constrain the test
set size to exactly N items.

Should u not haveN ratings above the threshold, the weight-
ing factor on σ(u) is iteratively lowered until N items are
found. The lowest value the threshold will take is µ(u). In
Algorithm 1 the weighting factor is set to 0.5 and is ex-
ponentially decreased in each iteration. Should the lowered
threshold result in more than N items, a random selection of
the items with the lowest, good, relevance values is returned
instead. In a “find good items” scenario, this threshold guar-
antees that the recommender system is tuned to the specific
task at hand, i.e. finding good items. We propose to ensure
that M ≥ 2N in order to allow enough items in the training
set to expect a reasonable prediction quality.

The rationale for this evaluation setting is threefold;

i all available data for each user is used when training
the algorithm, as described in Section 2.1

ii any recommender system could theoretically reach a
maximum accuracy level when there are enough items
considered relevant (good) for each user, as described
in Section 2.2

Algorithm 1 Training and test set creation.

procedure Datasplit
Input:R, N,M whereR is the set of all ratings rui given
by users u ∈ U to items i ∈ I in the dataset, N the size
of the list of recommendations, and M is the minimum
number of ratings required for user u.
Output:The training sets {Tu}u∈U and validation sets
{Vu}u∈U , where each Tu and each Vu are the training
and validation sets for each user u respectively

4: for all u ∈ U and |Ru| ≥M do
. Note: (Ru is the subset of user u’s ratings)

step = 1
Vu = {}

8: while |Vu| 6= N do
W ← {i /∈ Vu : rui ≥ Relevance(u, step)}
Vu ← Vu ∪ random(W, N − |Vu|)
step++

12: end while
Tu ←R \ Vu

end for
end procedure

16: function Relevance(u, q)
return 0.5q × σ(u) + µ(u)

end function

iii accuracy values will not be biased by users with many
items in the test set and inaccurately affect the over-
all result for low N ’s; besides it ensures that enough
data is fed to the algorithm in the training phase, as
described in Section 2.3

3. EXPERIMENTS
To illustrate the quality of the proposed evaluation proto-
col, a set of experiments using an SVD recommender (EM
factorizer, 50 factors, 50 iterations), a user-based collabora-
tive filtering (CF) recommender (Pearson, k-NN, k = 50)
and an item-based CF recommender (Pearson) were per-
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(a) User-rating distribution for Movielens 100k.
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(b) User-rating distribution for Movielens 1M100k.
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(c) Item-rating distribution for Movielens 1M.
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(d) Item-rating distribution for Movielens 1M100k.

Figure 2: The number of users vs. the number of ratings in the Movielens 100k dataset and the Movielens 1M100k dataset
sample in Figs. 2a and 2b and the number of items vs. the number of ratings in the full Movielens 1 million dataset and
the the Movielens 1M100k sample in Figs. 2c and 2d. The latter pair serve as a comparison between the distributions of the
sample and the full dataset in order to affirm the validity of the sample. Note that the Ml1M100k sample (Fig. 2b) contains
users with fewer than 20 ratings which will be the case in a realistic scenario.

Dataset Users Items Ratings Density

ML100k 943 1, 682 100, 000 6.3%
ML1M100k 1, 000 3, 294 100, 000 3.0%

Table 1: The dimensions of the datasets used in the exper-
iments. Note that the ML1M100k dataset is significantly
sparser than the ML100k dataset, this is an effect of users
in the latter having a minimum of 20 ratings each.

formed. Each algorithm was evaluated according to the pro-
posed protocol (Section 2.4), and in a traditional evaluation
setting where only one training test split was performed for
the complete dataset.

The algorithms were evaluated using precision@N and R-
precision@N values for N ∈ {1, 5, 10, 20, 50, 100}. The eval-
uation was performed using two datasets: a sample of 100
thousand ratings for 1, 000 users from the Movielens 1 mil-
lion dataset (ML1M100k), and the Movielens 100k dataset
(ML100k). The reason for this sampling was to generate a
more realistic dataset than the Movielens datasets as users
in those have 20 ratings as a minimum (e.g. see Fig. 2 for a
comparison of the two datasets) which could cause synthet-
ically high precision values for low N ’s (i.e. N < 20). Both
dataset’s properties are given in Table 1.

For R-precision values, the proposed test and training splits
from Section 2.4 were used, whereas for the precision values

(the traditional evaluation approach) only one test and one
training test were created for all users and values of N . The
latter test set consisted of up to 20% of the items each user
had rated, these items needed to have been rated with at
least a rating value r = 3 in order to be included in the test
set. The remaining items were used for training.

4. RESULTS & DISCUSSION
This section summarizes the results obtained from the ex-
periments, both in terms of recommendation accuracy as
well as in the time necessary to perform the evaluation.

4.1 Accuracy
As mentioned in Section 2, the proposed evaluation protocol
creates more accurate quality estimates than the traditional
evaluation approach. Especially when considering a “first
page size”, i.e. the length of the recommended set, the pro-
tocol more accurately captures the quality of each “page”
in respect to its size. Fig. 3 summarizes the results of the
evaluation performed on both datasets with the three recom-
mendation algorithms. For small values of N , a traditional
evaluation approach receives higher precision values than the
R-precision values received through the proposed protocol,
as shown in Fig. 3. However, as N grows larger, the pro-
posed method receives higher R-precision values. This is in-
tuitive considering the nature of R-precision (larger number
of true positive candidate items), it should nevertheless be
noted that we are now able to estimate the actual quality of
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(a) Item-based CF (ML1M100k).
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(b) User-based CF (ML1M100k).
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(c) SVD (ML1M100k).
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(d) User-based CF (ML100k).
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(e) SVD (ML100k).
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Figure 3: Results for the three algorithms on the ML1M100k dataset (Figs. 3a to 3c), the accumulated time to run and
evaluate each algorithm (Fig. 3f), and the results for the ML100k dataset (Figs. 3d and 3e).



the recommender algorithm, i.e. how the algorithm performs
for those users we are able to evaluate at relevant sizes of
N . Using the traditional approach however, results do not
vary regardless the value of N , indicating that the evaluation
method does not capture the differences in the recommen-
dation quality depending on the “page size”. More specif-
ically, Figs. 3a to 3c show the comparison of results using
the proposed protocol and a traditional evaluation approach
on the sampled dataset. These figures allows us to estimate
the quality of the recommendations for users with very few
to very many ratings respectively. Additionally, the figures
show the sensitivity of the proposed evaluation method to
the number of ”good” items, i.e. the more possible “good”
recommendations, the more of these are recommended, and
result in a higher quality estimate. In contrast, the stan-
dard evaluation setting fails to capture this and estimates
the quality similarly, regardless of N , i.e. the precision lev-
els in Figs. 3a to 3c are very similar for each recommender
at different Ns.

Figs. 3d and 3e show the results on the ML100k dataset,
where each user has at least 20 ratings. The traditional
evaluation of the user-based recommender fails to capture
this aspect of the underlying data (Fig. 3d), whereas R-
precision has a noticeable improvement between N = 5 and
N = 10, the point where the evaluation could potentially
reach the maximum value, R-precision= 1.0. The consec-
utive improvements (for N > 10) are smaller, indicating
that the evaluation method was sensitive to this aspect in
the dataset. Fig. 3e summarizes the evaluation results of
the SVD recommender on the ML100k dataset. Here, tra-
ditional evaluation and the proposed model appear to have
an almost inverse relation, e.g. low precision values coin-
cide with high R-precision values. This is likely the effect of
proportionally fewer “good” items recommended for longer
lists of recommended items, e.g. evaluating precision at high
levels of N for users with N >> “good” items.

The results of the item-based CF recommender have been
omitted as they exhibited very low precision results on this
dataset, a finding in accordance to other works, e.g. Belloǵın
et al. [1].

4.2 Evaluation Time
The time needed to perform an according to the proposed
protocol presents another facet of recommender system eval-
uation. The protocol specifies that during the training phase
the recommenders are to be trained individually for each
user. In traditional evaluation, this is usually skipped in
favor of only training the recommender once to minimize
evaluation time. Fig. 3b shows the accumulated time (in
seconds) required to sequentially run and evaluate all 6 rec-
ommendation approaches (N = {1, 5, 10, 20, 50, 100}) on a
computer with a 3GHz Dual Core Intel i7 CPU and 8GB of
memory (the time required for training the ML100k dataset
has been omitted as the results exhibited similar character-
istics). As shown, the required time to evaluate according to
the proposed protocol is similar to the traditional evaluation
approach. In fact, the time is actually lower for the SVD rec-
ommender. From this, we can infer that it is not the training
of the algorithm that is time consuming, rather the evalua-
tion itself. The rationale for this being that if the training
process was costly, the proposed approach should have a

far higher accumulated running time due to the many more
recommenders trained compared to the traditional setting
(1 vs. 1 per user at every N). Nevertheless, as the moti-
vation of evaluation is to estimate the quality of a system,
decreasing the accuracy of said estimate in order to improve
an aspect which has no effect on the sought quality estimate
seems contradictory to the initial motivation for evaluation.
However, as the evaluation protocol dictates that only users
with at least N “good” items should be evaluated at N , the
resulting time spent on evaluation can actually be decreased
as compared to traditional evaluation. Thus, the time saved
by training the recommender model only once should not
be seen as a motivation to create less accurate quality esti-
mates.

To summarize our discussion, we know that precision at L
has negative effects of the quality estimate when there are
many users with less than L items. As such, precision at the
level of recall, or R-precision, should provide a better esti-
mate of the quality. As a side effect, R-precision can also
show if a recommendation algorithm fails, or starts perform-
ing badly, at certain levels of recall. In information retrieval
systems it can be said that a user has a higher usefulness of,
e.g. a good item being retrieved at L + 1 than not having
the item retrieved at all. In recommender systems, it com-
monly does not need to be the case that a recommendation
at L+1 will actually be presented to the user. Thus making
precision at the level of recall better suited to express the
quality than precision at any level L.

5. CONCLUSIONS & FUTURE WORK
In this work, we have presented a new evaluation protocol
for top-N recommender systems based on R-precision and
compared the results obtained when evaluating three recom-
mendation algorithms using two datasets to those obtained
when using traditional top-N recommenders. The proposed
model stipulates that the evaluation has an attainable opti-
mal value, the evaluation better reflects the quality per-user,
and that accuracy values are not biased by the number of
items users have interacted with.

We have shown that the proposed model is more sensitive to
the number of possible “good” recommendations, and is able
to more accurately reflect the quality of the recommender
algorithms, should they be deployed in a production envi-
ronment. As a side effect of, the experiments also show
that this evaluation approach, even though it involved more
steps than traditional evaluation, can save evaluation time.
As future work, we intend to extend the proposed evalu-
ation approach to other metrics, e.g. RMSE, nDCG, etc.
as well as investigate the correlation between the protocol
and the experienced quality of a recommender system from
the users’ perspectives. Additionally we intend to further
explore possible strategies for minimizing the accumulated
evaluation time without compromising the validity of the
evaluation itself.
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