Note

Directed triangles in directed graphs

M. de Graaf

Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

A. Schrijver

CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

P.D. Seymour

Bellcore, 445 South Street, Morristown, NJ 07960, USA

Received 3 January 1992 Revised 29 July 1992

Abstract

de Graaf, M., A. Schrijver and P.D. Seymour, Directed triangles in directed graphs, Discrete Mathematics 110 (1992) 279-282.

We show that each directed graph on *n* vertices, each with indegree and outdegree at least n/t, where $t = 5 - \sqrt{5} + \frac{1}{2}\sqrt{47 - 21\sqrt{5}} = 2.8670975 \cdots$, contains a directed circuit of length at most 3.

It is an intriguing conjecture of Caccetta and Haggkvist [1] that any directed graph on n vertices, each with outdegree at least k, contains a directed circuit of length at most $\lfloor n/k \rfloor$. (In this paper, directed graphs have no loops and no parallel arcs (in the same or the opposite direction).)

A particularly interesting special case that is still open is: any directed graph on n vertices with minimum outdegree at least n/3 has a directed triangle. The best result along these lines is proved in [1]: any directed graph on n vertices with

Correspondence to: A. Schrijver, CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands.

0012-365X/92/\$05.00 © 1992 --- Elsevier Science Publishers B.V. All rights reserved

minimum outdegree at least s, where

$$s := \frac{3}{2} + \frac{1}{2}\sqrt{5} = 2.618034\cdots, \tag{1}$$

contains a directed triangle.

It is not even known whether any directed graph on n vertices, each with both indegree and outdegree equal to n/3, contains a directed triangle.

In this note we use the result of [1] to show the following.

Theorem. Any directed graph on *n* vertices, each with both indegree and outdegree at least n/t, where

$$t := 5 - \sqrt{5} + \frac{1}{2}\sqrt{47 - 21\sqrt{5}} = 2.8670975 \cdots,$$
(2)

contains a directed triangle.

Proof. Suppose D = (V, A) is a directed graph with |V| = n, with each indegree and each outdegree at least n/t, and without any directed triangle. Let $k := \lfloor n/t \rfloor$. We may assume

$$5 - \sqrt{5} - \frac{1}{2}\sqrt{47 - 21\sqrt{5}} \le \frac{n}{k} \le 5 - \sqrt{5} + \frac{1}{2}\sqrt{47 - 21\sqrt{5}}.$$
 (3)

(We can replace any vertex v of D by l pairwise non-adjacent vertices, and any arc (u, v) by l^2 arcs, from each of the l copies of u to each of the l copies of v. We obtain a directed graph D' with n' := nl vertices, such that each vertex has indegree and outdegree at least n'/t, and such that D' has no directed triangle. By choosing l large enough, n'/k = n'/[n'/t] will satisfy (3).)

Assume that deleting any arc would give a vertex of indegree or outdegree less than k. We show:

there exists a vertex v' with both indegree and outdegree equal to k. (4)

Suppose such a vertex does not exist. Let W be the set of vertices of indegree equal to k. Then there are no arcs leaving W (since any such arc could be deleted without violating the condition that each indegree and each outdegree is at least k). Since W contains at most k |W| arcs, it follows that if $W \neq \emptyset$, W contains a vertex of outdegree at most k. If $W = \emptyset$, we apply this argument to the set of vertices of outdegree equal to k (which set should be nonempty if $W = \emptyset$).

For each $v \in V$ let E_v^+ and E_v^- denote the sets of outneighbours and inneighbours of v, respectively. For $u, v, w \in V$ let

$$\begin{split} E_{uv}^+ &:= E_u^+ \cap E_v^+, \qquad E_{uv}^- := E_u^- \cap E_v^-, \\ E_{uvw}^+ &:= E_u^+ \cap E_v^+ \cap E_w^+, \quad \text{and} \quad E_{uvw}^- := E_u^- \cap E_v^- \cap E_w^-. \end{split}$$

Moreover let

$$\begin{aligned} \varepsilon_{v}^{+} &:= |E_{v}^{+}|, \qquad \varepsilon_{v}^{-} &:= |E_{v}^{-}|, \qquad \varepsilon_{uv}^{+} &:= |E_{uv}^{+}|, \\ \varepsilon_{uv}^{-} &:= |E_{uv}^{-}|, \qquad \varepsilon_{uvw}^{+} &:= |E_{uvw}^{+}| \quad \text{and} \quad \varepsilon_{uvw}^{-} &:= |E_{uvw}^{-}|. \end{aligned}$$

280

We observe that for all $u, v, w \in V$:

if
$$(u, v)$$
, (v, w) , $(u, w) \in A$
then $\varepsilon_{uv}^- + \varepsilon_{vw}^+ \ge \varepsilon_u^- + \varepsilon_v^- + \varepsilon_v^+ + \varepsilon_w^+ - n \ge 4k - n.$ (5)

Indeed, as *D* has no directed triangles, $(E_u^- \cup E_v^-) \cap (E_v^+ \cup E_w^+) = \emptyset$. So $|E_u^- \cup E_v^-| + |E_v^+ \cup E_w^+| \le n$. Now

$$\varepsilon_{uv}^{-} = |E_{uv}^{-}| = |E_{u}^{-} \cap E_{v}^{-}| = |E_{u}^{-}| + |E_{v}^{-}| - |E_{u}^{-} \cup E_{v}^{-}| = \varepsilon_{u}^{-} + \varepsilon_{v}^{-} - |E_{u}^{-} \cup E_{v}^{-}| .$$

Similarly, $\varepsilon_{vw}^+ = \varepsilon_v^+ + \varepsilon_w^+ - |E_v^+ \cup E_w^+|$. This gives the first inequality in (5). The second inequality follows from the assumption that each indegree and each outdegree is at least k.

We next show:

for each arc
$$(u, v)$$
 of $D: \varepsilon_{uv}^{-} \ge (3k - n)s$ and $\varepsilon_{uv}^{+} \ge (3k - n)s$, (6)

where s is as defined in (1).

To prove this, we may assume by symmetry that $\varepsilon_{uv}^+ \ge \varepsilon_{uv}^-$. First we show $\varepsilon_{uv}^- > 0$, i.e., $E_{uv}^- \ne \emptyset$. If E_{uv}^- would be empty, then $E_v^- \cup E_v^+ \subseteq V \setminus E_u^-$, since there is no directed triangle. Hence $|E_v^- \cup E_v^+| \le n-k$. As $|E_v^-| \ge k$ and $|E_v^+| \ge k$ and as $n/k \le t < 3$, we know $E_v^- \cap E_v^+ \ne \emptyset$, implying that there is a directed digon, contradicting our assumption.

Applying Caccetta and Haggkvist's result [1] to the subgraph induced by $E_{uv}^+ \neq \emptyset$ we obtain the existence of a $w \in E_{uv}^+$ so that $\varepsilon_{uvw}^+ < \varepsilon_{uv}^+/s$. By (5):

$$\varepsilon_{uv}^{-} \ge \varepsilon_{u}^{-} + \varepsilon_{v}^{-} + \varepsilon_{v}^{+} + \varepsilon_{w}^{+} - n - \varepsilon_{vw}^{+} \ge 3k - n + \varepsilon_{v}^{+} - \varepsilon_{vw}^{+}.$$
(7)

Since $\varepsilon_{uvw}^+ + \varepsilon_v^+ \ge |E_{uv}^+ \cap E_{vw}^+| + |E_{uv}^+ \cup E_{vw}^+| = \varepsilon_{uv}^+ + \varepsilon_{vw}^+$, (7) implies

$$\varepsilon_{uv}^{-} \ge 3k - n + \varepsilon_{uv}^{+} - \varepsilon_{uvw}^{+} \ge 3k - n + (1 - s^{-1})\varepsilon_{uv}^{+}$$
$$\ge 3k - n + (1 - s^{-1})\varepsilon_{uv}^{-}.$$
(8)

This implies (6).

Now consider vertex v' described in (4). Since the subgraph induced by $E_{v'}$ contains no loops or directed digons, the number of arcs contained in $E_{v'}^-$ is at most $\varepsilon_{v'}(\varepsilon_{v'}^- - 1)/2 < \frac{1}{2}k^2$. That is,

$$\sum_{\boldsymbol{\epsilon} \in \boldsymbol{E}_{\boldsymbol{\mu}^{\prime}}} \boldsymbol{\epsilon}_{\boldsymbol{\mu}\boldsymbol{\nu}^{\prime}}^{-} < \frac{1}{2}k^{2}.$$
(9)

Similarly,

$$\sum_{\boldsymbol{\nu}\in E_{\boldsymbol{\nu}'}^+} \varepsilon_{\boldsymbol{\nu}'\boldsymbol{\nu}}^+ < \frac{1}{2}k^2.$$
(10)

Let u' be a vertex of minimum indegree in the subgraph induced by $E_{v'}^-$ and let w' be a vertex of minimum outdegree in the subgraph induced by $E_{v'}^+$. So $\varepsilon_{u'v'}^- \leqslant \varepsilon_{uv'}^-$ for all $u \in E_{v'}^-$ and $\varepsilon_{v'w'}^+ \leqslant \varepsilon_{v'w}^+$ for all $w \in E_{v'}^+$.

First assume

$$\varepsilon_{\mu'\nu'}^{-} + \varepsilon_{\nu'w'}^{+} > 4k - n. \tag{11}$$

Then (9) and (10) imply $k^2 > (4k - n)k$, i.e., n/k > 3, a contradiction. So we know

$$\varepsilon_{u'v'}^- + \varepsilon_{v'w'}^+ \le 4k - n. \tag{12}$$

On the other hand, by (5) we know that for all $w \in E_{u'v'}^+$ one has $\varepsilon_{u'v'}^- + \varepsilon_{v'w}^+ \ge 4k - n$. This gives:

$$\sum_{w \in E_{v'}^+} \varepsilon_{v'w}^+ = \sum_{w \in E_{u'v'}^+} \varepsilon_{v'w}^+ + \sum_{w \in E_{v'}^{+\wedge E_{u'v}^+}} \varepsilon_{v'w}^+$$

$$\geq \varepsilon_{u'v'}^+ (4k - n - \varepsilon_{u'v'}^-) + (\varepsilon_{v'}^+ - \varepsilon_{u'v'}^+) \varepsilon_{v'w'}^+. \tag{13}$$

Similarly:

$$\sum_{u \in E_{v'}^-} \varepsilon_{uv'} \ge \varepsilon_{v'w'}(4k - n - \varepsilon_{v'w'}^+) + (\varepsilon_{v'}^- - \varepsilon_{v'w'}^-)\varepsilon_{u'v'}^-.$$
(14)

Combining (9), (10), (13) and (14) gives:

$$\begin{aligned} k^{2} &> \varepsilon_{u'v'}^{+}(4k - n - \varepsilon_{u'v'}^{-}) + (\varepsilon_{v'}^{+} - \varepsilon_{u'v'}^{+})\varepsilon_{v'w'}^{+} + \varepsilon_{v'w'}^{-}(4k - n - \varepsilon_{v'w'}^{+}) \\ &+ (\varepsilon_{v'}^{-} - \varepsilon_{v'w'}^{-})\varepsilon_{u'v'}^{-} \\ &= \varepsilon_{v'}^{-}\varepsilon_{u'v'}^{-} + \varepsilon_{v'}^{+}\varepsilon_{v'w'}^{+} + (\varepsilon_{u'v'}^{+} + \varepsilon_{v'w'}^{-})(4k - n - \varepsilon_{u'v'}^{-} - \varepsilon_{v'w'}^{+}) \\ &\geq k(\varepsilon_{u'v'}^{-} + \varepsilon_{v'w'}^{+}) + 2(3k - n)s(4k - n - \varepsilon_{u'v'}^{-} - \varepsilon_{v'w'}^{+}) \\ &= 2(3k - n)(4k - n)s + (k - 2(3k - n)s)(\varepsilon_{u'v'}^{-} + \varepsilon_{v'w'}^{+}) \\ &\geq 2(3k - n)(4k - n)s + (k - 2(3k - n)s) \cdot 2(3k - n)s \\ &= 2(3k - n)(5k - n - 2(3k - n)s)s. \end{aligned}$$

So

$$(4s^2 - 2s)(n/k)^2 - (24s^2 - 16s)(n/k) + (36s^2 - 20s + 1) > 0,$$
(16)

i.e.,

$$(11+5\sqrt{5})(n/k)^2 - (60+28\sqrt{5})(n/k) + (82+39\sqrt{5}) > 0.$$
(17)

This contradicts (3). \Box

Acknowledgements

We thank the referee for giving helpful suggestions and we thank Bruce Reed for stimulating discussions.

References

 L. Caccetta and R. Haggkvist, On minimal digraphs with given girth, in: F. Hoffman et al., eds, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 21 (Utilitas Math., Winnipeg, 1978) 181–187.

282