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ABSTRACT
Neighbour-based collaborative filtering is a recommendation
technique that provides meaningful and, usually, accurate
recommendations. The method’s success depends however
critically upon the similarity metric used to find the most
similar users (neighbours), the basis of the predictions made.
In this paper, we explore twelve features that aim to explain
why some user similarity metrics perform better than oth-
ers. Specifically, we define two sets of features, a first one
based on statistics computed over the distance distribution
in the neighbourhood, and, a second one based on the near-
est neighbour graph. Our experiments with a public dataset
show that some of these features are able to correlate with
the performance up to a 90%.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Relevance
feedback, Information Filtering

General Terms
Algorithms, Experimentation, Performance

Keywords
Neighbour selection, Similarity metric, Collaborative Filter-
ing

1. INTRODUCTION
The aim of Recommender Systems (RS) is to assist users

in finding their way through huge databases and catalogues,
by filtering and suggesting relevant items taking into ac-
count or inferring the users’ preferences (i.e., tastes, inter-
ests, or priorities). Collaborative Filtering (CF) systems can
be considered as the earliest and most widely deployed rec-
ommendation approach [15], suggesting interesting items to
users based on the preferences from “similar” people [19, 1].
Usually, ratings (explicit relevance values given by users to
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items) are the primary source of evidence upon which this
similarity is established. As CF algorithms exploit the ac-
tive user’s ratings to make predictions, no item descriptions
are needed to provide recommendations. In this paper, we
focus our attention to the memory-based class of CF algo-
rithms that are user-based. These algorithms compute user
similarities from the user’s item ratings, typically based on
distance and correlation metrics [9]; items not yet seen by
the active user but rated by users highly similar to the ac-
tive user (in terms of their item ratings) are then used to
produce the recommendations. The “similar” people found
(whose preferences are used to predict ratings for the active
user) are usually referred to as the active user’s neighbours.

Neighbour-based recommender systems have some advan-
tages when compared against other types of recommenda-
tion techniques [9]. First, they are very intuitive and simple
to implement, which allow for richer explanations and jus-
tifications of the recommendations, since the interpretation
of the results is straightforward. Moreover, it is possible
to efficiently compute the recommendations, since the user
similarity matrices can be precomputed and stored prior to
making the suggestions; in part, this also explains the stabil-
ity of these methods, in the sense that they are little affected
by changes in the domain (e.g., new items or users). On the
other hand, these methods also suffer from two main short-
comings mainly due to data sparsity: limited coverage and
lower accuracy.

As mentioned before, the choice of the similarity metric
is a key aspect of neighbour-based methods. In this con-
text, modifications thereof and alternative similarity func-
tions have been proposed [23, 25], but no principled expla-
nations about why the modifications or the original metrics
do or do not work. To better understand the role of these
metrics in recommendation, we formulate as follows our re-
search questions: RQ1) is it possible to find user similarity
properties able to predict the performance of such metrics
when integrated in nearest neighbour CF algorithms?, and,
in that case, RQ2) how should we modify a bad-performing
similarity metric to improve its performance?

With these goals in mind, we explore the effect of different
features computed for variations of user similarity metrics.
These features are classified in two groups: distance-based
and graph-based. We have found that some of these features
are highly correlated with the success of a similarity metric
when used in a neighbour-based recommender system, and
thus, they could be used to explain why some similarity
metrics perform better than others in a particular recom-
mendation setting. Unfortunately, we have not yet found a
principled way to improve the performance of a given sim-
ilarity function based on these results. We have evaluated
a distribution-based normalisation of the similarity values,
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Table 1: Definition of sim(u, v) for two functions (cosine and Pearson). The set I(u, v) ⊂ I denotes the items involved in the
computation of the similarity (see Section 2.2 for more details).

Cosine similarity Pearson similarity∑
i∈I(u,v) r(u, i)r(v, i)√∑

i∈I(u,v) r(u, i)
2
√∑

i∈I(u,v) r(v, i)
2

∑
i∈I(u,v) (r(u, i)− r̄(u))(r(v, i)− r̄(v))√∑

i∈I(u,v) (r(u, i)− r̄(u))2
√∑

i∈I(u,v) (r(v, i)− r̄(v))2

such that a bad-performing similarity metric is transformed
according to the distribution of a better-performing metric,
however the resulting performance remains unaltered with
respect to the original, untransformed similarity metric.

2. NEIGHBOUR-BASED RECOMMENDER
SYSTEMS

Neighbour-based CF algorithms are based on the princi-
ple that a particular user’s rating records are not equally
useful to make suggestions for all other users [19]. Central
aspects in these algorithms are how to identify which neigh-
bours form the best basis to generate item recommendations
for the active user, and how to properly account for the in-
formation provided by them.

Neighbourhood identification selects the users who are
most similar to the active user, according to a given similar-
ity metric. In this context, the similarity of two users gen-
erally consists of finding a set of items that both users have
interacted with, and examining to what degree the users
displayed similar behaviours on these items. It is common
practice to set a maximum number of neighbours (or a mini-
mum similarity threshold) to restrict the neighbourhood size
either for computational efficiency, or in order to avoid bas-
ing recommendations on users who are not similar enough,
resulting in noisy outcomes.

Once the target user’s neighbours are selected, these neigh-
bour’s preferences are usually weighted by their similarity
to the active user to produce the final recommendations.
A common user-based approach, for example, predicts the
relevance of an item for the target user using a linear combi-
nation of the neighbours’ ratings, weighted by the similarity
between the target user and such neighbours [2, 27]:

r̂(u, i) = C
∑

v∈Nk(u)

sim(u, v)r(v, i) (1)

Here, r̂(u, i) represents the predicted rating for user u and
item i, C is a normalisation constant, Nk(u) is the user’s
neighbourhood of size k, sim(u, v) is a user similarity metric,
and r(v, i) denotes the rating given by user v to item i. A
similar instantiation of this algorithm takes into account the
rating deviations from user’s and neighbour’s rating means
(denoted as r̄(u) for a user u) [26]:

r̂(u, i) = r̄(u) + C
∑

v∈Nk(u,i)

sim(u, v)(r(v, i)− r̄(v)) (2)

Generally, the neighbourhood Nk(u) is defined based on
some user similarity metric, either by selecting the top k
neighbours more similar to user u, or by choosing a thresh-
old and restricting the neighbours to those whose similarity
with u is above such threshold (here we will use the for-
mer approach). Other ways to construct the neighbourhood
include exploiting the notion of ‘trust’, by selecting only
the most trustworthy users with respect to some trust met-
ric [25], or by using clustering algorithms, to improve the
resulting system’s scalability [24].

2.1 User similarity metrics
The two most used user similarity functions in the litera-

ture are the cosine and Pearson similarities. Table 1 shows
their most commonly used definition, when the preferences
of users are represented by their item ratings.

Cosine similarity captures the angle between both users
when they are represented in the item space, a Euclidean
space where dimensions correspond to items. This metric is
unaffected by scalar transformations (i.e., multiplication of
all the elements of the vector by the same value), although
it is not invariant with respect to shifts (i.e., if a constant is
added to one of the vectors involved in the computation the
cosine similarity may be different).

Pearson similarity captures the correlation in terms of the
rating patterns between the two users, again, represented
in an item space (each dimension corresponds to an item in
the collection). This metric, like the cosine, is invariant to
scaling, but differently, it is also invariant to shifts or linear
transformations of the data. Note that these two similarities
are equivalent when the data is centered on the mean.

Some authors have reported that the performance of rec-
ommenders may change depending on which similarity met-
ric is used, specifically, most studies report that Pearson
similarity is superior to cosine [5, 20], however, as we shall
show in the experimental section, there are other variables
that should be considered which may have a large impact on
the final performance. Inspired by [6], in the next section
we present different variations of these similarity functions
based on the space of items in which the users are compared,
the default value used when no rating is given by a user, and
the filtering threshold to decide when to ignore the similarity
value.

2.2 Item selection, imputation, and filtering
In Table 1, we denote as I(u, v) the subset of items I

involved in the computation of the similarity between each
pair of users u and v. Usually, this set is equal to the in-
tersection of items rated by both users, that is, I(u, v) =
I(u)∩ I(v). This strategy (named as overlap from now on)
has the advantage that it reduces the computational cost
to calculate the similarity; however, as pointed out in [6],
it may lead to incorrect normalisations, since it ignores the
ratings that were given by only one of the two users being
compared, which in sparse situations may lead to similarities
computed based on a few item ratings only.

Alternatively, we may try to exploit all the items in the
similarity computation, i.e., I(u, v) = I. In this case, a de-
fault value should be imputed to those items not rated by a
particular user. This strategy of imputed ratings to compute
the similarity, although less common than the overlap strat-
egy, is not new in the literature [5, 6, 29]. Varying methods
have been deployed to determine the default rating value
to be imputed, which can be expressed in general terms as
follows: when r(u, i) is unknown then r(u, i) = r̃(u, i). The
imputed value r̃(u, i) could be modelled as a function of the
corresponding user or item, where common strategies in-
clude their average rating (denoted as default voting in [5])



Table 2: Definition of the features based on the distribution
of similarity values. Note that k is the neighbourhood size,
U is the set of users in the community, and sim(u, v) may
be any arbitrary user similarity function.

Distribution features Definition

Average neighbour
similarity, ans(k)

|U|−1
∑
u∈U

k−1
∑

v∈Nk(u)

sim(u, v)

Neighbour similarity
ratio, nsr(r; k)

ans(k)−1(ans(k)− ans(k · r))

Neighbour stability
1

|U|
∑
u∈U

minv∈Nk(u) sim(u, v)

maxv∈Nk(u) sim(u, v)

Stability
1

|U|
∑
u∈U

minv∈U\u sim(u, v)

maxv∈Nk(u) sim(u, v)

or a constant value not in the rating scale – i.e., 0 in the
common range 1-5 – or a neutral value within that scale –
i.e., a 3. Other imputed values would assume the unobserved
items to be negative or positive, and thus they are usually
avoided. In the following, we shall denote as Full0 when
all the items are used in the similarity computation and
the imputed value is 0, as Full3 when the imputed value
is 3, and FullAvg when the user’s average is used, that is,
r̃(u, i) = r̄(u).

As we have presented in the previous section, similarity
scores are typically used as weights in the computation of the
predicted rating. However, these functions may return neg-
ative values since their range is the interval [−1, 1], which
may produce negative predictions. To prevent this effect,
some authors have proposed to use a filtering threshold τ
such that, when sim(u, v) < τ the similarity is not consid-
ered; for instance, in [6] a value of τ = 0 is used to not take
into account the negative correlations.

3. ANALYSIS OF USER SIMILARITY
METRICS

Considering the variety of choices to be made, even while
only looking into the most common case of neighbourhood
based recommendation systems based on user-similarity, we
would like to find the key characteristics that help under-
stand when these metrics perform better for recommenda-
tion. They are defined from two perspectives: firstly, analy-
sing the distribution of the similarity values, and secondly,
exploring graph metrics computed over the graph of nearest
neighbour users.

3.1 Distance distribution analysis
The distribution of the values returned by a similarity

metric contains very important information about the be-
haviour of that metric, like its range, its most likely output
and the smoothness of the transition between these outputs.
Now we present some basic properties and others taken from
the literature to capture different aspects of a similarity dis-
tribution, summarised in Table 2.

We start by defining the average neighbour similarity,
which gives a notion of how close the top k neighbours are.
Besides, we also propose to compute the neighbour simi-
larity ratio, that compares the average neighbour similarity
of two different neighbourhoods, one of size k and another
of size k ·r. In this way, if the average similarity remains un-
changed after enough neighbours have been considered, we
could conclude that this metric is not very discriminative.

The rest of the proposed features are adapted from [4],
also aiming to deal with how discriminative (or meaningful)
a distance distribution is in the context of a nearest neigh-
bour search problem. In [4], Beyer et al. define a stability
factor that compares the distance to the nearest neighbour
against the farthest point. In that work, the authors prove
that the concept of nearest neighbour may not be meaningful
in certain situations, which can be measured by this stability
factor. In this paper, we adapt this concept and invert its
computation since we have similarities instead of distances;
we define the stability as the average ratio per user between
the least similar user and most similar neighbour. We also
restrict this definition within a neighbourhood and define
the neighbour stability in the same way as before where
the least similar user is contrained to belong to the neigh-
bourhood (for specific details, see the corresponding formula
in Table 2).

Also in [4] the authors use the amount of queries having
at least half of the data within a factor of the nearest neigh-
bour as a measure of the contrast (or quality) of the answers
obtained by the distance function. Here, we generalise this
concept and adapt it to the context of similarity functions,
by defining a feature that depends on two parameters: the
percentage of data n and a factor f . Then, we compute the
quality q(n, f) of a similarity function as follows:

q(n, f) =
1

|U| |{u ∈ U : gf (u, su) ≥ n}|

gf (u, s) =
1

|U|

∣∣∣∣{v ∈ U : f <
s

sim(u, v)
< f + 1

}∣∣∣∣
su = max

v∈Nk(u)
sim(u, v)

Therefore, this feature lets us compute the amount of users
for which the similarity function has ranked at least n per-
centage of the whole community within a factor f of the
nearest neighbour’s similarity. If we are interested in the
cumulative percent of users with this property, we could
just modify function gf (removing the restriction that the
ratio of similarities should be smaller than f+1) or we could
simply accumulate this quantity for consecutive values of f .

Table 3: Definition of the features based on the nearest
neighbour graph. Note that this graph takes as vertices V
the set of users in the system U , and the edges Es

k depend
on the neighbourhood size k and the actual similarity metric
s. Besides, sp(u, v) and sp(u) denote the shortest path and
its average, cc(u) represents the local clustering coefficient
for a user, and deg+(u) and deg−(u) correspond to the out-
degree and in-degree of a user. Finally, M [X] denotes the
median of the random variable X.

Graph features Definition

Average graph distance |U|−1
∑
u∈U

sp(u)

Clustering coefficient |U|−1
∑
u∈U

cc(u)

Graph density
|Es

k|
|V |(|V | − 1)

Graph diameter max
(u,v)∈U×U

sp(u, v)

Maximum graph distance max
u∈U

sp(u)

Median in-degree Mu∈U [deg−(u)]

Median out-degree Mu∈U [deg+(u)]



3.2 Nearest neighbour graph analysis
A pure metric representation like the one presented in the

previous section has an obvious interpretation from the simi-
larity metric viewpoint. Now, we propose to build the graph
associated with the top k nearest neighbours and study its
topological properties, not taking into account the specific
similarity values (already included in the distance distribu-
tion analysis) but exploiting the binary relation of whether
a user does or does not belong to a neighbourhood.

In this context, nearest neighbour graphs are defined, given
a similarity metric s and a number k, as the directed graph
(V,Es

k) where V = U and each edge e ∈ Es
k connects a

user u with every other neighbour in her top k most simi-
lar users with respect to s [10, 17]. Obviously, even though
the similarity function may be symmetric, the top k nearest
neighbour relationship is asymmetric, which explains why
we need a directed graph.

Over this graph, we propose to compute standard metrics
from link analysis, aiming to summarise the information en-
coded in it. Among the wide range of metrics available,
we propose herein to use those related with the concept of
distance in the graph.

The first concept we want to exploit is that of the shortest
path in a graph, sp(x, y) between two nodes x and y. We
use the average shortest path of a node (sp(x)) to compute
the maximum graph distance and the average graph
distance of a particular nearest neighbour graph, in the
first case by taking the maximum of such distances over
every user, and in the second by computing the average of
these distances. Table 3 contains the specific formulations
of these metrics.

The diameter of a graph is defined in a similar way to
that of the maximum graph distance, but instead of com-
puting the average for every user and then finding the max-
imum of these values, it takes the maximum shortest path
for every pair of users. The graph density measures, on the
other hand, the number of edges compared to the maximum
possible number of edges, and although this metric is not
really related with the concept of distance it will serve us as
a baseline.

In order to measure how densely connected are the users
between them, we use the clustering coefficient which
measures the probability that two neighbours of a user are
neighbours of each other. For this computation we aver-
age each local clustering coefficient cc(x) for every node x,
this is calculated as the number of actual edges between the
neighbours of node x divided by the maximum amount of
connections that could exist [30].

Finally, we also include in our analysis the in-degree and
out-degree of each node in the graph (denoted as deg−(x)
and deg+(x) respectively). The out-degree is constant for
every node (i.e., deg+ = k), and it is included here just as
a proof of concept that it should not be meaningful. For
the in-degree, on the other hand, we compute its median
value since the mean in-degree would be constant due to the
handshaking lemma. This lemma (also known as degree sum
formula) states that

∑
u deg+(u) =

∑
u deg−(u), and since

deg+(u) = k for any user u, the mean or average in-degree
would be equal to k.

4. EXPERIMENTS
To empirically compare the explanatory power of the pro-

posed user similarity properties, we first show several in-
stantiations of the similarity metrics presented in Section 2
that present different performance results, then, we explore
and analyse which of the proposed properties in Section 3

are able to capture the usefulness of such similarity metrics
when used as the main components of user-based recom-
mendation algorithms. With these experiments, we aim to
answer the two research questions stated at the beginning
of this paper; more specifically, Section 4.2 addresses RQ1
and Section 4.3 deals with RQ2.

The results reported in this section have been obtained
using the publicly available dataset1 called MovieLens 1M.
This dataset contains 6,040 users, 3,900 items and 1,000,209
ratings. We performed a 5-fold cross validation retaining
80% of the data for training, and the rest for testing. Some
preliminary experiments were carried out in the smaller data-
set called MovieLens 100K and we obtained comparable re-
sults.

The methodology used in our evaluation corresponds to
the one described by Koren in [22], where for each user a
number of not relevant items (unrated by this user in the
training and testing sets) is randomly selected (100 in our
case), and then, for each highly relevant item in the test-
ing split (i.e., those rated as 5), a ranking is generated by
predicting a score for both this item and the other (not
relevant) items. Then, the performance of this ranking is
measured using, in this case, the trec eval program2. In this
way, standard retrieval metrics such as precision, normalised
Discounted Cumulative Gain (nDCG) or Mean Reciprocal
Rank (MRR) could be used. In our experiments we use
MRR because each ranking only contains one relevant item,
as described before.

We have used the JUNG library3 for most of the compu-
tations related with the metrics based on nearest neighbour
graphs.

4.1 Performance comparison of user
similarity metrics

Table 4 shows the MRR values of different variations of
the cosine and Pearson similarity metrics when used inside
a standard user-based recommendation technique (denoted
as UB and corresponding to the Equation 1) and when the
user and neighbour deviations are considered (UBMeans,
Equation 2), in both cases using 50 neighbours. Here, we
have experimented with the different imputation strategies
described in Section 2.2. We carried out experiments with
filtered correlations (thresholding by τ , see Section 2.2) as
well, but they produced results very similar to the unfiltered
ones (probably because the neighbourhood size is too small
to observe a significant change), and thus these results will
be omitted from discussion in the paper.

A first observation we can derive from Table 4 is that
similarity metrics have an equivalent behaviour on different
recommendation techniques. This makes sense since both
techniques only change the way they aggregate the rating
and similarity information. However, we can observe that
the results are slightly different for each method. In partic-
ular, the trend is consistent for both settings, although the
values of UBMeans are slighly lower than those of UB. We
find that we cannot easily determine which similarity metric
performs better, since any Pearson variation is better than
cosine when using overlap, while full cosine with an imputed
value of 0 (Full0) is better than Pearson; and, using overlap
leads to inferior results for all settings. We should emphasise
that the overlap strategy for computing the similarities saves
computation time and space, and perhaps this explains why

1Available at http://www.grouplens.org/node/73
2Available at http://trec.nist.gov/trec eval
3Available at http://jung.sourceforge.net



Table 4: Performance results (mean reciprocal rank) for different combinations of recommendation methods, similarity metrics
and imputation techniques. ↑ and ↓ denote the best and worst combinations for each pair of recommender and similarity
metric.

Imputation
Recommender Similarity Full0 Full3 FullAvg Overlap

UB
Cosine 0.511 ↑ 0.392 0.333 0.187 ↓

Pearson 0.451 0.443 0.456 ↑ 0.220 ↓

UBMeans
Cosine 0.471 ↑ 0.303 0.269 0.156 ↓

Pearson 0.371 0.368 0.431 ↑ 0.192 ↓

Table 5: Spearman correlation values between the similarity features and the MRR values of the different combinations of
recommendation methods, similarity metrics, and imputation techniques. All values are statistically significant (p < 0.05).

Distribution features Correlation Graph features Correlation
Average neighbour similarity −0.97 Average graph distance −0.77

Neighbour similarity ratio, nsr(10) 0.88 Clustering coefficient −0.21
Neighbour stability −0.92 Graph density 0.29

Stability −0.33 Graph diameter 0.70
Quality, q(0.5, 1) −0.74 Maximum graph distance −0.51
Quality, q(0.5, 2) 0.26 Median in-degree 0.85
Quality, q(0.5, 3) 0.32 Median out-degree NA

it has been the preferred method in the literature (see [9, 19,
1]) and in some public implementations (like Mahout4 and
MyMediaLite5), even though it was shown in [6] already that
overlapping distances do not properly capture the similarity
between the profiles, thus obtaining compatible results with
those presented here.

4.2 Performance analysis of user
similarity metrics

In this section, we analyse the features defined in Section 3
by measuring the correlation between the values obtained
by these features and the performance of each combination
of similarity and imputation strategy. To focus on the top
most similar users, we build the neighbour graphs and dis-
tributions considering only the top 5 users more similar (i.e.,
k = 5).

Table 5 summarises the correlations between the perfor-
mance values and the properties of all the methods described
before using Spearman’s coefficient, which is a well-known
correlation function able to capture non-linear relationships
between the variables of interest, in this case the similarity
features and their corresponding performance.

The results presented in Table 5 evidence that some of
these features are very correlated with the final performance
of the recommender that uses a particular similarity metric.
For instance, the average neighbour similarity and the av-
erage graph distance correlate negatively with performance,
representing that the higher these features the worse the
performance. As described in Section 3, this is related, in
the first case, to the average neighbours’ similarity, and in
the second to the average shortest path length.

Having short paths in the nearest neighbour graph is re-
lated with a high value of the quality feature, since most
of the users are within a small factor of the neighbour’s
distance (this explains the similar correlation obtained for
quality, in particular for the case q(0.5, 1)). The param-
eters of the quality feature correspond to those suggested
in [4], where the authors examine the percentage of queries
in which at least half the data points (n = 0.5) were within
some factor f of the nearest neighbor.

4Available at http://mahout.apache.org
5Available at http://mymedialite.net

A small average neighbours’ similarity could be produced
by either a metric that deliberately outputs low similar-
ity values, or by a metric whose values distinguish strongly
within the neighbourhood (a very high value for the very
top neighbours, and much lower values for the rest). Thus,
we need to look at the rest of the features to distinguish
between these situations.

The stability feature and its constrained version (neigh-
bour stability) also show negative correlations. These results
are consistent with the theoretical analysis developed in [4],
where the authors state that when the stability is high it
represents that the distance can provide plenty of contrast
between the nearest and the farthest object. In our con-
text, this rationale should be inverted, since we deal with
similarities instead of distances (note its definition in Ta-
ble 2). Thus, larger values (closer to 1.0) correspond to sit-
uations where the farthest and the closest neighbours have
an equivalent similarity value, whereas when the stability
is closer to 0 or negative it means the similarity metric is
more discriminative. Lower stability values thus correspond
to better performing similarity metric, as reflected in the
negative correlations observed.

Other features such as the graph density, graph diameter,
median in-degree, and neighbour similarity ratio correlate
positively with performance. As expected, the predictive
power of the density metric is not strong, because it is not
actually related with the concept of distance in the graph.
Note that correlations for the mean and median out-degree
are not applicable since this feature is constant for every
user (the out-degree for every user is exactly k).

Now let us illustrate these results with a detailed example
of the distributions for a well and a bad performing similarity
metrics. Figure 2 shows an example of each situation, we
can observe here that the graph corresponding to the cosine
with overlap (right, bad performing) hardly discriminates
between the neighbours, since most of its values are closer
to 1, whereas the full cosine with an imputed value of 0
(left, better performing) shows a limited amount of very
similar points. This specific characteristic of the distribution
is captured to some extent, as we described in Section 3.1,
by most of the proposed features analysed herein, such as
average neighbour similarity (0.36 for the better performing,
0.99 for the other), neighbour stability (0.88 and 0.99), and
graph diameter (31 and 10).
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Figure 1: Scatterplot based on the performance results (MRR) of different versions of recommendation methods (with k = 5)
and three of the similarity features presented before (neighbour stability, average neighbour distance, and graph diameter).
Note that these plots correspond to the correlations presented in Table 5, and the MRR values are slightly different to those
in Table 4 since a different k is used.
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Figure 2: Distance distribution for two similarity metrics
with different performance results. Note how the cosine sim-
ilarity with an imputed value of 0 (left, good performance)
is more discriminative than the distribution for the cosine
with overlap, since it produces a smaller amount of high
similarities.

A more general trend is observed in Figure 1, which shows
the scatterplots for three of these similarity features. Note
how easy we can distinguish a bad performing similarity
metric (cosine with overlap) from a better metric (cosine
Full0) by looking at the values of these features. This is in
contrast with the typical results obtained in query perfor-
mance literature; we discuss this aspect in Section 5.

4.3 Adjusting similarity metric distributions
Based on the results presented before, we aim to improve

the performance of user similarity metrics by adjusting their
values. As a first approach, we transform their distributions
to the ones that show better results. For this purpose, we
consider a distribution-based normalisation [13, 14] to trans-
form the values of similarity functions based on some ideal
distributions (i.e., those that show better performance).

The rationale behind this idea is that, according to the
correlation values found in the previous section, if we are
able to build a user similarity function with a high neigh-
bour similarity ratio, very few neighbours within a factor of
1 of the nearest neighbour, and a small average distance be-
tween them – by taking just three of the strongest features
–, such similarity function may show a good performance.

Table 6: Performance results (using MRR) for a UB recom-
mender when similarity metrics are normalised according to
the best performing similarity function (Cosine Full0). Two
neighbourhood sizes are tested: 5 and 50 neighbours. No
statistically difference observed (p < 0.01).

Top 5 Top 50
Orig Norm Orig Norm

Cosine Full0 0 - 0.511 -
Cosine Full3 0.285 0.283 0.392 0.388

Cosine FullAvg 0.184 0.182 0.333 0.328
Cosine Overlap 0.108 0.108 0.187 0.181

Pearson Full0 0.425 0.426 0.451 0.445
Pearson Full3 0.351 0.351 0.443 0.443

Pearson FullAvg 0.384 0.382 0.456 0.454
Pearson Overlap 0.160 0.160 0.220 0.217

However, it is very difficult to build such a function in a
formal, principled way. Because of this, we propose to nor-
malise an (already existing) bad-performing similarity func-
tion and transform its values based on the distribution of a
better-performing (or ideal) similarity function. In this way,
the new similarity metric should behave more like the ideal
distribution; although this transformation by itself does not
guarantee that the normalised similarity inherits all the fea-
tures from the ideal similarity. Results reported in [13, 14]
demonstrate that this method can, in principle, transform
the scores automatically without manual intervention and
lead to improved results.

Table 6 shows the performance of the original and of the
transformed similarity metrics using as ideal distribution the
best performing combination presented in Table 4, that is,
the full cosine metric with an imputed value of 0. We also
show the results for two different neighbourhood sizes: 5 be-
cause the feature analysis (Section 4.2) was focused on the
closest neighbours and thus fewer neighbours were consid-
ered (i.e., k = 5), and 50 because this is a typical neighbour-
hood size used in previous work [9] and it also corresponds
to the size used in the results reported in Section 4.1.

We can observe in Table 6 that the performance of the
transformed similarity functions remains almost unchanged,
although the results are better when only the top 5 neigh-
bours are considered. This is probably because, as men-
tioned before, the transformation does not ensure that the
corresponding distribution features computed over the trans-
formed values have the desired values, such as a lower av-
erage neighbour similarity. One possible reason for this is



Table 7: Performance results (using MRR) for UB recom-
mender when the Pearson similarity is normalised according
to the best performing Pearson similarity function (Pearson
FullAvg).

Top 5 Top 50
Orig Norm Orig Norm

Pearson FullAvg 0.384 - 0.456 -
Pearson Full0 0.425 0.385 0.451 0.431
Pearson Full3 0.351 0.332 0.443 0.412

Pearson Overlap 0.160 0.159 0.220 0.210

that the distribution-based normalisation is transforming a
global aspect of the similarity function without considering
other local effects (e.g., per user) such as the average neigh-
bour similarity or the stability; moreover, it is difficult for
such approach to modify the original features based on the
nearest neighbour graph, which, as already discussed, are
also related to the final performance of the metric.

As an additional check, and since it seems cosine simi-
larities decrease their performance when normalised using a
cosine variation as ideal distribution, we have normalised the
Pearson similarities with respect to the best Pearson similar-
ity metric reported in Table 4, which corresponds to the full
Pearson similarity with the user’s average as imputed value.
In this case the results are worse than before (see Table 7),
except for Pearson overlap and top 5, which suggests that
the target and ideal distributions should be very different in
order to not have at least a negative effect, like in the case of
the overlap strategy (either with cosine or Pearson as ideal
distributions).

5. RELATED WORK
An empirical comparison of different strategies to build

neighbourhoods in collaborative filtering was developed in [19].
In addition, an analysis of the performance of similarity met-
rics was presented in [28] and [6]. However we should note
that the evaluation metrics and methodologies have changed
with respect to these papers where only error-based metrics
– not ranking-based like here – were used. Besides, although
in this paper we present an empirical analysis of different
metrics, this is not its main goal, in contrast with the afore-
mentioned papers.

Regarding the analysis of the user similarity metrics, this
paper has connections with previous theoretical papers in
the fields of databases [4] (from which we adapted the con-
cept of stability and quality) and [21, 8, 11]. Nearest neigh-
bour graphs have also been used in semantic image search [17,
18], where some properties of such graphs are analysed from
a topological point of view.

This work may also be observed from the perspective of
performance prediction in Information Retrieval [7, 16] and
recommendation [3], where different functions have been
proposed to predict the final performance of the query (in
retrieval) or the target user (in recommendation). In our
case, the features we have defined are assumed to be in-
herent to the components of the recommender system, and
thus, they measure a global property of the algorithm and
its corresponding similarity metric.

Furthermore, measurements of performance predictors are
usually defined at a query or user level, whereas the features
analysed in this paper are global measurements related to
the whole recommender system. This difference between the
techniques may be the key factor for obtaining so different
results – whereas in query performance the features hardly
ever correlate, here we have found very strong correlations.

6. CONCLUSIONS AND FUTURE WORK
The performance of neighbour-based recommender sys-

tems changes depending on the user similarity metric used
to build its neighbourhood and how it is computed. In this
paper, we have explored this issue first by computing dif-
ferent variations of two similarity metrics (cosine and Pear-
son) and then by proposing several features computed on the
output of each similarity variation, either by exploiting its
distribution or the corresponding nearest neighbour graph.

We have found that some of these features present a strong
predictive power with respect to the performance of a neigh-
bour-based recommender system using such similarity met-
ric. More specifically, the more successful features are those
dealing with a comparison of the specific similarity value be-
tween top and farthest neighbours (like average neighbour
similarity and neighbour stability) or top neighbours and less
similar users (such as average graph distance, neighbour sim-
ilarity ratio, and quality). These results are compatible with
others found in the database literature where the stability
of a metric is related with its ability to properly discrimi-
nate good from bad neighbours. To put these insights to the
test, we have transformed some bad-performing similarities
such that their distribution is more similar to that of better-
performing metrics, but the results are not conclusive (the
performance barely changes) and more effort is needed in
this direction.

In the future, we aim to develop a general methodology
to analytically and experimentally diagnose the weaknesses
of a neighbour-based recommender system, similar to what
was proposed recently in Information Retrieval [12]. We
plan to explore other similarity metrics like the Spearman
correlation coefficient, that traditionally has been observed
as a bad performing metric, which could be misleading since
most of the variations presented here, to the best of our
knowledge, were not tested for this metric. Furthermore, we
want to emphasise that the evaluation metrics and method-
ologies have changed with respect to the classic papers where
most of these observations were first proposed, which mainly
used error-based metrics – instead of ranking-based. Ad-
ditionally, we also plan to analyse the effect of variations
in similarity metrics for item-based recommender systems,
to check whether those features having a strong predictive
power in the user-based scenario are also useful in the item-
based context.
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Content-Based image retrieval. In Advances in
Information Retrieval, volume 2997 of Lecture Notes
in Computer Science, pages 253–266. Springer Berlin
Heidelberg, 2004.
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