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Mathematics 110 (1992) 279-282. 

We show that each directed graph on n vertices, each with indegree and out degree at least n / t, 

where t = 5 - Vs + ~Y47 - 21 ys = 2.8670975 · · · , contains a directed circuit of length at most 

3. 

It is an intriguing conjecture of Caccetta and Haggkvist [1] that any directed 

graph on n vertices, each with outdegree at least k, contains a directed circuit of 

length at most f n I kl (In this paper, directed graphs have no loops and no 

parallel arcs (in the same or the opposite direction).) 

A particularly interesting special case that is still open is: any directed graph on 

n vertices with minimum outdegree at least n/3 has a directed triangle. The best 

result along these lines is proved in [ 1]: any directed graph on n vertices with 
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minimum outdegree at least s, where 

s := ~ + !v'S = 2.618034 ... ' 

contains a directed triangle. 

(1) 

It is not even known whether any directed graph on n vertices, each with both 
indegree and outdegree equal to n/3, contains a directed triangle. 

In this note we use the result of [1] to show the following. 

Theorem. Any directed graph on n vertices, each with both indegree and 
outdegree at least n/t, where 

t := 5-v'S + !V47 -21vs = 2.s610915 ... , (2) 

contains a directed triangle. 

Proof. Suppose D = (V, A) is a directed graph with IVI = n, with each indegree 
and each outdegree at least n/t, and without any directed triangle. Let k := rnltl 
We may assume 

5-vs-! \141-210 ~~~5 -vs +! \141- 21vs 2 k 2 . (3) 

(We can replace any vertex v of D by I pairwise non-adjacent vertices, and any 
arc (u, v) by /2 arcs, from each of the l copies of u to each of the l copies of v. We 
obtain a directed graph D' with n' := nl vertices, such that each vertex has 
indegree and outdegree at least n'/t, and such that D' has no directed triangle. 
By choosing / large enough, n I I k = n I I r n I It l will satisfy (3).) 

Assume that deleting any arc would give a vertex of indegree or outdegree less 
than k. We show: 

there exists a vertex v' with both indegree and outdegree equal to k. (4) 

Suppose such a vertex does not exist. Let W be the set of vertices of indegree 
equal to k. Then there are no arcs leaving W (since any such arc could be deleted 
without violating the condition that each indegree and each outdegree is at least 
k). Since W contains at most k IWI arcs, it follows that if W ::;C:0, W contains a 
vertex of outdegree at most k. If W = 0, we apply this argument to the set of 
vertices of outdegree equal to k (which set should be nonempty if W = 0). 

For each v E V let E: and E;; denote the sets of outneighbours and 
inneighbours of v, respectively. For u, v, w E V let 

Moreover let 

s: := 1£:1. 
s;;" := IE;;vl , 

£";;11 := E;; n £;;, 

s;; := IE;;j, 
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We observe that for all u, v, we V: 

if (u, v), (v, w), (u, w) eA 

(5) 

Indeed, as D has no directed triangles, (E;; u £;;) n (E; u E~) = 0. So 
IE;; u E;;I + IE; U E!I ~n. Now 

e;;v = IE;:vl = IE;: n E;;I = IE;;-1 + IE;;I - IE;; u E;;I = e;; + e;; - IE;; u E;;I . 

Similarly, e;w = e; + e~ - IE: U E;!;j. This gives the first inequality in (5). The 
second inequality follows from the assumption that each indegree and each 
outdegree is at least k. 

We next show: 

for each arc (u, v) of D: e;;-v;;;:.: (3k- n)s and e:v ;=: (3k - n)s, (6) 

where s is as defined in (1). 
To prove this, we may assume by symmetry that e:11 ;;;:.: e;;11 • First we show 

e;;-11 > 0, i.e., E;:11 =F 0. If E-;;11 would be empty, then E;; U E: s;;; V \ E;:, since there 
is no directed triangle. Hence IE;; U E;I ~ n - k. As IE;;I ;=: k and IE;I ;=: k and as 
n/ k:::;; t < 3, we know E;; n E; =F 0, implying that there is a directed digon, 
contradicting our assumption. 

Applying Caccetta and Haggkvist's result [1] to the subgraph induced by 
E:11 =F0 we obtain the existence of a we £:11 so that e:vw < e:11 Js. By (5): 

Since e:11w + e; ;:;;o; IE:11 n E;wl + IE:v u E;wl = e:u + e;w, (7) implies 

e;:,, ;=: 3k - n + e:11 - e:11w > 3k - n + (1- s- 1)e:11 

;;:: 3k - n + (1- s-1)e;;11 • 

This implies (6). 

(7) 

(8) 

Now consider vertex v' described in (4). Since the subgraph induced by £;;, 
contains no loops or directed digons, the number of arcs contained in £;;, is at 
most e;;.(e;;. - 1)/2 < !k2. That is, 

(9) 

Similarly, 

2: e;.w < !k2. (10) 
WEE1t• 

Let u' be a vertex of minimum indegree in the subgraph induced by £;;, and let 
w' be a vertex of minimum outdegree in the subgraph induced by £; .. So 
e;;-. 11 .:::;; e;11 • for all u E £;;, and e:'w' ~ e:.w for all w E £; .. 

First assume 

e;. 11 • + e;'w' > 4k - n. (11) 
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Then (9) and (10) imply k 2 >(4k-n)k, i.e., n/k>3, a contradiction. So we 
know 

e-;;'v' + e;'w' ~ 4k - n. (12) 

On the other hand, by (5) we know that for all w E E:·v· one has e;'v' + e;.w;;,: 
4k - n. This gives: 

Similarly: 

2:: e;v';;,: e;;-'w'(4k - n - e;.w.) + (e;;-. - e;;-.w.)e;.v .. 
ueE;;• 

Combining (9), (10), (13) and (14) gives: 

So 

k2 > e:·v·(4k - n - e;v) + (e:. - e:'v')e;'w' + e;;-•w·(4k- n - e:·w•) 

+ (e;;-. - e;;-·w·)e-;;.v' 

= e:;;.e;'v' + e:.e:'w' + (e:v + e:;;•w•)(4k - n - e;'v' - e:·w•) 

;;,: k( e;.,,. + e;·w•) + 2(3k - n )s( 4k - n - e;'v' - e:•w•) 

= 2(3k - n)(4k - n)s + (k - 2(3k - n )s)(e-;;'v' + e;.w.) 

;;:. 2(3k - n)(4k -n)s + (k - 2(3k - n)s) · 2(3k - n)s 

= 2(3k - n)(Sk -n - 2(3k - n)s)s. 

(13) 

(14) 

(4s2 - 2s)(n/ k)2 - (24s2 - l6s)(n/ k) + (36s2 - 20s + 1) > 0, (16) 

i.e., 

(11+5VS)(n/k)2 -(60 + 28VS)(n/k) + (82 + 39VS) > 0. (17) 

This contradicts (3). D 
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