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Analysis of multi-stage open shop processing

systems∗
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Abstract

We study algorithmic problems in multi-stage open shop processing systems that
are centered around reachability and deadlock detection questions.

We characterize safe and unsafe system states. We show that it is easy to recognize
system states that can be reached from the initial state (where the system is empty),
but that in general it is hard to decide whether one given system state is reachable
from another given system state. We show that the problem of identifying reachable
deadlock states is hard in general open shop systems, but is easy in the special case
where no job needs processing on more than two machines (by linear programming
and matching theory), and in the special case where all machines have capacity one
(by graph-theoretic arguments).
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1 Introduction

We consider a multi-stage open shop processing system with n jobs J1, . . . , Jn and m
machines M1, . . . ,Mm. Every job Jj (j = 1, . . . , n) requests processing on a certain
subset M(Jj) of the machines; the ordering in which job Jj passes through the machines
in M(Jj) is irrelevant and can be chosen arbitrarily by the scheduler. Every machine Mi

(i = 1, . . . ,m) has a corresponding capacity cap(Mi), which means that at any moment
in time it can simultaneously hold and process up to cap(Mi) jobs. For more information
on multi-stage scheduling systems, the reader is referred to the survey [6].

In this article, we are mainly interested in the performance of real-time multi-stage
systems, where the processing time pj,i of job Jj on machine Mi is a priori unknown and
hard to predict. The Central Control (the scheduling policy) of the system learns
the processing time pj,i only when the processing of job Jj on machine Mi is completed.
The various jobs move through the system in an unsynchronized fashion. Here is the
standard behavior of a job in such a system:

1. In the beginning the job is asleep and is waiting outside the system. For technical
reasons, we assume that the job occupies an artificial machine M0 of unbounded
capacity.

2. After a finite amount of time the job wakes up, and starts looking for an available
machine M on which it still needs processing. If the job detects such a machine
M , it requests permission from the Central Control to move to machine M . If
no such machine is available or if the Central Control denies permission, the
job falls asleep again (and returns to the beginning of Step 2).

3. If the job receives permission to move, it releases its current machine and starts
processing on the new machine M . While the job is being processed and while the
job is asleep, it continuously occupies machine M (and blocks one of the cap(M)
available places on M). When the processing of the job on machine M is completed
and in case the job still needs processing on another machine, it returns to Step 2.

4. As soon as the processing of the job on all relevant machines is completed, the job
informs the Central Control that it is leaving the system. We assume that
the job then moves to an artificial final machine Mm+1 (with unbounded capacity),
and disappears.

The described system behavior typically occurs in robotic cells and flexible manu-
facturing systems. The high level goal of the Central Control is to arrive at the
situation where all the jobs have been completed and left the system. Other goals are
of course to reach a high system throughput, and to avoid unnecessary waiting times
of the jobs. However special care has to be taken to prevent the system from reaching
situations of the following type:
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Example 1.1 Consider an open shop system with three machines M1,M2,M3 of capac-
ity 1. There are three jobs that each require processing on all three machines. Suppose
that the Central Control behaves as follows:

The first job requests permission to move to machine M1. Permission granted.
The second job requests permission to move to machine M2. Permission granted.
The third job requests permission to move to machine M3. Permission granted.

Once the three jobs have completed their processing on theses machines, they keep blocking
their machines and simultaneously keep waiting for the other machines to become idle.
The processing never terminates.

Example 1.1 illustrates a so-called deadlock, that is, a situation in which the system
gets stuck and comes to a halt since no further processing is possible: Every job in the
system is waiting for resources that are blocked by other jobs that are also waiting in
the system. Resolving a deadlock is usually expensive (with respect to time, energy, and
resources), and harmfully diminishes the system performance. In robotic cells resolving
a deadlock typically requires human interaction. The scientific literature on deadlocks is
vast, and touches many different areas like flexible manufacturing, automated production,
operating systems, Petri nets, network routing, etc.

The literature distinguishes two basic types of system states (see for instance Coffman,
Elphick & Shoshani [2], Gold [5], or Banaszak & Krogh [1]). A state is called safe, if
there is at least one possible way of completing all jobs. A state is called unsafe, if every
possible continuation eventually will get stuck in a deadlock. An example for a safe state
is the initial situation where all jobs are outside the system (note that the jobs could
move sequentially through the system and complete). Another example for a safe state
is the final situation where all jobs have been completed. An example for an unsafe state
are the deadlock states.

Summary of considered problems and derived results

In this article we study the behavior of safe and unsafe states in open shop scheduling sys-
tems. In particular, we investigate the computational complexity of the four algorithmic
questions described in the following paragraphs. First, if one wants to have a smoothly
running system, then it is essential to distinguish the safe from the unsafe system states:

Problem: Safe State Recognition

Instance: An open shop scheduling system. A system state s.

Question: Is state s safe?

Section 3 provides a simple characterization of unsafe states, which leads to a (straight-
forward) polynomial time algorithm for telling safe states from unsafe states. Similar
characterizations have already been given a decade ago in the work of Sulistyono &
Lawley [9] and Xing, Lin & Hu [10]. Our new argument is extremely short and simple.

One of the most basic problems in analyzing a system consists in characterizing those
system states that can be reached while the shop is running.
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Problem: Reachable State Recognition

Instance: An open shop scheduling system. A system state s.

Question: Can the system reach state s when starting from the initial sit-
uation where all machines are still empty?

In Section 4 we derive a polynomial time algorithm for recognizing reachable system
states. The main idea is to reverse the time axis, and to make the system run backward.
Then reachable states in the original system translate into safe states in the reversed
system, and the results from Section 3 can be applied.

Hence recognizing states that are reachable from the initial situation is easy. What
about recognizing states that are reachable from some other given state?

Problem: State-to-State Reachability

Instance: An open shop scheduling system. Two system states s and t.

Question: Can the system reach state t when starting from state s?

Surprisingly, there is a strong and sudden jump in the computational complexity of the
reachability problem: Section 5 provides an NP-hardness proof for problem State-to-

State Reachability.
Another fundamental question is whether an open shop system can ever fall into a

deadlock. In case it cannot, then there are no reachable unsafe states and the Central

Control may permit all moves right away and without analyzing them; in other words
the system is fool-proof and will run smoothly without supervision.

Problem: Reachable Deadlock

Instance: An open shop scheduling system.

Question: Can the system ever reach a deadlock state when starting from
the initial situation?

Section 6 proves problem Reachable Deadlock to be NP-hard, even for the highly
restricted special case where the capacity of each machine is at most three and where
each job requires processing on at most four machines. In Sections 7 and 8 we exhibit two
special cases for which this problem is solvable in polynomial time: The special case where
every job needs processing on at most two machines is settled by a linear programming
formulation and techniques from matching theory. The special case where every machine
has capacity one is solved by analyzing cycles in certain edge-colored graphs.

2 Basic definitions

A state of an open shop scheduling system is a snapshot describing a situation that might
potentially occur while the system is running. A state s specifies for every job Jj

• the machine M s(Jj) on which this job is currently waiting or currently being pro-
cessed,

4



• and the set Ms(Jj) ⊆ M(Jj)− {M s(Jj)} of machines on which the job still needs
future processing.

The machines M s(Jj) implicitly determine

• the set J s(Mi) ⊆ {J1, . . . , Jn} of jobs currently handled by machine Mi.

The initial state 0 is the state where all jobs are still waiting for their first processing; in
other words in the initial state all jobs Jj satisfy M0(Jj) = M0 and M0(Jj) = M(Jj).
The final state f is the state where all jobs have been completed; in other words in the
final state all jobs Jj satisfy Mf (Jj) = Mm+1 and Mf (Jj) = ∅.

A state t is called a successor of a state s, if it results from s by moving a single job
Jj from its current machine M s(Jj) to some new machine in set Ms(Jj), or by moving a
job Jj with Ms(Jj) = ∅ from its current machine to Mm+1. In this case we will also say
that the system moves from s to t. This successor relation is denoted s → t. A state t
is said to be reachable from state s, if there exists a finite sequence s = s0, s1, . . . , sk = t
of states (with k ≥ 0) such that si−1 → si holds for i = 1, . . . , k. A state s is called
reachable, if it is reachable from the initial state 0.

Proposition 2.1 Any reachable state s can be reached from the initial state through a
sequence of at most n+

∑n
i=1 |M(Jj)| moves.

A state is called safe, if the final state f is reachable from it; otherwise the state is
called unsafe. A state is a deadlock, if it has no successor states and if it is not the final
state f .

3 Analysis of unsafe states

Unsafe states in open shop systems are fairly well-understood, and the literature contains
several characterizations for them; see for instance Sulistyono & Lawley [9], Xing, Lin &
Hu [10], and Lawley [7]. In this section we provide yet another analysis of unsafe states,
which is shorter and (as we think) simpler than the previously published arguments.

A machine M is called full in state s, if it is handling exactly cap(M) jobs. A
non-empty subset B of the machines is called blocking for state s,

• if every machine in B is full, and

• if every job Jj that occupies some machine in B satisfies ∅ 6= Ms(Jj) ⊆ B.

Here is a simple procedure that determines whether a given machine Mi is part of a
blocking set in state s: Let B0 = {Mi}. For k ≥ 1 let Jk be the union of all job sets
J s(M) with M ∈ Bk−1, and let Bk be the union of all machine sets Ms(J) with J ∈ Jk.
Clearly B0 ⊆ B1 ⊆ · · · ⊆ Bm−1 = Bm. Furthermore machine Mi belongs to a blocking
set, if and only if Bm is a blocking set, if and only if all machines in Bm are full. In case
Bm is a blocking set, we denote it by Bs

min(Mi) and call it the canonical blocking set for
machine Mi in state s. The canonical blocking set is the smallest blocking set containing
Mi:
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Lemma 3.1 If machine Mi belongs to a blocking set B in state s, then Bs
min(Mi) ⊆ B.

The machines in a blocking set B all operate at full capacity on jobs that in the future
only want to move to other machines in B. Since these jobs are permanently blocked
from moving, the state s must eventually lead to a deadlock and hence is unsafe. The
following theorem shows that actually every deadlock is caused by such blocking sets.

Theorem 3.2 A state s is unsafe if and only if it has a blocking set of machines.

Proof: The if-statement is obvious. For the only-if-statement, we classify the unsafe
states with respect to their distances to deadlock states. The set U0 contains the deadlock
states. For d ≥ 1, set Ud contains all states whose successor states are all contained in
Ud−1. Note that Ud−1 ⊆ Ud, and note that every unsafe state occurs in some Ud. We
prove by induction on d that every state in Ud has a blocking set of machines. For d = 0
this is trivial.

In the inductive step, assume for the sake of contradiction that some state s ∈ Ud is
unsafe but does not contain any blocking set. Since every move from s leads to a state
in Ud−1, all successor states of s must contain blocking sets. Whenever in state s some
job J moves to some (non-full) machine M , this machine M must become full and must
then be part of any blocking set. Among all possible moves, consider a move that yields
a state t with a newly full machine M for which the canonical blocking set Bt

min(M) is
of the smallest possible cardinality.

Note that in state t there exist a machine M ′ ∈ Bt
min(M) and a job J ′ ∈ J t(M ′)

with M ∈ Mt(J ′); otherwise Bt
min(M) − {M} would be a blocking set for state s. Now

consider the successor state u of s that results by moving job J ′ from machine M to M ′.
Since Mu(J ′) ⊆ Bt

min(M), a simple inductive argument shows that Bu
min(M) ⊆ Bt

min(M).
Since job J ′ has just jumped away from M ′, this machine cannot be full in state u, and
hence M ′ ∈ Bt

min(M)− Bu
min(M). Consequently the canonical blocking set Bu

min(M) has
smaller cardinality than Bt

min(M). This contradiction completes the proof. �

Lemma 3.3 For a given state s, it can be decided in polynomial time whether s has
a blocking set of machines. Consequently, problem Safe State Recognition can be
decided in polynomial time.

Proof: Create an auxiliary digraph that corresponds to state s: the vertices are the ma-
chines M1, . . . ,Mm. Whenever some job Jj occupies a machine Mi, the digraph contains
an arc from Mi to every machine in Ms(Jj). Obviously state s has a blocking set of
machines if and only if the auxiliary digraph contains a strongly connected component
with the following two properties: (i) All vertices in the component are full. (ii) There
are no arcs leaving the component. Since the strongly connected components of a digraph
can easily be determined and analyzed in linear time (see for instance [3]), the desired
statement follows. �
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4 Analysis of reachable states

In this section we discuss the behavior of reachable system states. We say that a state t is
subset-reachable from state s, if every job Jj satisfies one of the following three conditions:

• M t(Jj) = M s(Jj) and Mt(Jj) = Ms(Jj), or

• M t(Jj) ∈ Ms(Jj) and Mt(Jj) ⊆ Ms(Jj)− {M t(Jj)}, or

• M t(Jj) = Mm+1 and Mt(Jj) = ∅.

Clearly whenever a state t is reachable from some state s, then t is also subset-reachable
from s. The following example demonstrates that the reverse implication is not necessar-
ily true. This example also indicates that the algorithmic problem Reachable State

Recognition (as formulated in the introduction) is not completely straightforward.

Example 4.1 Consider an open shop system with two machines M1,M2 of capacity 1
and two jobs J1, J2 with M(J1) = M(J2) = {M1,M2}. Consider the state s where J1 is
being processed on M1 and J2 is being processed on M2, and where Ms(J1) = Ms(J2) = ∅.
It can be seen that s is subset-reachable from the initial state 0, whereas s is not reachable
from 0.

Our next goal is to derive a polynomial time algorithm for recognizing reachable
system states. Consider an open shop scheduling system and a fixed system state s.
Without loss of generality we assume that s is subset-reachable from the initial state.
We define a new (artificial) state t where M t(Jj) := M s(Jj) and Mt(Jj) := M(Jj) −
Ms(Jj)− {M s(Jj)} for all jobs Jj . Note that in both states s and t every job is sitting
on the very same machine, but the work that has already been performed in state s is
exactly the work that still needs to be done in state t.

Lemma 4.2 State s is reachable if and only if state t is safe.

Proof: First assume that s is reachable, and let 0 = s0 → s1 → · · · → sk = s denote a
corresponding witness sequence of moves. Define a new sequence t = tk → tk−1 → · · · →
t0 = f of moves: Whenever the move sℓ → sℓ+1 (0 ≤ ℓ ≤ k − 1) results from moving job
Jj from machine Ma to machine Mb, then the move tℓ+1 → tℓ results from moving job
Jj from machine Mb to machine Ma. (Note that the artificial machines M0 and Mm+1

switch their roles.) Hence t is safe. A symmetric argument shows that if t is safe then s
is reachable. �

Hence deciding reachability is algorithmically equivalent to deciding safeness. To-
gether with Lemma 3.3 this yields the following theorem.

Theorem 4.3 Reachable State Recognition can be decided in polynomial time.�

The following lemma states a simple sufficient condition that makes a state reachable.
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Lemma 4.4 Let s be a state, and let K be a subset of machines such that every job that
still needs further processing in s satisfies M s(Jj) ∈ K and

Ms(Jj) ∪ {M s(Jj)} = K ∩M(Jj).

Then s is a reachable system state.

Proof: By renaming the jobs we assume that the jobs Jj with 1 ≤ j ≤ k have M s(Jj) =
Mm+1 and the jobs Jj with k + 1 ≤ j ≤ n have M s(Jj) ∈ K. We handle the jobs one by
one in their natural order: every job moves through all machines in M(Jj) − Ms(Jj),
and ends up on machine M s(Jj). Then the next job is handled. �

5 Analysis of state-to-state reachability

We establish NP-hardness of State-to-State Reachability by means of a reduction
from the following satisfiability problem; see Garey & Johnson [4].

Problem: Three-Satisfiability

Input: A set X = {x1, . . . , xn} of n logical variables; a set C = {c1, . . . , cm}
of m clauses over X that each contain three literals.

Question: Is there a truth assignment for X that satisfies all clauses in C?

We start from an instance of Three-Satisfiability, and construct a corresponding
instance of State-to-State Reachability for it. Throughout we will use ℓi to denote
the unnegated literal xi or the negated literal xi for some fixed variable xi ∈ X, and we
will use ℓ to denote a generic literal over X. Altogether there are 5n+m machines:

• For every literal ℓi, there are three corresponding machines S(ℓi), T (ℓi), and U(ℓi).
Machine U(ℓi) has capacity 2, whereas machines S(ℓi) and T (ℓi) have capacity 1.
For every variable xi ∈ X the two machines U(xi) and U(xi) coincide, and the
corresponding machine will sometimes simply be called U(i).

• For every clause cj ∈ C, there is a corresponding machine V (cj) with capacity 3.

Furthermore the scheduling instance contains 4n jobs that correspond to literals and 6m
jobs that correspond to clauses. For every literal ℓi there are two corresponding jobs:

• Job J(ℓi) is sitting on machine S(ℓi) in state s. In state t it has moved to machine
U(ℓi) without visiting other machines inbetween.

• Job J ′(ℓi) is still waiting outside the system in state s, and has already left the
system in state t. Inbetween the job visits machines S(ℓi), T (ℓi), U(ℓi) in arbitrary
order.

Consider a clause cj that consists of three literals ℓa, ℓb, ℓc. Then the following six jobs
correspond to clause cj :
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• For ℓ ∈ {ℓa, ℓb, ℓc} there is a job K(cj , ℓ) that in state s sits on machine V (cj), then
moves through machines S(ℓ) and T (ℓ) in arbitrary order, and finally has left the
system in state t. Note that in state s these three jobs block machine V (cj) to full
capacity.

• For ℓ ∈ {ℓa, ℓb, ℓc} there is another job K ′(cj , ℓ) that waits outside the system in
state s, then moves through machines U(ℓ) and V (cj) in arbitrary order, and finally
has left the system in state t.

In Sections 5.1 and 5.2 we will show that in the constructed scheduling instance state t is
reachable from state s if and only if the Three-Satisfiability instance has a satisfying
truth assignment. This then implies the following theorem.

Theorem 5.1 State-to-State Reachability is NP-complete.

5.1 Proof of the if-statement

We assume that the Three-Satisfiability instance has a satisfying truth assignment.
We describe a sequence of moves that brings the scheduling system from the starting
state s into the goal state t.

In a first phase, for every true variable xi the job J(xi) moves from machine S(xi)
to machine U(i). Then job J ′(xi) enters the system by moving to U(i), then moves to
T (xi), then to S(xi), and finally leaves the system. Next job J ′(xi) enters the system,
moves to U(i), and finally sits and waits on T (xi). Symmetric moves (with the roles
of xi and xi interchanged) are performed for every false variable xi. At the end of this
phase, for every true literal ℓi the two machines S(ℓi) and T (ℓi) are empty, and there is
an empty spot on machine U(ℓi).

In the second phase, we consider clauses cj that consist of three literals ℓa, ℓb, ℓc. We
pick one true literal ℓi from cj , and we let the corresponding job K(cj , ℓi) jump away
from machine V (cj) to machine S(ℓi), then to T (ℓi), and finally make it leave the system.
This yields a free spot on machine V (cj). For every ℓ ∈ {ℓa, ℓb, ℓc} we let job K ′(cj , ℓ)
enter the system, move through machines U(ℓ) and V (cj), and then leave the system. At
the end of this phase, four out of the six jobs corresponding to every clause have reached
their final destination in state t.

In the third phase, for every true variable xi the job J(xi) moves from machine S(xi)
to machine U(i). Job J ′(xi) moves from T (xi) to S(xi), and then leaves the system.
Symmetric moves (with the roles of xi and xi interchanged) are performed for every false
variable xi. At the end of this phase, all jobs J(ℓi) and J ′(ℓi) have reached their final
destination in state t. All machines S(ℓi) and T (ℓi) are empty.

In the fourth phase, we again consider clauses cj that consist of three literals ℓa, ℓb, ℓc.
For the two literals ℓ in cj that did not get picked in the second phase, we move the
corresponding job K(cj , ℓ) from machine V (cj) to machine S(ℓ), then to machine T (ℓ),
and finally make it leave the system. At the end of this phase all jobs have reached their
final destination, and the system has reached the desired goal state t.
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5.2 Proof of the only-if-statement

We assume that there is a sequence of moves that brings the scheduling system from
state s into state t. We will deduce from this a satisfying truth assignment for the
Three-Satisfiability instance.

We say that variable xi is activated as soon as one of the corresponding jobs J(xi)
and J(xi) moves to machine U(i). We say that xi is deactivated at the moment µi in
time where also the other job J(xi) or J(xi) moves to machine U(i). If job J(xi) moves
first and activates xi, we set variable xi to true; if J(xi) moves first and activates xi, we
set variable xi to false. We will show that the resulting truth setting satisfies all clauses.

Lemma 5.2 If ℓi is a false literal, then job K(cj , ℓi) can visit machine T (ℓi) only after
the deactivation time µi of variable xi.

Proof: Till the crucial moment µi where variable xi is deactivated, job J(ℓi) is perma-
nently blocking machine S(ℓi). From time µi onwards, jobs J(xi) and J(xi) together are
permanently blocking the machine U(i) with capacity 2.

Suppose for the sake of contradiction that some job K(cj , ℓi) moves to machine T (ℓi)
before moment µi. Then at time µi, it is waiting for its final processing on machine
S(ℓi) and blocking machine T (ℓi). We claim that under these circumstances job J ′(ℓi) is
causing trouble: In case J ′(ℓi) has not yet entered the system at time µi, it can never be
processed on machine U(i) which is permanently blocked from time µi onwards. In case
J ′(ℓi) has already entered the system at time µi, then at time µi it must be sitting on
machine U(i) and thereby prevents job J(ℓi) from moving there. In either case we reach
a contradiction. �

Now let us consider some arbitrary clause cj that consists of three literals ℓa, ℓb, ℓc, let
xa, xb, xc be the three underlying variables in X, and assume without loss of generality
that the corresponding moments of deactivation satisfy µa < µb < µc.

Lemma 5.3 At time µa job K ′(cj , ℓa) must either be sitting on machine V (cj), or must
have left the system.

Proof: If at time µa job K ′(cj , ℓa) is still waiting outside the system, then it will never
be processed on machine U(a), which is permanently blocked by jobs J(xa) and J(xa).
Hence there is no way of reaching state t, which is a contradiction. If at time µa job
K ′(cj , ℓa) is sitting on machine U(a), it thereby prevents variable xa from being deacti-
vated. That’s another contradiction. �

Hence at time µa job K ′(cj , ℓa) must already have visited machine V (cj). Since in
the starting state s the three jobs K(cj , ℓa), K(cj , ℓb), K(cj , ℓc) are blocking V (cj), one
of them must have made space and must have moved away before time µa; let this job
be K(cj , ℓi) where i ∈ {a, b, c}. We distinguish two cases. First, assume that K(cj , ℓi)
has moved to machine S(ℓi). Since variable xi is still active, literal ℓi must be true in
this case. Secondly, assume that K(cj , ℓi) has moved to machine T (ℓi). Since variable xi
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is still active, Lemma 5.2 yields that literal ℓi is true. In either case, clause cj contains
the true literal ℓi.

We conclude that every clause contains some true literal, and that the defined truth
setting satisfies all clauses. This completes the proof of Theorem 5.1.

6 Analysis of reachable deadlocks

In this section we show that Reachable Deadlock is an NP-hard problem. Our
reduction is from the following variant of the Three-Dimensional Matching problem;
see Garey & Johnson [4, p.221].

Problem: Three-Dimensional Matching

Instance: An integer n. Three pairwise disjoint sets A = {a1, . . . , an},
B = {b1, . . . , bn}, and C = {c1, . . . , cn}. A set T ⊆ A×B×C of triples, such
that every element occurs in at most three triples in T .

Question: Does there exist a subset T ′ ⊆ T of n triples, such that every
element in A ∪B ∪ C occurs in exactly one triple in T ′?

We start from an arbitrary instance of Three-Dimensional Matching, and construct
the following corresponding instance of Reachable Deadlock for it. There are two
types of machines. Note that every machine has capacity at most three.

• There are n+ 2 so-called structure machines S0, . . . , Sn+1, each of capacity 1.

• For every triple t ∈ T , there is a corresponding triple machine Tt with capacity 3.

Furthermore there are 4n + 2 jobs.

• For every element ai ∈ A there are two corresponding A-element jobs J+(ai) and
J−(ai). Job J+(ai) requires processing on structure machine Si, and on every triple
machine Tt with ai ∈ t. Job J−(ai) requires processing on structure machine Si−1,
and on every triple machine Tt with ai ∈ t.

• For every element bi ∈ B there is a corresponding B-element job J(bi) that requires
processing on structure machine Sn+1, and on every triple machine Tt with bi ∈ t.

• For every element ci ∈ C there is a corresponding C-element job J(ci) that requires
processing on structure machine Sn+1, and on every triple machine Tt with ci ∈ t.

• Finally there is a dummy job D0 that needs processing on S0 and Sn+1, and another
dummy job Dn+1 that needs processing on Sn and Sn+1.

Since every element of A ∪B ∪ C occurs in at most three triples, we note that each job
requires processing on at most four machines. For the ease of later reference, we also list
for every machine the jobs that need processing on that machine.

• A triple machine Tt with t = (ai, bj , ck) handles the four jobs J
+(ai), J

−(ai), J(bj),
and J(ck).
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• Structure machine Si with 1 ≤ i ≤ n− 1 handles the jobs J+(ai) and J−(ai+1).
Structure machine S0 handles the two jobs J−(a1) and D0.
Structure machine Sn handles the two jobs J+(an) and Dn+1.
Structure machine Sn+1 handles 2n+2 jobs: D0, Dn+1, all B-element jobs, and all
C-element jobs.

The following theorem contains the main result of this section.

Theorem 6.1 Reachable Deadlock is NP-complete, even if the capacity of each
machine is at most three, and if each job requires processing on at most four machines.

Indeed, Proposition 2.1 yields an NP-certificate for problem Reachable Deadlock.
The hardness argument proves that the constructed scheduling instance has a reachable
deadlock if and only if the Three-Dimensional Matching instance has answer YES.
The only-if-statement will be proved in Section 6.1, and the if-statement will be proved
in Section 6.2.

6.1 Proof of the only-if-statement

We assume that the scheduling instance has a reachable deadlock state s, and we will
show that then the Three-Dimensional Matching instance has answer YES.

Let B∗ be a blocking set of minimum cardinality in s, and let J ∗ denote the jobs that
are currently being processed on machines in B∗. For every triple machine Tt in B∗, the
job set J ∗ contains all four element jobs that need processing on Tt. (First: Machine
Tt must be full and hence must process three jobs. Second: If no other job in J ∗ needs
processing on Tt, then B∗ −{Tt} would yield a smaller blocking set.) Similarly, for every
structure machine Si ∈ B∗ with 0 ≤ i ≤ n, the job set J ∗ contains both jobs that need
processing on Si.

Lemma 6.2 The blocking set B∗ contains at least one of the structure machines Si with
0 ≤ i ≤ n.

Proof: Suppose otherwise. Then B∗ consists solely of triple machines and perhaps of
machine Sn+1.

We first claim that every triple machine in B∗ processes exactly one A-element job,
one B-element job, and one C-element job. Indeed, there is an A-element job J ∈ J ∗

that corresponds to some element ai ∈ A and that is processed on some triple machine
Tt ∈ B∗. The machine set Ms(J) of this job contains another triple machine Tu ∈ B∗.
Then ai ∈ t and ai ∈ u, and both machines Tt and Tu must be processing one A-element
job (that corresponds to element ai), one B-element job, and one C-element job. This
established the claim.

Next fix a B-element job J(bi) ∈ J ∗ that is processed on some machine Tt in B∗. The
machine set Ms(J(bi)) contains yet another machine from B∗. This cannot be a triple
machine Tv ∈ B∗. (Every such machine Tv is processing another B-element jobs J(bj)
with j 6= i, which implies bi /∈ u). Hence J(bi) needs future processing on the structure
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machine Sn+1, and Sn+1 ∈ B∗. Then Sn+1 must be blocked by some job that needs future
processing on some other machine in B∗. But neither D0, nor Dn+1, nor any B-element
or C-element job can do that. �

Lemma 6.3 (i) Let Si ∈ B∗ with 1 ≤ i ≤ n, and let job J+(ai) be running on Si. Then
there exists exactly one triple machine Tt ∈ B∗ with ai ∈ t, and this machine is processing
job J−(ai). Furthermore Si−1 ∈ B∗.

(ii) Let Si−1 ∈ B∗ with 1 ≤ i ≤ n, and let job J−(ai) be running on Si−1. Then there
exists exactly one triple machine Tt ∈ B∗ with ai ∈ t, and this machine is processing job
J+(ai). Furthermore Si ∈ B∗.

Proof: As the statements (i) and (ii) are symmetric, we only discuss (i). Consider job
J+(ai) on machine Si. Since ∅ 6= Ms(J+(ai)) ⊆ B∗, we conclude that J+(ai) still needs
to be processed on a triple machine Tt ∈ B∗, say with t = (ai, bj , ck). Since Tt is full, it
must be processing the three jobs J−(ai), J(bj), and J(ck). Then none of the remaining
triple machines Tu with ai ∈ u can be full, and hence none of them can be in B∗.

The job J−(ai) ∈ J ∗ is running on Tt ∈ B∗ and still needs future processing on
another machine in B∗. The only remaining candidate for this machine is Si−1. �

Lemma 6.4 The blocking set B∗ either contains machine S0 which is busy with D0 ∈ J ∗,
or machine Sn which is busy with Dn+1 ∈ J ∗. In either case, the blocking set B∗ contains
the structure machine Sn+1.

Proof: Lemma 6.2 yields that Sr ∈ B∗ for some r with 0 ≤ r ≤ n. First assume 1 ≤ r ≤ n
and that Sr is busy with J+(ar). Then an inductive argument based on Lemma 6.3.(i)
yields Si ∈ B∗ for 0 ≤ i ≤ r. Moreover for 1 ≤ i ≤ r machine Si is busy with J+(ai),
and finally S0 ∈ B∗ must be busy with D0. Next assume 0 ≤ r ≤ n − 1 and that Sr is
busy with J−(ar+1). Then a symmetric argument based on Lemma 6.3.(ii) yields that
machine Sn ∈ B∗ is busy with Dn+1. This establishes the first part of the lemma.

If S0 ∈ B∗ is busy with D0, then D0 ∈ J ∗ requires future processing on another
machine in B∗, which must be Sn+1. If Sn ∈ B∗ is busy with Dn+1, then Dn+1 ∈ J ∗

requires future processing on another machine in B∗, which must be Sn+1. In either case
this yields the second part of the lemma. �

From now on we will assume that machine S0 ∈ B∗ is busy with D0. (The case where
Sn ∈ B∗ is busy with Dn+1 can be settled in a symmetric way.) We distinguish two cases
on the job running on Sn+1.

(Case 1) Assume that Sn+1 is busy with Dn+1 ∈ J ∗. Then Dn+1 is waiting for
another machine in B∗, which must be machine Sn that is busy with J+(an). We claim
for 1 ≤ i ≤ n that J+(ai) is processed on machine Si ∈ B∗, and that job J−(ai) is
processed on a triple machine Tt ∈ B∗ with ai ∈ t. The claim is proved by a simple
inductive argument based on Lemma 6.3.(i) starting with i = n and going down to i = 1.
Then every triple machine in B∗ processes one of the jobs J−(a1), . . . , J

−(an), one B-
element job, and one C-element job. These n triple machines induce a solution for the
Three-Dimensional Matching instance.
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(Case 2) Assume that Sn+1 is busy with a B-element job or a C-element job; without
loss of generality we assume that it is busy with a B-element job J(br). Then J(br)
is waiting for another machine in B∗, which must be a full triple machine Mt with
t = (aj , br, ck). Machine Mt is busy with the three jobs J−(aj), J

+(aj), and J(ck).

(i) Job J−(aj) is waiting for a full machine in B∗. If j ≥ 2, then this must be the
structure machine Sj−1 which is processing job J+(aj−1) (and if j = 1, then it
is the structure machine S0 which is processing job D0). An inductive argument
based on Lemma 6.3.(i) yields that for 1 ≤ i ≤ j − 1 job J+(ai) is processed on
machine Si ∈ B∗, and job J−(ai) is processed on a triple machine Tt ∈ B∗ with
ai ∈ t.

(ii) Also job J+(aj) is waiting for a full machine in B∗. If j ≤ n− 1, then this must be
the structure machine Sj which is processing job J−(aj+1) (and if j = n, then it is
the structure machine Sn which is processing job Dn+1). An inductive argument
based on Lemma 6.3.(ii) yields that for j + 1 ≤ i ≤ n job J−(ai) is processed on
machine Si−1 ∈ B∗, and job J+(ai) is processed on a triple machine Tt ∈ B∗ with
ai ∈ t.

Now the j − 1 triple machines in (i), the n − j triple machines in (ii), and the triple
machine Mt with t = (aj , br, ck) together induce a solution for the Three-Dimensional

Matching instance. This completes the analysis of Case 2, and it also completes the
proof of the only-if-statement.

6.2 Proof of the if-statement

We assume that the Three-Dimensional Matching instance has a solution T ′ ⊆ T ,
and from this we will derive a reachable deadlock state for the scheduling instance.

Consider the subset K = {Tt : t ∈ T ′}∪{Si : 0 ≤ i ≤ n+1} of machines. We construct
a state t where every job J has already entered the system, has already been processed
on all machines in M(J)−K, and is currently being processed on its first machine from
M(J) ∩ K. Hence the assignment of jobs to machines determines the entire state t. We
assign job D0 to machine S0, and job Dn+1 to structure machine Sn+1. For every triple
t = (ai, bj , ck) ∈ T ′, we assign the three jobs J−(ai), J(bj), J(ck) to triple machine Tt,
and we assign job J+(ai) to triple machine Si.

The resulting state t has K as blocking set and is in deadlock. Furthermore Lemma 4.4
shows that t is a reachable state. All in all, this yields a reachable deadlock state t.

7 Reachable deadlocks if jobs require two machines

Throughout this section we only consider open shop systems where |M(J)| = 2 holds
for all jobs J . We introduce for every job J and for every machine M ∈ M(J) a corre-
sponding real variable x(J,M), and for every machine M a corresponding real variable
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y(M). Our analysis is centered around the following linear program (LP):

min
∑

M max{y(M), cap(M)}

s.t.
∑

J :M∈M(J) x(J,M) = y(M) for all machines M
∑

M∈M(J) x(J,M) = 1 for all jobs J

x(J,M) ≥ 0 for all J and M ∈ M(J)

Although this linear program is totally unimodular, we will mainly deal with its fractional
solutions.

Lemma 7.1 One can compute in polynomial time an optimal solution for the linear
program (LP) that additionally satisfies the following property (*) for every job J with
M(J) = {Ma,Mb}: If y(Ma) ≥ cap(Ma) and x(J,Ma) > 0, then y(Mb) ≥ cap(Mb).

Proof: We determine in polynomial time an optimal solution of (LP). Then we perform
a polynomial number of post-processing steps on this optimal solution, as long as there
exists a job violating property (*). In this case y(Ma) ≥ cap(Ma), x(J,Ma) > 0, and
y(Mb) < cap(Mb).

The post-processing step decreases the values x(J,Ma) and y(Ma) by some ε > 0,
and simultaneously increases x(J,Mb) and y(Mb) by the same ε. By picking ε smaller
than the minimum of cap(Mb) − y(Mb) and x(J,Ma) this will yield another feasible
solution for (LP). What happens to the objective value? If y(Ma) > cap(Ma) at the
beginning of the step, then the step would decrease the objective value, which contradicts
optimality. If y(Ma) = cap(Ma) at the beginning of the step, then the step leaves the
objective value unchanged, and yields another optimal solution with y(Ma) < cap(Ma)
and y(Mb) < cap(Mb).

To summarize, every post-processing step decreases the number of machines M with
y(M) = cap(M). Hence the entire procedure terminates after at most m steps. �

Let x∗(J,M) and y∗(M) denote an optimal solution of (LP) that satisfies the property
(*) in Lemma 7.1. Let M∗ be the set of machines M with y∗(M) ≥ cap(M).

Lemma 7.2 The open shop system has a reachable deadlock, if and only if M∗ 6= ∅.

Proof: (Only if). Consider a reachable deadlock state, let B′ be the corresponding block-
ing set of machines, and let J ′ be the set of jobs waiting on these machines. Every job
J ∈ J ′ is sitting on some machine in B′, and is waiting for some other machine in B′.
Since |M(J)| = 2, this implies M(J) ⊆ B′ for every job J ∈ J ′. Then

∑

M∈B′

y∗(M) ≥
∑

J∈J ′

∑

M∈M(J)

x∗(J,M) = |J ′|.

Since furthermore |J ′| =
∑

M∈B′ cap(M), we conclude y∗(M) ≥ cap(M) for at least one
machine M ∈ B′.
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(If). Let J ∗ be the set of jobs with x∗(J,M) > 0 for some M ∈ M∗. Property (*)
in Lemma 7.1 now yields the following for every job J : If J ∈ J ∗, then M(J) ⊆ M∗.
Construct a bipartite graph G between the jobs in J ∗ and the machines in M∗, with an
edge between J and M if and only if M ∈ M(J). For any subset M′ ⊆ M∗, the number
of job neighbors in this bipartite graph is at least

∑
M∈M′ y∗(M) ≥

∑
M∈M′ cap(M).

A variant of Hall’s theorem from matching theory [8] now yields that there exists an
assignment of some jobs from J ∗ to machines in M∗ such that every M ∈ M∗ receives
cap(M) pairwise distinct jobs.

To reach a deadlock, we first send all non-assigned jobs one by one through the
system. They are completed and disappear. Then the assigned jobs enter the system,
each moving straightly to the machine to which it has been assigned. Then the system
falls into a deadlock with blocking set M∗: All machines in M∗ are full, and all jobs are
only waiting for machines in M∗. �

Since jobs J with |M(J)| = 1 are harmless and may be disregarded with respect to
deadlocks, we arrive at the following theorem.

Theorem 7.3 For open shop systems where each job requires processing on at most two
machines, Reachable Deadlock can be solved in polynomial time. �

The following example illustrates that the above LP-based approach cannot be carried
over to the case where every job requires processing on three machines (since the only-if
part of Lemma 7.2 breaks down).

Example 7.4 Consider a system with two jobs and four machines of unit capacity. Job
J1 needs processing on M1,M2,M3, and job J2 needs processing on M1,M2,M4. A (reach-
able) deadlock results if J1 enters the system on M3 and then moves to M1, whereas J2
simultaneously enters the system on M4 and then moves to M2.

We consider a feasible solution with x(J,M) ≡ 1/3 for every J and every M ∈ M(J),
and y(M1) = y(M2) = 2/3 and y(M3) = y(M4) = 1/3. The objective value is 4, and
hence this is an optimal solution. The post-processing leaves the solution untouched, and
the resulting set M∗ is empty.

8 Reachable deadlocks if machines have unit capacity

Throughout this section we only consider open shop systems with cap(Mi) ≡ 1. For each
such system we define a corresponding undirected edge-colored multi-graph G = (V,E):
The vertices are the machines M1, . . . ,Mm. Every job Jj induces a clique of edges on
the vertex set M(Jj), and all these edges receive color cj . Intuitively, if two machines
are connected by an edge e of color cj , then job Jj may move between these machines
along edge e.

Lemma 8.1 For an open shop system with unit machine capacities and its corresponding
edge-colored multi-graph the following two statements are equivalent.
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(i) The multi-graph contains a simple cycle whose edges have pairwise distinct colors.

(ii) The system can reach a deadlock.

Proof: Assume that (i) holds, and consider a simple cycle C whose edges have pairwise
distinct colors. By renaming jobs and machines we may assume that the vertices in C
are the machines M1, . . . ,Mk, and that the edges in C are [Mj ,Mj+1] with color cj for
1 ≤ j ≤ k − 1, and [Mk,M1] with colors ck. Consider the following processing order of
the jobs:

• In the first phase, the jobs Jj with k+1 ≤ j ≤ n are processed one by one: Job Jj+1

only enters the system after job Jj has completed all its processing and has already
left the system. At the end of this phase we are left with the jobs J1, . . . , Jk.

• In the second phase, the jobs J1, . . . , Jk are handled one by one. When job Jj is
handled, first all operations of Jj on machines Mi with i ≥ k + 1 are processed.
Then job Jj moves to machine Mj , and stays there till the end of the second phase.
Then the next job is handled.

At the end of the second phase, for 1 ≤ i ≤ k job Ji is blocking machine Mi, and waiting
for future processing on some other machine in cycle C. The system has fallen into a
deadlock, and hence (i) implies (ii).

Next assume that (ii) holds, and consider a deadlock state. For every waiting job
Jj in the deadlock, let M ′

j be the machine on which Jj is currently waiting and let M ′′
j

denote one of the machines for which the job is waiting. Consider the sub-graph of G
that for every waiting job Jj contains the vertex M ′

j together with an edge [M ′
j ,M

′′
j ] of

color cj . This sub-graph has as many vertices as edges, and hence must contain a simple
cycle; hence (ii) implies (i). �

Lemma 8.2 For the edge-colored multi-graph G = (V,E) corresponding to some open
shop system with unit machine capacities, the following three statements are equivalent.

(i) The multi-graph contains a simple cycle whose edges have pairwise distinct colors.

(ii) The multi-graph contains a 2-vertex-connected component that spans edges of at
least two different colors.

(iii) The multi-graph contains a simple cycle whose edges have at least two different
colors.

Proof: We show that (i) implies (ii) implies (iii) implies (i). The implication from (i) to
(ii) is straightforward.

Assume that (ii) holds, and consider a vertex v in such a 2-vertex-connected com-
ponent that is incident to two edges with two distinct colors. These two edges can be
connected to a simple cycle, and we get (iii).

Assume (iii), and consider the shortest cycle C whose edges have at least two different
colors. If two edges [u, u′] and [v, v′] on C have the same color cj , then the vertices
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u, u′, v, v′ are all in the machine set M(Jj) of job Jj . Hence they span a clique in color
cj , and some edges in this clique can be used to construct a shorter cycle with edges of
at least two different colors. This contradiction shows that (iii) implies (i). �

Lemmas 8.1 and 8.2 together yield that an open shop system can fall into a deadlock
state if and only if the corresponding multi-graph contains a 2-vertex-connected com-
ponent that spans edges of at least two different colors. Since the 2-vertex-connected
components of a graph can easily be determined and analyzed in linear time (see for
instance [3]), we arrive at the following theorem.

Theorem 8.3 For open shop systems with unit machine capacities, problem Reachable

Deadlock can be solved in polynomial time. �
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