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To a graph G is canonically associated its neighborhood-hypergraph, X(G), formed by the 
closed neighborhoods of the vertices of G. We characterize the graphs G such that (i) X(G) has 
no induced cycle, or (ii) X(G) is a balanced hypergraph or (iii) X(G) is triangle free. (i) is 
another short proof of a result by Farber; (ii) answers a problem asked by C. Berge. The case of 
strict neighborhoods is also solved. 

Introduction 

The balanced hypergraphs constitute a natural generalization of bipartite graphs 
and of unimodular hypergraphs (see [2]. Berge in [3] asked for a characterization 
of graphs for which the neighborhoods of the vertices form a balanced hyper­
graph. 

We give here such a characterization (Theorem 2). Our method of proof also 
yields a characterization of those graphs whose neighborhoods have no induced 
triangle (Theorem 3) and a new proof of a result of Farber [8] characterizing 
those graphs whose neighborhoods have no induced cycle (Theorem 1). Analog­
ous characterizations for the case of strict neighborhoods are also given 
(Section 4). 

1. Preliminaries 

For the general terminology concerning graphs and hypergraphs, we refer to 
[2]. Our graphs or hypergraphs are loopless but may be infinite and contain 
multiple edges. 
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By a (hypergraphic) cycle we mean a finite alternating sequence of distinct 
vertices and distinct edges v1E 1 · • vAv 1 (p;;;:: 3) such that {.x;, X;+ 1} EE; for 
1 ~ i ~ p (mod p ). For graphs, the (graphic) cycle will be identified with the 
sequence of its vertices v 1 • • vPv 1; an edge of the form V;Vi with \i - j\-f 1 is called 
a chord of the cycle. As usual CP denotes the cycle (with no chords) on p vertices. 

Given a hypergraph H = (X, ~) and a subset Ac X, HA= (A, {En A; EE~}) 
denotes the subhypergraph induced by A. A partial induced subhypergraph of H 
will be a hypergraph of the form H~ for some Ac X and some H' = (X, ~') with 
i;'c~'. 

The graphs not containing any CP (for p ;;;::4) as induced subgraph are usually 
named triangulated graphs or chordal graphs (see [7] for a recent survey on these 
graphs). 

We say that a hypergraph has an induced CP (p;;;:: 3) if it has a partial induced 
hypergraph which is isomorphic to Cp. A hypergraph is triangle-free if it has no 
induced C3 (see [l]). It is balanced (cf. [2]) if it has no induced odd cycle 
( CZci+b q;;;:: 1); hypergraphs with no induced cycle ( CP, p ~ 3) were also called 
totally balanced. 

Given a graph G, we denote by N(v) the (closed) neighborhood of a vertex v, 
i.e. the set formed by v and all the vertices adjacent to v. The hypergraph having 
as vertices the vertices of G and as edges the neighborhoods of these vertices is 
called the neighborhood-hypergraph of G and is denoted by .N(G). 

An (incomplete) sun of order p ~ 3 is a graph S with the following properties: 
(1.1) S is triangulated. 
(1.2) S has a cycle of length p: a 1 • · • ~a 1 . 

(1.3) S has exactly 2p vertices: a 1, .•• , ~,bi, ... , bP. 
(1.4) Every vertex bi has only two neighbours in S: ai and a;+i (i is taken 

modulo p). 
The ai 's form the central set of S. The bi's form the stable set of S. When the 

central set is a clique, S is the complete sun of order p, denoted by SP. By an odd 
(even) sun, we mean a sun of odd (even) order; Fig. 1 exhibits a sun of order 9 
that does not strictly contain any other odd sun. 

Fig. 1. A 9-sun. 
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2. Main results 

Let G be a graph and .N(G) its neighborhood-hypergraph. 

Theorem 1 (Farber [8]). .N( G) has no induced cycle if and only if G is a 

triangulated graph with no induced complete sun. 

These graphs were called 'strongly chordal' by Farber, they have nice properties 

relative to elimination schemes (see [8, 10]). 

Theorem 2 . .N( G) is balanced if and only if G is a triangulated graph with no 

induced odd sun. 

As in the first version of this result [ 4, 6], the condition 'no induced odd sun' 

can be replaced, for triangulated graphs by the following condition: 

(2.1) In every cycle of length 4k + 2 :3 6 there are at least 2k + 2 vertices 

belonging to some chords of the cycle. 

Theorem 3. .N( G) is triangle-free if and only if G does not contain C4 , C5, C6 or S3 

as induced subgraph. 

3. Proofs. 

The theorems are simple applications of the following lemma: 

Lemma 3.1. Let p :3 3 be an integer and suppose G is a graph in which every cycle 

of length k, for 4 ~ k ~ 2p, possesses a chord. Then, .N( G) has an induced CP if and 

only if G has an induced sun of order p. 

Proof. Clearly, if K is some induced subgraph of G, .N(K) is isomorphic to an 

induced partial subhypergraph of .N(G). Thus, the 'if' part of the lemma is easy 

and left to the reader. 
The converse is proved by contradiction: Suppose that every cycle of G with 

length k, 4~ k ~2p, has a chord and suppose G has no induced p-sun while .N(G) 

has an induced CP. By definition, there exists a set A of p vertices ai, ... , ~ and 

a set B of p vertices bi. . .. , bP with the following properties (during the proof, all 

indices are modulo p ): 
(3.2) a 1N(b1 ) · • · ~N(bp)a1 is a hypergraphic cycle of .N'(G). 

(3.3) N(bi)nA ={ai, ~+ 1} for every j. 
(3.3) is clearly equivalent to: 
(3.4) For Ni or i + 1, a; f bi and a;bi is not an edge of G. 
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Claim 1. If v1v2 · · · vqv 1 is a cycle C of G (4~q~2p), then either v2 vq is a 
chord of C or C has a chord of the form v 1 vk for some k, 3:;;:;; k :;;;; q - 1. 

The proof is easy by induction on k. 
Claim 2. G contains an edge of the form ail4 (i =/= j). Otherwise, by (3.2), the 

set of a;'s and the set of b;'s are disjoint. Thus a 1b1a2 b2 • • • a,,bpa1 is a cycle of 
length 2p in G and our Claim 1 together with (3.4) implies that bkbk+l is a chord 
of this cycle for each k (l:;;;; k:;;;; p ). Hence AU B induces a triangulated subgraph 
of G which is a sun of order p: the central set is B, the stable set is A The 
contradiction proves our claim. 

Claim 3. If a;ai is an edge of G, then aia;+ 1 is also an edge of G. 
By symmetry, we may suppose i = 1. Let j be the smallest integer for which a 1 l4 

is an edge of G. If j>2, the vertices a1 b1a 2 ai are different. a2 b2 a3 b3 • • • l4- 1bi-ll4 
is a walk not passing through a 1 or bi. by (3.4). This walk induces a minimal path, 
say P, from a2 to ai. 

By (3.4) and the definition of j, the cycle a 1 b1Pa1 with length ~4 has no chord 
containing a 1• Hence b1ai must be an edge (Claim 1), in contradiction with (3.4). 
So, j= 2. 

Claim 4. a 1 • • • ~a1 is a cycle of G. 
It is an easy consequence of the previous claim. 

Claim 5. a; f bi for all i, j. 
Otherwise N(bi) would contain a;_1, a; and a.+ 1 (Claim 4), in contradiction with 

(3.4). 
Claim 6. G contains some edge bibi. 
Otherwise, AU B would induce a p-sun with central set A and stable set B. 
For obtaining the final contradiction, we observe that in the last claim i and j 

play a symmetrical role. So, we may assume without loss of generality that G 
contains an edge of the form b1 bi with j =/= 2. Then G has the following cycle: 

b1 a2 a3 a4 · · · aibib 1 

and, by Claim 1, some edge b1ai (3:;;:; i ~j) or the edge bia2 must exist, contradict­
ing (3.4) D 

Lemma 3.5. If G has an induced Cv (p ~4), then .N'(G) has an induced Ck for each 
value of k between [!(p+l)] and [ip] (inclusive). 

The proof is an easy exercise. 

Proof of Theorem 1. The above lemmas imply: .N'(g) has no induced cycle iff G is 
triangulated and has no induced sun. To conclude the proof, we check that every 
sun contains a complete sun. Although this has been proven previously (see, for 
example, [8, 10]) we provide a short proof for the sake of completeness. 

This is done by induction on the order p of the sun. The cases p = 3, 4 are 
straightforward. Considering a sun S of order p > 4, with central cycle a 1 • · · a,,a1 
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and stable corresponding set b1 · · · bP, and assuming that S has no induced 
complete sun, we look at the effect of the contraction of the vertices a; and ll-;+ 1 

into a single vertex a. Deleting b;, we get a sun of order p - 1 that contains, by 
induction hypothesis, a complete q-sun S'. Thus S contains (decontracting a in S' 
and adding bJ a sun of order q + 1. By induction hypothesis again, q + 1 = p. 

So, for every i, {a1 • • • a..,}\{a1, ll-;+1} induces a complete subgraph; since p:;;.5, S 
is a complete sun. 0 

Proof of Theorem 2. If }((G) is balanced, G has to be triangulated by Lemma 
3.5. The theorem then follows by Lemma 3.1. 0 

Proof of Theorem 3. The same easy reasoning applies. 0 

4. Strict neighborhoods 

For a graph G, we define the strict neighborhood N°( v) of a vertex v by 
N°(v) = N(v)\v, and we denote by .N°(G) the collection of all strict neighbor­
hoods of vertices of G. 

Theorem 4 . .N°( G) has no induced cycle iff G is a bipartite graph with no induced 
C2q, for 2q ""'6. 

These graphs are known as 'chordal bipartite graphs' (see [9]). 

Theorem 5. }(0 (G) is balanced iff G is a bipartite graph with no induced C4q+z for 
q ""'l. 

Theorem 6. }(0 ( G) is triangle free iff G has no C3 or C6 as induced subgraph. 

Proofs. Theorem 6 is quite obvious: if }(0 ( G) is triangle free, G has no induced 
C3 or C6 ; the reader will easily check the converse assertion. 

For the other theorems, we remark: if .N°( G) has no induced odd cycle, then G 
has no induced odd cycle and, since the vertices of an odd cycle always induce 
some triangle, G is bipartite. Thus, Theorems 4 and 5 easily follow from 

Lemma 4.1. Let G be a bipartite graph and q an integer :;;.3, Then }(0 ( G) has an 
induced Cq iff G has an induced C2 w 

The easy proof is omitted. 
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