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Abstract
This thesis is an exposition of ideas and methods that help un-
derstanding the problem of minimizing a polynomial over a basic
closed semi-algebraic set. After the introduction of some the-
ory on mathematical tools such as sums of squares, nonnegative
polynomials and moment matrices, several Positivstellensätze are
considered. Positivstellensätze provide sums of squares represen-
tations of polynomials, positive on basic closed semi-algebraic
sets. Subsequently, semi-definite programming methods, in par-
ticular based on Putinar’s Postivstellensatz, are considered. In
order to use semi-definite programming, certain degree bounds
are set. These bounds give rise to a hierarchy of approximations
of the minimum of a polynomial, which will also be discussed.
Finally, some new results are given that are obtained by looking
at sums of squares representations of a positive polynomial when
minimizing over the unit hypercube .
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Introduction

In this thesis we are focusing on the following optimization problem: given
a polynomial p and a subset K of Rn, find

pmin := inf{p(x) : x ∈ K}. (1)

Note that this problem becomes a linear program when p is a linear function
and K is a polytope. However, this problem is NP-hard in general. This can
be understood by the following examples where K = Rn.

Example 0.1. The partition problem asks whether, for a set of positive
integers a1, ..., an, there exists a subset J ⊂ {1, ..., n} such that∑

i∈J

ai =
∑

i∈{1,...,n}\J

ai.

This problem can also be formulated as a polynomial minimization problem.
For this purpose we consider the following polynomial:

p :=

(
n∑
i=1

aiXi

)2

+
n∑
i=1

(X2
i − 1)2.

Let pmin denote the minimum of p over Rn. Now we have that pmin = 0 if
and only if there exist a partition of the set {a1, ..., an}. Note indeed that if
pmin = 0, then

∑n
i=1 aiXi = 0 and Xi = ±1 for i ∈ {1, ..., n}. As is explained

in [6], the partition problem is an NP-complete problem.

Remark 0.2. Note that it does not matter whether we consider p over Rn,
[−1, 1]n or {−1, 1}n when checking whether the minimum of p equals 0. In
all cases the minimum of p equals 0 if and only if there is a partition of the
set {a1, ..., an}.
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Example 0.3. A matrix M ∈ Rn×n is said to be copositive if xTMx ≥ 0 for
all x ∈ Rn

≥0. Clearly, this is the same as checking whether pmin ≥ 0 for the
polynomial p :=

∑n
i,j=1X

2
iX

2
jMij, where p ∈ R[X1, ..., Xn]. As is explained

in [23], testing whether a matrix is not copositive is an NP-complete problem.

Throughout this thesis, instead of looking at the infimum as in (1) we consider
the supremum

pmin = sup{λ ∈ R : p− λ ≥ 0 on K}, (2)

which obviously gives the same value for pmin. We will study relaxations
of this problem, which are obtained by considering sums of squares repre-
sentations of positive polynomials. The representations are obtained when
K in (2) is a basic closed semi-algebraic set. We are going to use semi-
definite programming to find these representations and to create a hierarchy
of approximations for pmin as described in (2), where K is a basic closed
semi-algebraic set.

Outline of this thesis

The first chapter introduces some necessary preliminaries for the rest of the
thesis.
The second chapter mostly serves as an introduction to the set of sums of
squares polynomials and the set of nonnegative polynomials. We give an
exposition of the study of relationships between the two sets, initiated by
Hilbert. Then, in Theorem 2.8, it is stated that every nonnegative poly-
nomial can be approximated with an a priori fixed precision by a sum of
squares of polynomials. For this result Lasserre [12] received the Lagrange
Prize 2009.
The third chapter starts with an introduction to the concepts moment matri-
ces and moments sequences and explains the duality relation between sums of
squares and sequences whose moment matrix is positive semi-definite. Then
some more properties of moment matrices are given. Subsequently, in Theo-
rem 3.8 characterizations of moment sequences with a representing measure
on the hypercube are given. This chapter ends with the proof of Theorem
2.8 by Lasserre. This proof combines most of the theory of the third chapter.
In the fourth chapter we make the reader familiar with Positivstellensätze,
in particular with Putinar’s Positivstellensatz. Positivstellensätze give sum
of squares representations for polynomials that are positive on a basic closed
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semi-algebraic set.
Then in the fifth chapter we discuss sequences of semi-definite programming
relaxations, in particular relaxations of Putinar’s Positivstellensatz. From
these approximations, approximation hierarchies are deduced. We will dis-
cuss under what conditions these hierarchies have finite convergence.
In the sixth chapter we consider minimization of the polynomial X1 · · ·Xn

over the n-dimensional unit cube and give some new obtained results re-
garding sums of squares representations for the polynomial X1 · · ·Xn in the
quadratic module of the unit hypercube.

Notations

X is shorthand for the n-tuple of variables (X1, ..., Xn).
We write R[X] for R[X1, ..., Xn].
Further by x = (x1, ..., xn) ∈ Rn we indicate the vector x.
Moreover, for a polynomial f ∈ R[X], f(x) denotes the result of evaluating
f at x.
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Chapter 1

Preliminaries

In this chapter we introduce positive semi-definite matrices. We give several
characterizations of a matrix for being positive semi-definite. Subsequently
we introduce semi-definite programming and some of its duality theory rele-
vant for this thesis. The chapter is based on [16] and [17].

1.1 Positive semi-definite matrices

Let Sn denote the set of symmetric matrices in Rn×n. The following theo-
rem is mostly based on the spectral decomposition theorem. This spectral
theorem states that any X ∈ Sn has eigenvalues λ1, ..., λn and corresponding
eigenvectors v1, ..., vn that form an orthonormal system in Rn. As a conse-
quence X can be written as X =

∑n
i=1 λiviv

T
i .

Theorem 1.1. Let X ∈ Sn. The following assertions are equivalent.

(1) X is positive semi-definite (abbreviated as PSD). This is denoted by
X � 0. We use the following definition: X � 0 if xTXx ≥ 0 for all
x ∈ Rn.

(2) The eigenvalues of X are nonnegative.

(3) X = LLT for some matrix L ∈ Rn×k (for some k ≥ 1). We call this
decomposition a Choleski decomposition of X.

(4) There exist vectors v1, ..., vn ∈ Rk (for some k ≥ 1), such that Xij = vTi vj
for all i, j ∈ {1, ..., n}. The matrix X is called the Gram matrix of the
vectors v1, ..., vn.
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(5) All principal minors of X are nonnegative.

By Sn�0 we denote the cone of positive semi-definite matrices. To define its
dual cone we introduce the trace inner product of two matrices X, Y ∈ Rn×n

as follows:

〈X, Y 〉 =
n∑
i=1

n∑
j=1

XijYij. (1.1)

The dual cone of Sn�0 is given by

(Sn�0)∗ = {X ∈ Sn : 〈X, Y 〉 ≥ 0 for all Y ∈ Sn�0}. (1.2)

Note that (Sn�0)∗ = Sn�0 since we have that

〈X, Y 〉 ≥ 0 for all Y ∈ Sn�0 ⇔

〈
X,
∑
i

λiviv
T
i

〉
≥ 0 for all vi ∈ Rn, λi ≥ 0

⇔ λ
〈
X, vvT

〉
≥ 0 for all v ∈ Rn, λ ≥ 0

⇔ vTXv ≥ 0 for all v ∈ Rn

⇔ X � 0.

In other words the cone Sn�0 is self-dual.

1.2 Semi-definite programming

Semi-definite programming is a generalization of linear programming. Whereas
one optimizes over Rn

≥0 in linear programming, one optimizes over Sn�0 in
semi-definite programming. Semi-definite programming is interesting be-
cause there exist polynomial time algorithms to solve a semi-definite program
(abbreviated as sdp). A method that can be used to solve a semi-definite
program in polynomial time up to a fixed precision is the ellipsoid method
[19]. However in practice it turns out that this method is too time consum-
ing. Therefore, as an alternative method, the interior point method [34] is
often used.
Since semi-definite programming is a generalization of linear programming,
every linear program can be written as an sdp. To understand this, recall
that the standard primal form of a linear program is given by

min{cTx : ajx = bj, j ∈ {1, ...,m}, x ∈ Rn
≥0}, (1.3)
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where c, aj ∈ Rn and bj ∈ R. The standard primal form of an sdp is given
by

sup
X∈Sn
{〈C,X〉 : 〈A1, X〉 = b1, ..., 〈Am, X〉 = bm, X � 0}. (1.4)

Here A1, ..., Am, C ∈ Sn and bj ∈ R. So if we set C = diag(c1, ..., cn) and
Aj = diag((aj)1, ..., (aj)n) in (1.4), we obtain (1.3).
We say that the sdp in (1.4) is feasible if the set

{X ∈ Sn : 〈A1, X〉 = b1, ..., 〈Am, X〉 = bm, X � 0} (1.5)

is non-empty. We say the sdp is strictly feasible if there exists an element
in the set described in (1.5, which is an element of the interior of the semi-
definite cone. The dual of (1.4) is given by

inf

{
m∑
j=1

yjbj : y1, ..., ym ∈ R,
m∑
j=1

yjAj − C � 0

}
. (1.6)

Feasibility and strict feasibility for the dual program are defined analogously.
We now state the following fundamental result on primal and dual sdp’s.

Theorem 1.2. Given a pair of primal and dual semi-definite programs as
above. Let p∗ be the supremum of the primal program and let d∗ be the
infimum of the dual program.

(i) (Weak duality). Suppose X is a feasible solution of the primal program
and y is a feasible solution of the dual program. Then

〈C,X〉 ≤ bTy. (1.7)

So p∗ ≤ d∗.

(ii) (Strong duality). If the primal sdp is bounded from above and strictly
feasible, then the dual sdp attains its infimum and there is no duality
gap.
If the dual sdp is bounded from below and strictly feasible, then the
primal sdp attains its supremum and there is no duality gap: p∗ = d∗.

Proof. The proof of strong duality is omitted. See for example Chapter 3 of
[17]. The proof of weak duality is as follows:

m∑
j=1

yjbj =
m∑
j=1

yj 〈Aj, X〉 ≥ 〈C,X〉 , (1.8)
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where, in the last inequality, we have used the fact that Sn�0 is self-dual and

that
∑n

j=1 yjAj−C � 0 and X � 0 to see that
〈∑m

j=1 yjAj − C,X
〉
≥ 0.

9



Chapter 2

Sums of squares and
nonnegative polynomials

In this chapter we introduce the set of sums of squares and the set of non-
negative polynomials. We state that every nonnegative polynomial can be
written as a sum of squares of polynomials by adding an arbitrarily small
high degree perturbation to it. Further we show how the problem of checking
whether a polynomial is a sum of squares can be transformed to solving an
sdp. Moreover we give sufficient conditions, in terms of their coefficients, for
polynomials to be sums of squares of polynomials.

2.1 Preliminaries on polynomials

This section is based on [31] and Chapter 1 of [20].

Let R[X] denote the polynomial ring R[X1, ..., Xn] for short. A polynomial
p ∈ R[X] can be written as p =

∑
α pαX

α for finitely many pα 6= 0, where
pα ∈ R, α = (α1, ..., αn) ∈ Nn and Xα = Xα1

1 . . . Xαn
n . So p is a sum of finitely

many non-zero terms pαX
α for α ∈ Nn. The maximum value |α| =

∑
αi for

which pα 6= 0 is the degree of p. A homogeneous polynomial or form is a
polynomial whose monomials all have the same degree.
For a nonnegative integer d, we denote by [X]d the vector consisting of all
monomials Xα1

1 · · ·Xαn
n of degree at most d. Moreover R[X]d denotes the set

of polynomials in R[X] with degree d or smaller.
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Remark 2.1. The dimension of R[X]d is
(
n+d
d

)
. This can be understood as

follows. There are n variables and every monomial can have degree at most d.
The number of different possible monomials Xα1

1 · · ·Xαn
n with

∑
i αi ≤ d (the

dimension) is the same as the number of ways to colour d out of n+ d white
squares red, which is

(
n+d
d

)
. To see that every monomial corresponds uniquely

to such a colouring we let the uncoloured squares represent X1, ..., Xn from
left to right. Then the power of an Xi equals the number of successive red
coloured squares at its right. For example for n = 3 and d = 2 (and w and
r representing a white and red squares, respectively) we have that wwrrw
represents X2

2 and rwwwr represents X3.

For a polynomial p =
∑

α pαX
α, the vector p = (pα) denotes the vector of

coefficients of p in the monomial basis. Let deg(p) = d. We denote by Nn
d

the set of sequences α ∈ Nn with |α| ≤ d. We define s(n, d) := |Nn
d | =

(
n+d
d

)
.

Now p can be rewritten as follows:

p =
∑
α∈Nnd

pαX
α = pT [X]d. (2.1)

We say a polynomial p ∈ R[X] is positive semi-definite (abbreviated as psd)
if p(x) ≥ 0 for all x ∈ Rn and p is positive if p(x) > 0 for all x ∈ Rn. As an
exception, a form p̄ is said to be positive if p̄ > 0 for all x ∈ Rn not equal to
the zero vector. Further, let Pn,d and denote the set of psd polynomials in
n variables of degree smaller than or equal to d and let P̄n,d denote the set
of psd forms in n variables of degree d. Note that Pn,d and P̄n,d are closed
under addition and multiplication with positive scalars, so Pn,d and P̄n,d are
convex cones. Further, if n and d are not specified, we use P and P̄ to denote
the set of all psd polynomials and psd forms, respectively. We denote the
set of all psd forms and psd polynomials on some set K by P (K) and P̄ (K),
respectively.
A polynomial p ∈ R[X] is a sum of squares (abbreviated as sos) if p can
be written as a sum of squares of polynomials, i.e. p =

∑k
i=1 p

2
i for some

pi ∈ R[X] and k ∈ N. Let Σ̄n,d denote the subset of P̄n,d of sos forms in n
variables of degree d. Let Σn,d denote the subset of Pn,d of sos polynomials in
n variables of degree smaller than or equal to d. Further, if n and d are not
specified, we let Σ̄ and Σ denote the set of all sos forms and sos polynomials,
respectively. The property of being psd and sos, turns out to be preserved
upon homogenization and dehomogenization. Before making that explicit we
state the following lemma.
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Lemma 2.2. Suppose p = p2
1 + ...+ p2

k for some non-zero pi ∈ R[X] for some
integer k ≥ 1. Then

deg(p) = 2 max
i
{deg(pi)}. (2.2)

Proof. We write pi = pi0 + ...+pidi , where each pij is a nonzero form of degree
j. We set d = maxi{deg(pi)}. Since pid is non-zero for at least one index i
we obtain the result.

Lemma 2.3. For a polynomial p(X1, ..., Xn) with even degree d and its ho-
mogenization p̄(X0, X1, ..., Xn) = Xd

0p(X0,
X1

X0
, ..., Xn

X0
), the following holds.

(i) p is an sos if and only if p̄ is an sos.

(ii) p ≥ 0 on Rn if and only if p̄ ≥ 0 on Rn.

Proof. (i) (⇒). If p =
∑k

i=1 p
2
i , then p̄ =

∑k
i=1

(
X

d
2
0 pi

(
X1

X0
, ..., Xn

X0

))2

for

pi with deg(pi) ≤ d
2

by Lemma 2.2, which clearly again is an sos, but
now an sos of forms of degree d

2
.

(⇐). If p̄ =
∑k

i=1 p̄
2
i , then p = p̄(1, X1, ..., Xn) =

∑k
i=1 p̄i(1, X1, ..., Xn)2.

(ii) (⇒). If x0 6= 0, we use that p̄(x0, ..., xn) = xd0p(
x1
x0
, ..., xn

x0
). If x0 = 0, we

use that p̄(0, x1, ..., xn) = limε→0 ε
dp
(
x1
ε
, ..., xn

ε

)
,

(⇐). If p̄ ≥ 0 then we use that p(x1, ..., xn) = p̄(1, x1, ..., xn).

In the sequel we sometimes homogenize or dehomogenize a polynomial when
proving a psd or sos property.

Remark 2.4. The property of being positive is not preserved upon homog-
enization. For example f(x1, x2) = x2

1 + (1 − x1x2)2 > 0 for x1, x2 ∈ R, but
f̄(x0, x1, x2) = x2

1x
2
0 + (x2

0 − x1x2)2 equals 0 at (1, 0, 0) and (0, 1, 0).

2.2 Hilbert’s theorem

Clearly we have that the cone of homogeneous sums of squares polynomials
is contained in the cone of homogeneous psd polynomials, i.e. Σ̄ ⊆ P̄ . So an
obvious question regarding the sets Σ̄n,d and P̄n,d one might ask is whether
Σ̄n,d = P̄n,d. In general it does not hold. However, for certain pairs (n, d)
equality holds. Hilbert has characterized all these pairs already in 1888 in
[8].
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Theorem 2.5. Σ̄n,d = P̄n,d if and only if n ≤ 2, or d = 2, or (n, d) = (3, 4).

Proof. Below we will prove the cases n ≤ 2 and d = 2. The proof for the
case (n, d) = (3, 4) is harder. An elementary proof for this case is given by
Scheiderer and Pfister in [32].
(Case: n ≤ 2). Let p̄ ∈ P̄2,d. We show that p̄ is a sum of squares. For this pur-
pose we dehomogenize p̄ to obtain a univariate polynomial p ∈ R[X]. Since
we know that the complex zeros come in conjugate pairs, we can factorize p
as follows:

p = p0

∏
i

(X − qi)ki︸ ︷︷ ︸
real factorization

∏
j

[(X − aj)2 + b2
j ]
lj

︸ ︷︷ ︸
complex factorization

. (2.3)

Here p0, qi, aj, bj ∈ R, ki, lj ∈ N. For the complex part of the factorization we
have used that

(X−(aj+bji))(X−(aj−bji)) = X2 +a2
j−2ajX+b2

j = (X−aj)2 +b2
j . (2.4)

For the real part, we can deduce that ki is even for all i, i.e. all real roots have
even multiplicity. For if we suppose that a real root a has odd multiplicity, we
see that p changes sign around a, which contradicts the positivity assumption.
Returning to (2.3), we see that p is a product of a square, the real part, and
a product of sums of two squares, the complex part. From the following
equation we derive that a sum of two squares times a sum of two squares
again is a sum of two squares:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2, (2.5)

so the complex part as a whole can be written as one sum of two squares.
Concluding, the factorization of p can be written as a square times a sum
of two squares, so p can be written as a sum of two squares. By applying
Lemma 2.3, we conclude p̄ is an sos.
(Case: (d = 2)). Since p̄ a form, p̄ can be written as

p̄ =
n∑
i=1

n∑
j=1

aijXiXj = XTAX, (2.6)

where X can be seen here as an (n × 1)−column vector. Further we may
assume that the matrix A := (aij) is symmetric, since if aij 6= aji, we can
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obtain p̄ by redefining A as A := (a′ij), where a′ij :=
aij+aji

2
. Since by assump-

tion p̄ ≥ 0, we know by definition (Theorem 1.1(1)) that A is PSD. Moreover
by Theorem 1.1 we know A has a Choleski-decomposition and we can write
A = LLT , where L is an (n × k)−matrix with real coefficients. Now we see
that p̄ is sos, because of the following manipulation:

p̄ = XTAX = XTLLTX = (LTX)T (LTX) = ||LTX||2. (2.7)

For all the other cases (n, d) with n ≥ 3 and d ≥ 6 and for the cases (n, d)
with n ≥ 4 and d ≥ 4, there are examples of forms that are nonnegative,
but not an sos. In 1967, Motzkin [22] discovered the first explicit example of
such a form for the case (n, d) = (3, 6).

Example 2.6. [Motzkin’s example].
The form f(X, Y, Z) = Z6 − 3X2Y 2Z2 + X2Y 4 + X4Y 2 is an element of
P̄3,6\Σ̄3,6. In fact, Motzkin proved that the nonhomogeneous polynomial

f(X, Y, 1) = 1− 3X2Y 2 +X2Y 4 +X4Y 2 ∈ P2,6\Σ2,6. (2.8)

The proof is given below.

Proof. To prove the nonnegativity of f(X, Y, 1), the geometric mean inequal-
ity for n = 3 (given in Corollary 2.15),

x1 + x2 + x3

3
≥ 3
√
x1x2x3, for x1, x2, x3 ≥ 0, (2.9)

can be used. We substitute x1 = 1, x2 = x2y4 and x3 = x4y2 and we imme-
diately get the result.
To prove that f(X, Y, 1) can not be written as an sos, assume for contradic-
tion that f(X, Y, 1) is an sos, i.e. f(X, Y, 1) =

∑
i f

2
i for some polynomials

fi ∈ R[X, Y ] with deg(fi) ≤ 3. Since f(X, Y, 1) contains no monomial of the
form

X6, Y 6, X4, Y 4, X2, Y 2 (2.10)

we know that the fi do not contain monomials of the form

X3, Y 3, X2, Y 2, X, Y. (2.11)

Therefore all fi should be of the form ai + biXY + ciX
2Y + diXY

2, for
ai, bi, ci, di ∈ R. However, since we can only obtain the monomial −3X2Y 2

14



Figure 2.1: Here CL and M indicate the Choi-Lam and Motzkin examples,
respectively. Further a blue coordinate means that P̄n,d = Σ̄n,d and a red
coordinate means that there exists a form p ∈ P̄n,d\Σ̄n,d. All coordinates
in the area n ≥ 4, d ≥ 4 and the area n ≥ 3, d ≥ 6 are red. Further, the
coordinates on the line d = 2 remain blue as n grows, and the coordinates
on the lines n = 1, n = 2 remain blue as d grows.

in f(X, Y, 1) by squaring and then summing the biXY , we see that we must
have −3 =

∑
i b

2
i , which gives a contradiction. Again using Lemma 2.3, we

see that f(X, Y, Z) ∈ P̄3,6\Σ̄3,6.

The following example for (n, d) = (3, 4) was considered and proved by Choi-
Lam [4] in 1977.
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Example 2.7. [The Choi-Lam example].
The polynomial g(W,X, Y, Z) = W 4 + X2Y 2 + Y 2Z2 + Z2X2 − 4WXY Z
is an element of P̄4,4\Σ̄4,4. In fact, the Choi-Lam example was originally
nonhomogeneous and stated that

g(1, X, Y, Z) = 1 +X2Y 2 + Y 2Z2 + Z2X2 − 4XY Z ∈ P3,4\Σn,d. (2.12)

The proof can be found in [4].

Now we show how the Choi-Lam and Motzkin examples are used to give a
counterexample for d ≥ 6 and n ≥ 3, or d ≥ 4 and n ≥ 4, where d is even
in both cases. For d ≥ 6 and n ≥ 3, note that for the non-homogeneous
polynomial f(X, Y, 1) from the Motzkin example we have that

Zdf(
X

Z
,
Y

Z
, 1) ∈ P̄n,d\Σ̄n,d

(just substitute Z = 1 and apply Lemma 2.3). For d ≥ 4 and n ≥ 4,
note that for the non-homogeneous polynomial g(1, X, Y, Z) from the Choi-
Lam example we have that W dg(X

W
, Y
W
, Z
W

) ∈ P̄n,d\Σ̄n,d (again just substitute
W = 1 and apply Lemma 2.3). Figure 2.2 summarizes the above results.

2.3 How big is the gap between P and Σ?

It turns out that Σ is dense in P with respect to the l1−norm if we fix the
number of variables, but there are few polynomials in Σ compared to P if
we let the number of variables grow. These two assertions are made more
precise by Theorem 2.8 and Theorem 2.9, respectively.

Theorem 2.8. [14] Let f be a polynomial in R[X] which is nonnegative on
[−1, 1]n. For all ε > 0 there exists an integer t0 ≥ 0 such that

f + ε

(
1 +

n∑
i=1

X2t
i

)
∈ Σ,

for all t ≥ t0.

Proof. Although this is a result about sums of squares, the proof makes
use of moment matrices, moments sequences and linear forms, which are all
concepts introduced in chapter 3. Therefore this proof is given at the end of
chapter 3.
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So for a fixed n, every polynomial nonnegative on [−1, 1]n can be approxi-
mated by an sos by adding a small high degree perturbation. The following
theorem shows that when n is unfixed, we get a different result.

Theorem 2.9. [2] There exist universal constants c, C ∈ R such that

cn(d−1)/2 ≤

(
vol(P̂n,2d)

vol(Σ̂n,2d)

)1/D

≤ Cn(d−1)/2 (2.13)

Proof. See [2] for a proof.

Here D =
(
n+2d−1

2d

)
− 1 is the dimension of the space in which P̂n,2d lives.

Further P̂n,2d is the cone P̄n,d intersected with a hyperplane given by
{p :

∫
Sn−1 p(x)σ(dx) = 1}, where σ is the rotation invariant probability mea-

sure on Sn−1 and Σ̂n,2d is the cone Σ̄n,d intersected by the same hyperplane.
In fact, we are dealing with the cones Σn,2d and Pn,2d and check the quanti-
tative ratio between them, measured on a hyperplane intersecting the cones.

2.4 Checking whether a polynomial is an sos

by using semi-definite programming

Although Σ is not dense in P for an unfixed number of variables, we are still
interested in finding out whether a given polynomial is an sos.

The claim is that checking whether a polynomial is an sos, can be refor-
mulated as an sdp. The following manipulation with pi ∈ R[X]d is helpful in
understanding this:

n∑
i=1

p2
i = [X]Td (

n∑
i=1

pip
T
i )[X]d = [X]TdQ[X]d, (2.14)

where Q :=
∑n

i=1 pip
T
i . Therefore Q is PSD (see Theorem 1.1), so there is

a one-to-one correspondence between PSD matrices and sos’s. Powers and
Wörmann [36] worked out this idea of checking whether a polynomial is an
sos by using semi-definite programming. The following lemma is a result of
this.
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Lemma 2.10. Let p ∈ R[X]2d. Then p is sos if and only if the set

{Q ∈ Ss(n,d) | Q � 0,
∑

β,γ∈Nnd
β+γ=α

Qβ,γ = pα, ∀α ∈ Nn
2d} (2.15)

is non-empty.

Unfortunately, the size of matrix Q grows rapidly as the number of variables
and the degree grow. As explained in Remark 2.1, the number of rows of Q
equals

(
n+d
d

)
. However, for specific examples one can often decrease the size

of Q, by eliminating unnecessary elements of [X]d. Consider the following
examples from [36].

Example 2.11. Let f = X4 + 2X2Y 2 + 4X3Z + Z4. In this example we
want to check whether f is an sos. For this purpose we try to find a PSD
matrix Q such that f = [X]T2Q[X]2, where

[X]2 = (1, X, Y, Z,XY,XZ, Y Z,X2, Y 2, Z2)T .

Firstly note that f is a form of degree 4. This means that f is an sos if and
only if f is an sos of forms of degree 2. We therefore can immediately remove
the monomials 1, X, Y, Z from [X]2. Further since Y 4 is not a monomial in
f , Y 2 can be removed as well. Similarly we can remove Y Z. Notice that
X2Z2 can be written as a product of XZ and XZ, but also as a product of
X2 and Z2. So the only elements of [X]2 that correspond to a nonzero row
and column are XY,XZ,X2, Z2. So have obtained the following:

f =


X2

XY
XZ
Z2


T 

1 0 2 λ
0 2 0 0
2 0 −2λ 0
λ 0 0 1



X2

XY
XZ
Z2

 (2.16)

for some λ ∈ R. Now we want to find λ. From (5) of definition 1.1, we
know that all principal minors of Q have to be nonnegative. So taking the
determinant of the submatrix indexed by {X2, Z2}, we get that |λ| ≤ 1 and
taking the determinant of the submatrix indexed by {X2, XZ} we get that
λ ≤ −2, so we have a contradiction. So f is not an sos by Lemma 2.10.

Example 2.12. Consider the polynomial h = X2Y 2 +X2 + Y 2 + 1. Clearly
h is an sos. We now will try to find all possible sos decompositions of h.
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Note that as deduced in the latter example, we can assume that the only
monomials that might occur in [X]2 are XY,X, Y, 1. So we can decompose
h as follows.

h =


XY
X
Y
1


T 

1 0 0 λ
0 1 −λ 0
0 −λ 1 0
λ 0 0 1



XY
X
Y
1

 (2.17)

for some λ ∈ R. We call the above matrix Q. Note that the coefficients of Q
indexed by (1, XY ), (XY, 1), (X, Y ) and (Y,X) are variables but sum up to
zero, since XY is not a monomial appearing in h.
Further it is easy to verify that the eigenvalues of Q are 1 and 1− λ2, both
with multiplicity two. Therefore Q is psd if and only if |λ| ≤ 1. To obtain the
possible sos decompositions of Q, we diagonalize Q and write Q = V DV T ,
where D =diag(1, 1, 1− λ2, 1− λ2) and

V =


1 0 0 0
0 1 0 0
0 −λ 1 0
λ 0 0 1

 (2.18)

So we obtain that h = (XY + λ)2 + (X − λY )2 + (
√

1− λ2y)2 + (
√

1− λ2)2.
As explained, for all λ satisfying |λ| ≤ 1, this is an sos.

In the next chapters, we will return to this idea of using semi-definite pro-
gramming to find an sos decomposition of a polynomial. Using semi-definite
programming in practice, means setting bounds on the degree of the mono-
mials in the sums of squares. In Chapters 5 and 6 we work out this principle.

2.5 Sufficient conditions for being a sum of

squares

Instead of solving an sdp to check whether a polynomial has an sos decompo-
sition, a method has been developed that uses the coefficients of a polynomial
to check a condition that, when satisfied, implies that the polynomial is an
sos. This condition is a sufficient condition, not a necessary.
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The following notation is used. For a polynomial f(X) =
∑

α∈Nn fαX
α of

degree 2d we define

Ω(f) := {α ∈ Nn : fα 6= 0}\{0, 2de1, ..., 2den}, (2.19)

where ei = (δi1, ..., δin), where δ is the Kronecker symbol. Further we define

∆(f) := {α ∈ Ω(f) : fαX
α is not a square in R[X]}. (2.20)

The following theorem shows that if the coefficients of a polynomial satisfy
certain conditions, then it is an sos. For the coefficient f2dεi of X2d

i we also
write f2d,i for short.

Theorem 2.13. [21] Let f be a form of degree 2d. Then f is an sos if there
exist nonnegative numbers aα,i ∈ R, for α ∈ ∆(f) and i ∈ {1, ..., n}, such
that the following two assertions hold:

(i) ∀α ∈ ∆(f) : (2d)2daαα = f 2d
α α

α

(ii) f2d,i ≥
∑

α∈∆(f) aα,i, for i ∈ {1, ..., n}

Here aα := (aα,1, ..., aα,n), aαα := aα1
α,1 · · · aαnα,n and αα := αα1

1 · · ·ααnn .

The proof of this theorem uses the following result of Hurwitz ([9]) and
Reznick ([29] and [30]).

Theorem 2.14 (Hurwitz and Reznick). Let

p(X) =
n∑
i=1

αiX
2d
i − 2dXα1

1 · · ·Xαn
n ,

where α = (α1, ..., αn) ∈ Nn, |α| = 2d. Then p is an sos.

Proof. The proof will be done by induction on n. Recall that n is the number
of variables. For n = 1 we see that, since α1 = 2d, p = 0, which of course is an
sos. First we exclude n = 2 and assume n ≥ 3. So we assume the theorem
holds for n − 1. We assume that all αi are non-zero since otherwise the
number of variables immediately reduces to n− 1. Further, we may assume
that αj, αk ≤ d, for two coefficients of α indexed by j and k. We now write
α = (α1, ..., αn) as a sum of two elements β, γ ∈ Nn, such that α = γ + β,
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where βj = 0 and γk = 0 (so γj = αj and βk = αk) and |β| = |γ| = d. The
following identity is a logical result of this decomposition of α.

(Xβ −Xγ)2 = X2β − 2XβXγ +X2γ = X2β − 2Xα +X2γ. (2.21)

With this identity we can deduce the following:

p(X) =
n∑
i=1

αiX
2d
i − 2dXα

=
n∑
i=1

αiX
2d
i + 2d

(Xβ −Xγ)2 −X2β −X2γ

2

=
n∑
i=1

αiX
2d − d(X2β +X2γ − (Xβ −Xγ)2)

=
n∑
i=1

βiX
2d
i − dX2β +

n∑
i=1

γiX
2d
i − dX2γ) + d(Xβ −Xγ)2

Since both γ and β are (n − 1)-dimensional, we can use the induction hy-
pothesis to conclude that each of the last terms are sums of squares.
The theorem remains to be proven for the case n = 2. Therefore we need to
show that p(X1, X2) = α1X

2d
1 +α2X

2d
2 −2dXα1

1 Xα2
2 is an sos for α1 +α2 = 2d.

To show this, we consider p(1, X2) = α1 +α2X
2d
2 − 2dXα2

2 . We want to show
that p(1, X2) ≥ 0. For this purpose we calculate its derivative and set it
equal to 0.

p′(1, X1) = 2dα2X
2d−1
2 − 2dα2X

α2−1
2 = 0 (2.22)

So we have critical points at X2 = 0, X2 = 1 and, if α2 is even, X2 = −1. We
see that we have a minimum at X2 = 1 and X2 = −1 (if α2 is even), since
p(1, X2) ≥ 0 for |X| ≥ 1. Further we have a maximum at X2 = 0. So we can
conclude that p(1, X2) ≥ 0. Now after applying Lemma 2.3 and Theorem
2.5, we can conclude that p(X1, X2) can be written as an sos.

Corollary 2.15. The following inequality, called the arithmetic-geometric
inequality, is a direct corollary of Theorem 2.14:

n
√
x1 · · ·xn ≤

x1 + . . .+ xn
n

(2.23)

for x1, . . . , xn ∈ R≥0 and any integer n ≥ 1.
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Proof. If we set α = (1, ..., 1) and we substitute Xi = n
√
xi, then p(X)

from Theorem 2.14 becomes
∑n

i=1 xi− n n
√
x1 · · · n

√
xn for xi ∈ R≥0 and since

p(X) ≥ 0, we obtain (2.23) for even n. To see that it holds for all positive
integers note that for n odd we can make the following manipulations:

n
√
x1 · · · xn = 2n

√
x2

1 · · ·x2
n ≤

2x1 + . . .+ 2xn
2n

=
x1 + . . .+ xn

n
.

Here follows a corollary by Fidalgo and Kovacec [5] of Theorem 2.14, which
will an important step in the proof of Theorem 2.13.

Corollary 2.16. For a form p(X) =
∑n

i=1 βiX
2d
i − µXα, such that α ∈ Nn,

|α| = 2d, βi ≥ 0 for i = 1, ..., n and µ ≥ 0 if all αi even, the following three
assertions are equivalent:

(i) p is psd

(ii) µ2d
∏n

i=1 α
αi
i ≤ (2d)2d

∏n
i=1 β

αi
i

(iii) p is sos.

Proof. Suppose that an αi is odd and µ < 0, we can then make a change
of variables Yi = Xi and Yj = Xj for all j 6= i. Then µ will be replaced by
−µ. Therefore we can assume that µ ≥ 0. Now suppose µ = 0. Clearly
(i), (ii), (iii) are true. So we only need to consider µ > 0. Further, suppose
βi = 0. Then since we assume that µ > 0, (ii) is not satisfied and (i) will
not be satisfied if we set Xj = 1 for all j 6= i and we let Xi → ∞. Further,
suppose that αi = 0 for some i, and αj 6= 0 for j 6= i. If we set Xi = 0, we
obtain a polynomial p′ in n−1 variables of the form p(X) with all coefficients
of α positive. Since we will proof this below we assume the equivalence of the
assertions (i), (ii) and (iii) hold for p′. Now we obtain p(X) (with αi = 0)
from p′ by adding βiX

2d
i . Clearly for this p(X) (with αi = 0), the assertions

(i), (ii) and (iii) still are equivalent. Now in the rest of the proof, we assume
that αi > 0, µ ≥ 0 and βi > 0 for all i ∈ {1, ..., n}.
(iii) ⇒ (i) is trivial. For (i) ⇒ (ii), we assume that p is psd. We set x as
follows:

x :=

((
α1

β1

)1/2d

, ...,

(
αn
βn

)1/2d
)
. (2.24)
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Now, after substitution, we get:

p

((
α1

β1

)1/2d

, ...,

(
αn
βn

)1/2d
)

=
n∑
i=1

αi − µ
n∏
i=1

(
αi
βi

)αi/2d
= 2d− µ

n∏
i=1

(
αi
βi

)αi/2d
≥ 0,

where the last inequality proves (ii).
Now we assume (ii). To prove (iii), we will apply a variable change to
get p(X) in a form on which we can apply Theorem 2.14. So we define
Xi = (αi

βi
)1/2dYi for i = 1, ..., n. Further let µ1 := µ

∏n
i=1(αi

βi
)αi/2d. Now, after

raising both sides to the power 2d and multiplying by
∏n

i=1
1
βi

we apply our

assumption (ii) on µ1 and see that µ1 ≤ 2d, i.e. 1 ≤ 2d
µ1

. Now substituting

our new variables and using that 1 ≤ 2d
µ1

, we can write the following:

p(X) =
n∑
i=1

αiY
2d
i − µ1Y α

=
µ1

2d
[
n∑
i=1

αiY
2d
i (

2d

µ1

− 1) +
n∑
i=1

αiY
2d
i − 2dY α]

=
n∑
i=1

(αi(1−
µ1

2d
) + αi

µ1

2d
)Y 2d

i − 2dY α

Since (αi(1 − µ1
2d

) + αi
µ1
2d

) = αi we can apply Hurwitz-Reznick and conclude
that (iii) is implied by (ii).

Now we give the proof of Theorem 2.13 as an application of this last corollary.

Proof. Here we proof Theorem 2.13. Assume that that the aα,i ∈ R exist
satisfying the conditions (i) and (ii) of Theorem 2.13. We now combine the
implication (ii) ⇒ (iii) of Corollary 2.16 and assertion (i) of Theorem 2.13
to obtain that

∑n
i=1 aα,iX

2d
i + fαX

α is an sos for each α ∈ ∆. Taking the
sum over all α in ∆, we see that

n∑
i=1

(∑
α∈∆

aα,i

)
X2d
i +

∑
α∈∆

fαX
α (2.25)
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is an sos. Now we use assertion (ii) of Theorem 2.13 to see that

n∑
i=1

f2d,iX
2d
i +

∑
α∈∆

fαX
α.

Here we use that a nonnegative constant times X2d added to an sos again
gives an sos. Now by the definition of ∆ we know that for each α ∈ Ω\∆ we
have that fαX

α is a square. Therefore f(X) is an sos.

A corollary of Theorem 2.13 is the following.

Corollary 2.17. [13] A polynomial f ∈ R[X] of degree 2d is an sos if the
following two conditions hold.

(1) f0 ≥
∑

α∈∆(f) |fα|
2d−|α|

2d

(2) f2d,i ≥
∑

α∈∆(f) |fα|
αi
2d

for all i ∈ {1, ..., n}.

Proof. Let f ∈ R[X] satisfy the conditions (1) and (2) of Corollary 2.17. The
idea of the proof is to apply Theorem 2.13 to its homogenization f̄(X,X0).
For this purpose we choose aα,i in such a way that the conditions (i) and (ii)
of Theorem 2.13 are satisfied.

So we apply Theorem 2.13 to the polynomial f̄(X,X0). For this purpose we

set aα,i = |fα|αi2d
for i = 1, ..., n and we set aα,0 = |fα|2d−|α|2d

for i = 0. Now we
can show condition (ii) of Theorem 2.13. For this purpose we need to show

that f̄2d,i ≥
∑

α∈∆ |fα|
αi
2d

for i ∈ {1, ..., n} and f̄2d,0 = f0 ≥
∑

α∈∆ |fα|
2d−|α|

2d

for i = 0. These conditions are exactly the conditions of Corollary 2.17.
So only (i) of Theorem 2.13 needs to be shown. For this purpose we use

that aαα := a
2d−|α|
α,0 aα1

α,1 . . . a
αn
α,n, where i = 0, 1, ..., n. For the first power of a

in the latter identity, we used that α0 = 2d − |α|. Now note the following
manipulation.

(2d)2daαα = (2d)2d

(
|fα|(2d− |α|)

2d

)2d−|α| n∏
i=1

(
|fα|αi

2d

)αi
= (2d)2d|fα|2d−|α|(2d− |α|)2d−|α||fα||α|αα(2d)−2d

= |fα|2dαα(2d− |α|)2d−|α|.
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So (i) holds for each pair (2d− |α|, α) ∈ ∆(f̄), where α ∈ ∆(f). So (i) and
(ii) hold. Now we again apply Lemma 2.3 and we are done.

Example 2.18. Let f(x) =
∏n

i=1 xi+1+
∑n

i=1(x2
i−xi)xn−2

i with even degree
n = 2d. The monomials corresponding to the indices of ∆(f) that are not
a square or have a negative coefficient are

∏n
i=1 xi,−x

n−1
1 , ...,−xn−1

n . So the
first condition of Corollary 2.17 is verified since

f0 = 1 = 0 +
1

2d
+ ...+

1

2d︸ ︷︷ ︸
n times

. (2.26)

The second condition clearly also is satisfied, since

f2d,i = 1 =
1

2d
+
n− 1

2d
(2.27)

for all i ∈ {1, ..., n}. So by Corollary 2.17, f is an sos.
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Chapter 3

Moment matrices and moment
sequences

In this chapter we introduce moment sequences and moment matrices. More-
over we discuss the duality relation between sums of squares and moment
matrices and illustrate it with an example. Further we give a characteriza-
tion of bounded moment sequences that have a representing measure on the
hypercube. We finish this chapter with the proof of Theorem 2.8 (on the
approximation of nonnegative polynomials by sums of squares) from chapter
2, that combines most of the theory from this chapter.

3.1 Basic facts and definitions

In this thesis we consider Borel measures on Rn. Borel measures are implicitly
assumed to be positive. The support of a measure µ, denoted by supp(µ), is
the smallest closed set S ⊆ Rn for which µ(Rn\S) = 0. We also might say
that µ is a measure supported by K ⊆ Rn if supp(µ) ⊆ K.
Let µ be a measure on Rn. For α ∈ Nn, the quantity yα :=

∫
xαµ(dx) is called

the moment of order α of the measure µ. By (yα)α∈Nn we denote the sequence
of moments of measure µ. Moreover the truncated sequence (yα)α∈Nnt is the
sequence of moments up to order t. We say µ is a representing measure for y
if y is the sequence of moments of the measure µ. Here follows the definition
of a moment matrix:

Definition 3.1. Given a sequence (yα)α∈Nn ∈ RNn , its moment matrix is the
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(infinite) matrix M(y) given by

M(y) := (yα+β)α,β for α, β ∈ Nn. (3.1)

For a truncated sequence (yα)α∈Nnt ∈ RNnt we consider the same definition for
its moment matrix Mt(y), but now only indexed by Nn

t . Further we define
the following sequence for g ∈ R[X] and y ∈ RNn

gy := M(y)g ∈ RNn , (3.2)

which is called shifted vector, with entry (gy)α :=
∑

β gβyα+β for α ∈ Nn.
In the following lemma we see that the moment matrix of a sequence that
has a representing measure is PSD.

Lemma 3.2. If y ∈ RNn2t is the sequence of moments of a measure µ, then
Mt(y) � 0.

Proof. For a polynomial p ∈ R[X]t the following holds:

pTMt(y)p =
∑

α,β∈Nnt

pαpβyα+β

=
∑

α,β∈Nnt

pαpβ

∫
xα+βµ(dx)

=

∫
p(x)2µ(dx) ≥ 0.

The above three equalities are due to the definition of moment matrices, the
definition of moment sequences and the definition of a polynomial, respec-
tively.

To a sequence y = (yα)α∈Nn corresponds a linear form L on the polynomial
ring R[X]. This linear form is defined as L : R[X]→ R such that Xα 7→ yα
and L(1) = 1. So we see that L(

∑
α fαX

α) =
∑

α fαyα.

Lemma 3.3. Let y = (yα)α∈Nn and L be its associated linear form. Then
for f ∈ R[X] we have

L(f 2) = fTM(y)f. (3.3)

So L ≥ 0 on Σ if and only if M(y) � 0.

27



Proof.

L(f 2) = L

(∑
α,β

fαfβx
α+β

)
=
∑
α,β

fαfβyα+β = fTM(y)f. (3.4)

3.2 Duality relations

In this section we treat duality between the set of sequences whose moment
matrices are PSD and sums of squares. Moreover we explain that the set of
nonnegative polymials has the of moment sequences as dual set.

We introduce the following definitions: For an R-vector space A, its dual
vector space A∗ consists of all linear maps L : A → R. Further, for a cone
B ⊆ A, its dual cone is defined as

B∗ := {L ∈ A∗ : L(b) ≥ 0 for all b ∈ B}. (3.5)

Note that when we consider the semi-definite cone, its dual described in
(1.2) can be obtained from equation (3.5). From the definition in (3.5) we
can obtain the duals of the cones P and Σ by setting A = R[X]. We obtain
the following:

P ∗ = {L ∈ (R[X])∗ : L(p) ≥ 0 for all p ∈ P} (3.6)

and
Σ∗ = {L ∈ (R[X])∗ : L(p2) ≥ 0 for all p ∈ R[X]}. (3.7)

Now let us consider the definitions of the cone of moment sequences and the
cone of sequences whose moment matrix is PSD, respectively:

M := {y ∈ RNn : y has a representing measure} (3.8)

and
M�0 := {y ∈ RNn : M(y) � 0}. (3.9)

Recall that every linear form corresponds to a sequence (yα)α∈Nn . So we see
as a direct consequence of Lemma 3.3 that Σ∗ = M .
The following theorem shows the equivalence between a sequence having a
representing measure on a set K and the corresponding linear form being
positive for all polynomials nonnegative on K.
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Theorem 3.4. [7][Haviland’s theorem] Let K be a closed subset in Rn. The
following two assertions are equivalent for a linear form L ∈ R[X]∗:

(i) L(p) ≥ 0 for any polynomial p ∈ R[X] such that p ≥ 0 on K.

(ii) There exists a measure µ on K such that L(p) =
∫
K
p(x)µ(dx) for all

p ∈ R.

Proof. For a proof see section 4.6 of [16].

Clearly, from Theorem 3.4 we can deduce that P ∗ = M . In Proposition 4.9
of [16], the full proof that P and M are duals and that Σ and M�0 are duals
is given. Recall that Σ ⊆ P and note that by Lemma 3.2, we have that
M ⊆ M�0. Now we are able to give an overview of the above duality and
inclusion relations:

P

duals

⊇
Σ

duals

M
⊆

M�0

3.2.1 Duality example

In this subsection we give an example of a duality pair, in which the cones Σ
and M�0 are involved. Let deg(f) = 2t. We will consider the following sdp’s
and show that they are duals:

sup{λ ∈ R : f − λ ∈ Σ} (3.10)

and
inf{

∑
fαyα : y0 = 1,Mt(y) � 0}. (3.11)

The main step in showing the duality is to rewrite the program in (3.10) in
standard form as described in (1.4). We do this as follows. By Lemma 2.10
we know f − λ ∈ Σ if and only is there exists a PSD matrix X ∈ Ss(n,t) such
that ∑

β,γ∈Nnt
β+γ=α

Xβ,γ = (f − λ)α, ∀α ∈ Nn
2t. (3.12)
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Here (f −λ)α indicates the coefficient of the monomial Xα of the polynomial
f − λ. So we can already rewrite (3.10) as

sup{λ ∈ R : X � 0,
∑

β,γ∈Nnt
β+γ=α

Xβ,γ = (f − λ)α for all α ∈ Nn
2t}. (3.13)

However, we want to rewrite these equations described in (3.12) by using
matrix inner products (as in the standard form is done). For this purpose
we define the matrix Aα as follows:

(Aα)β,γ =

{
1 if β + γ = α
0 else

}
, for all α ∈ Nn

2t and β, γ ∈ Nn
t . (3.14)

So we can rewrite the equations in (3.12) as:

〈Aα, X〉 = f0 − λ if α = 0 and 〈Aα, X〉 = fα else. (3.15)

In order to write λ as an inner product of matrices, we let C be the matrix
in Ss(n,t)+1 given by

Cα,β =

{
0 if (α, β) 6= (s(n, t) + 1, s(n, t) + 1),
1 if (α, β) = (s(n, t) + 1, s(n, t) + 1)

(3.16)

Moreover, let X̃ ∈ Ss(n,t)+1. Now by setting

X̃s(n,t)+1,s(n,t)+1 = λ

we obtain that 〈C, X̃〉 = λ. Finally, in order to formulate (3.10) in standard
form we define the following matrix of order s(n, t) + 1:

Ãα =

(
Aα 0
0 1

)
if α = 0 (3.17)

and

Ãα =

(
Aα 0
0 0

)
else. (3.18)

Now, the standard form of our program described in (3.10) is given as follows:

sup{〈C, X̃〉 : X̃ � 0, 〈Ãα, X̃〉 = fα for all α ∈ Nn
2t, }. (3.19)
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As explained in section 1.2 of Chapter 1, its dual is given by:

inf{
∑
α∈Nn2t

fαyα :
∑
α∈Nn2t

yαÃα − C � 0} (3.20)

Since L(1) = 1 by definition, we have that y0 = L(X0) = L(1) = 1. Further,
it is very important to note that we have defined Aα such that

Mt(y) =
∑
α∈Nn2t

yαAα.

By combining these last two remarks we see that the program described in
program (3.20) is exactly equal to the dual described in (3.11).

3.3 Basic properties of moment matrices

In this section we give some basic properties of moment matrices. First we
show two technical lemmas in which upper bounds of certain coefficients of
moment matrices are obtained. From these lemmas we obtain a corollary,
which shows that if Mt(y) � 0, all entries yα can be bounded in terms of the
yα that correspond to the monomials 1 and X2t

i .

We use the following notation:

τk := max{y(2k,0,...,0), ..., y(0,...,0,2k)} = max
i
y2kei for 0 ≤ k ≤ t. (3.21)

So τ0 = y0.

Lemma 3.5. Assume Mt(y) � 0 in the univariate case (n = 1). Then
y2k ≤ max{τ0, τt} for 0 ≤ k ≤ t.

Proof. The proof will be by induction on t. For t = 0 we use that τ0 = y0.
Further for t = 1 we use that τ1 ≥ y2. Now assuming the lemma holds for
t − 1 where t > 1, this means that y0, ..., y2t−2 ≤ max{y0, y2t−2}. Firstly
we assume y0 ≥ y2t−2. The result y0, ..., y2t ≤ max{y0, y2t} easily follows.
Secondly we assume that y0 < y2t−2. Since the Mt(y) � 0, we deduce from
the submatrix of Mt(y) indexed by {α, β} that

y2
α+β ≤ y2αy2β. (3.22)

31



We can use this, the assumption y0 < y2t−2 and the induction hypothesis
to obtain the following (in)equalities: y2

2t−2 = y2
t+t−2 ≤ y2t−4y2t ≤ y2t−2y2t.

From this we can deduce that y2t−2 ≤ y2t, which leads to the same conclusion
that y0, ..., y2t ≤ max{y0, y2t}.

Lemma 3.6. Let Mt(y) � 0. Then y2α ≤ τk for all |α| = k ≤ t.

Proof. In the univariate case it is obvious, since y2k = τk. Before we state
the induction hypothesis, we check it for n = 2. Therefore we define

s := max
|α|=k

y2α.

Assume this maximum is attained at y2α∗ . Since α∗1 +α∗2 = k, clearly we have
that 2α∗1 ≥ k ⇔ 2α∗2 ≤ k. Now, without loss of generality we can assume
that 2α∗1 ≥ k. So, in order to apply the inequality described in (3.22) we
make the following rewriting:

2α∗ = (k, 0) + (2α∗1 − k, 2α∗2)

= (k, 0) + (2α∗1 − k + 2k − 2(α∗1 + α∗2), 2α∗2)

= (k, 0) + (k − 2α∗2, 2α
∗
2).

Applying inequality (3.22), we get: y2
2α∗ ≤ y(2k,0)y(2k−4α∗2,4α

∗
2). Since s2 = y2

2α∗

and s ≥ y(2k−4α∗2,4α
∗
2) (definition s) and y(2k,0) ≤ τk (definition τ), this means

that s2 ≤ sτk. We thus can conclude that s ≤ τk, since y2α is a diagonal
element of Mt(y) and therefore nonnegative. So we have finished the proof
for n = 2.
Now we assume n ≥ 3 and we assume that Lemma 3.6 holds for n − 1. In
other words we assume that y2α ≤ τk if |α| = k and αi = 0 for some i. Now,
without loss of generality we assume that 1 ≤ α1 ≤ α2 ≤ ... ≤ αn and we
consider the following sequences:

γ := (2α1, 0, α3+α2−α1, α4, ..., αn) and γ′ := (0, 2α1, α3+α1−α2, α4, ..., αn).

Note that the assumed ordering is needed here, since γ and γ′ can not have
negative entries. However a different ordering could be handled with likewise.
We clearly have |γ| = |γ′| = |α| = k and γ + γ′ = 2α. Since γ2 = γ′1 = 0,
we can apply the induction hypothesis and see that y2γ, y2γ′ ≤ τk. Hence, we
see that y2

2α = y2
γ+γ′ ≤ y2γy2γ′ ≤ τ 2

k , which implies that y2α ≤ τk.

We now combine the two above lemmas to get to the following corollary.
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Corollary 3.7. Assume Mt(y) � 0. Then |yα| ≤ max0≤k≤t τk = max{τ0, τt}
for all |α| ≤ 2t.

Proof. From Lemma 3.5 we can deduce that y(2k,0,...,0) ≤ max{τ0, τt}, since

y2k = L(X2k) = L(X2kX0 · · ·X0) = y(2k,0,...,0).

This means that τk ≤ max{τ0, τt} and so we obtain that

max
0≤k≤t

τk = max{τ0, τt} =: τ. (3.23)

Moreover, by Lemma 3.6 we get that y2α ≤ τ for |α| ≤ t. Now consider a
sequence γ such that |γ| ≤ 2t. We can obviously write γ = α + β, where
|α|, |β| ≤ t for some α, β ∈ Nn. This enables us to write: y2

γ ≤ y2αy2β ≤ τ 2.
So we see that |yγ| ≤ τ .

3.4 Characterizing bounded moment sequences

with a representing measure on the hy-

percube

Recall the duality and inclusion relations of the sets M,M�0,Σ and P as
explained in Section 3.2 . Whereas in chapter two Theorem 2.8 deals with the
sets Σ and P , the theorem treated in this section deals with the discrepancy
between the sets M and M�0. It states that if a certain bound on the
coefficients yα of a PSD moment matrix M(y) in terms of α can be set, then
the sequence y, supported by the hypercube, has a representing measure.

Theorem 3.8. [1] Let y ∈ RNn , C ∈ R≥0 and K := [−C,C]n. We now have
equivalence for the following two assertions:

(i) y has a representing measure supported by the set K.

(ii) M(y) � 0 and there exists a constant C0 ≥ 0 such that |yα| ≤ C0C
|α|

for all α ∈ Nn.

First we prove (ii) ⇒ (i). For this direction, we need the following two
lemmas:

Lemma 3.9. Assume M(y) � 0 and |yα| ≤ C0C
|α| for all α ∈ Nn for some

constants C0, C > 0. Then |yα| ≤ y0C
|α| for all α ∈ Nn.
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Proof. First assume that y0 = 0. Since M(y) � 0 we know that the row
(and column) of M(y) starting from y0 only contains zero’s. Since this row
contains all entries of y, we deduce that all elements in the sequence y are
equal to zero. Further y0 ≥ 0 because M(y) � 0. So we may assume that
y0 > 0. Now we rescale the sequence and assume that y0 = 1. What remains
to be shown is that |yα| ≤ C |α| for all α ∈ Nn.

First, note that y2
α ≤ y2α, since

(
1 yα
yα y2α

)
is the submatrix of M indexed

by {1, α}. Next, we use this to show by induction on k that |yα| ≤ (y2kα)1/2k

for any k ≥ 1.
Namely for k = 1, we get |yα| ≤ (y2α)1/2. Then after taking squares on
both sides, which is possible because both sides are positive, we obtain the
inequality y2

α ≤ y2α. Assuming that our hypothesis is right for k, we see that
(y2k+1α)1/2k+1 ≥ (((y2kα)1/2k)1/2)2 = (y2kα)1/2k ≥ |yα|, and this small induc-
tion proof is done.

As assumed in Lemma 3.9 we have that |yα| ≤ C0C
|α|. When we substitute

2kα for α in this inequality, we obtain |y2kα| ≤ C0C
|2kα|. By combining this

with |yα| ≤ (y2kα)1/2k , we obtain |yα| ≤ (C0C
2k|α|)1/2k = C

1/2k

0 C |α|. Now,
after letting k go to infinity, we obtain |yα| ≤ C |α| as desired.

Lemma 3.10. If C > 0 and K = [−C,C]n, then

S = {y ∈ RNn | y0 = 1,M(y) � 0, |yα| ≤ C |α| ∀α ∈ Nn} (3.24)

is a convex set whose extreme points are the vectors ζx = (xα)α∈Nn for x ∈ K.

Proof. For the proof of the convexity of S, only the positive semi-definite
condition is non-trivial, but after noting that

M(λx+ (1− λ)y) = λM(x) + (1− λ)M(y) (3.25)

for λ ∈ (0, 1) and x, y ∈ S, this is also easy.
Now we will prove that the extreme points of S are indeed the vectors ζx. So
assume y is an extreme point of S. Fix α0 ∈ Nn. In order to prove that y is
indeed equal to a vector ζx we will show the following property of y:

yα+α0 = yαyα0 ∀α ∈ Nn. (3.26)

First we continue with the rest of the proof. Later we prove (3.26). We
can set x = (y(1,0,...,0), ..., y(0,...,0,1)). Since y ∈ S, we have |xi| ≤ C, hence
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x ∈ K. Further, since we know (3.26) is true for all α0 ∈ Nn, we see that
yα = y(α1,...,αn) = yα1e1 · · · yαnen = yα1

(1,0,...,0) · · · y
αn
(0,...,0,1) = xα for all α. So we

see that y = ζx and that every y corresponds to a unique vector ζx.

It remains to show that equation (3.26) holds. The idea is that we create two
elements in S, for which (3.26) holds, such that y is a convex combination of
these elements. This would imply that y is one of them since y is assumed to
be an extreme point. First we define the sequence y

(ε)
α := C |α0|yα+ εyα+α0 for

α ∈ Nn and ε ∈ {±1}. Subsequently, we apply Lemma 3.9 to this sequence.

So we see that |y(ε)
α | ≤ C |α0|(1 + ε)C |α|, for all α ∈ Nn, where we use the

definition of y(ε) and the fact that y is an element of S. Secondly we will
show that M(y(ε)) � 0, i.e. for all p ∈ R[X] we have that

pTM(y(ε))p =
∑
γ,γ

pγpγ′y
(ε)

γ+γ′
≥ 0. (3.27)

To show this, we fix p ∈ R[X] and we define a new sequence

z := M(y(ε))vec(p2) ∈ RNn

with zα =
∑

γ,γ′ pγpγ′y
(ε)

α+γ+γ′
for α ∈ Nn and where vec(p2) denotes the

coefficient vector of p2 . Clearly we are done if z0 ≥ 0. Now combining the
fact that y is an element of S (so |yα| ≤ C |α|) and some standard absolute

value properties, we see that |zα| ≤ (
∑

γ,γ′ |pγpγ′ |C |γ|+|γ
′ |)C |α| ∀α ∈ Nn.

Furthermore we see that by definition (see equation (3.2) in Section 3.3)
z := M(y)vec(p2) := gy for g = p2. Now using elementary arithmetic on
moment matrices (see Section 4.1.4 of [16]), we come to the following:

qTM(z)q = qTM(p2y)q = vec(pq)TM(y)vec(pq) ≥ 0 ∀q ∈ R[X], (3.28)

where the last inequality holds because M(y) � 0. So M(z) � 0, which
implies that z0 ≥ 0. Hence M(y(ε)) � 0. Now we again can apply Lemma

3.9 and conclude that |y(ε)
α | ≤ y

(ε)
0 C |α| for all α.

We are now able to prove equation (3.26). Firstly, if we assume that y
(ε)
0 = 0

for some ε ∈ {±1}, then y(ε) = 0 (since M(y(ε)) � 0). Then, if we set

α = (0, ..., 0) in the definition of y
(ε)
α , we get that 0 = C |α0|y0± yα0 and hence

y0 = yα0 = 0 and we are done.

Now we assume that y
(ε)
0 > 0 for ε ∈ {±}. Then we have that y(ε)

y
(ε)
0

belongs to S
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for both ε = 1 and ε = −1, since all properties of the set S are easily verified
because |y(ε)

α | ≤ y
(ε)
0 C |α|. Furthermore the sequences y(ε) are constructed such

that

y =
y

(1)
0

2C |α0|
y(1)

y
(1)
0

+
y

(−1)
0

2C |α0|
y(−1)

y
(−1)
0

. (3.29)

So y is a convex combination of the points y(1)

y
(1)
0

and y(−1)

y
(−1)
0

∈ S (note that

y
(1)
0

2C|α0|
+

y
(−1)
0

2C|α0|
= 1). Since we assumed that y is an extreme point of S, y is

equal to one of them, i.e. y = y(1)

y
(1)
0

or y = y(−1)

y
(−1)
0

. Now we are done because

yα =
C|α0|yα+εyα+α0
C|α0|+εyα0

and after multiplication by C |α0|+ εyα0 on both sides and

some basic algebra we obtain (3.26).

Here follows the rest of the proof of Theorem 3.8 for the part (ii)⇒ (i). First
assume that M(y) � 0 and |yα| ≤ C0C

|α| for all α ∈ Nn for some C0. We
will prove that y has a representing measure supported by K. The idea is to
show that y ∈ S. Then we make use of the fact that the extreme points of
S have a representing measure and the Krein-Milman Theorem to conclude
that y has a representing measure.
Suppose y0 = 0. Then we have that y = 0 for which the zero measure can be
the representing measure, so we are done. So we may assume that y0 = 1 (else
we rescale y). By Lemma 3.9 we know that |yα| ≤ y0C

|α| for all α ∈ Nn. So y
belongs to S (as described in (3.24)). Recall that the extreme points of S are
{ζx : x ∈ [−C,C]n}. Knowing these extreme points, we can use the Krein-
Milman theorem, which implies that S is equal to the closure of the convex
hull of the extreme points of S. So we deduce that y is an element of closure
of the convex hull of the extreme points of S. So y = limi→∞ y

(i), where y(i) is
an element of the convex hull of the extreme points of S . All these elements
y(i), which are sequences itself, are linear combinations of sequences that have
a representing measure and therefore also have a representing measure. Now
we want to show that the limit y of this sequence (y(i))i≥0 of sequences has a
representing measure. By Theorem 3.4, showing that y has representing mea-
sure is the same as showing that

∑
α pαyα ≥ 0 for all polynomials p ∈ R[X]

such that p ≥ 0 on K. Since all y(i) have a representing measure, we know
by the above theorem that

∑
α pαy

(i)
α ≥ 0 for any polynomial p ∈ R[X] such

that p ≥ 0 on K for all i = 1, 2, .... Now we can take the limit and get the
following: lim

i→∞

∑
α pαy

(i)
α =

∑
α pα limi→∞ y

(i)
α =

∑
α pαyα ≥ 0, where the last
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inequality holds since the limit can not be negative if all the elements in the
sequence converging to it are nonnegative.

Now we show (i)⇒ (ii) for Theorem 3.8. So we assume that y has a repre-
senting measure supported by K. In order to show that the infinite matrix
M(y) is positive semi-definite, we need to show that Mt(y) � 0 for all integers
t ≥ 1 (by definition). This follows immediately from Lemma 3.2. Further,
since K = [−C,C], |xi| ≤ C for all i. Therefore |yα| ≤

∫
K
|xα|µ(dx) ≤

µ(K)C |α| and the proof of Theorem 3.8 is finished.
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3.5 Density result for sos polynomials - Proof

of Theorem 2.8

Recall that Theorem 2.8 is given as follows:

Theorem 2.8. Let f be a polynomial in R[X] which is nonnegative on
[−1, 1]n. For all ε > 0 there exists an integer t0 ≥ 0 such that

f + ε

(
1 +

n∑
i=1

X2t
i

)
∈ Σ,

for all t ≥ t0.

Firstly we would like to note that Lasserre has won the Lagrange prize 2009
(http://www.mathopt.org/?nav=lagrange 2009), because of this result. The
fact that the proof makes use of a large scala of different tools such as semi-
definite programming, duality theory, convexity theory, moment theory and
more, makes it a beautiful proof. Here follows a rough sketch of the proof:
The goal is to prove that f + ε(1 +

∑n
i=1X

2t
i ) is an sos. For this purpose we

have formulated the sdp in (3.32) below, which computes the largest value
−d∗t for−d∗t ∈ 〈−∞, 0] depending on t for which f+d∗t (1+

∑n
i=1 X

2t
i ) is an sos.

By obtaining the dual formulation ε∗t , as described in (3.31) below, of d∗t and
showing that there is no duality gap, it can be shown that f+ε(1+

∑n
i=1X

2t
i )

is an sos as long as ε ≥ ε∗t . Finally, since it can be shown that limt→∞ ε
∗
t = 0

it we obtain an sos for every ε > 0.
The following proposition is the main body of the proof of Theorem 2.8. In
this proposition we use the following notation:

Θt = 1 +
n∑
i=1

X2t
i . (3.30)

Proposition 3.11. Given a polynomial f ∈ R[X], consider the following
program:

ε∗t := inf{fTy | Mt(y) � 0, yTΘt ≤ 1} (3.31)

for an integer t ≥ ddeg(f)/2e. Now the following three assertions hold:

(i) −∞ < ε∗t ≤ 0 and the infimum of (3.31) is attained.

(ii) For ε ≥ 0 we have the following equivalence: f+εΘt is an sos⇔ ε ≥ −ε∗t .
In particular: f is an sos ⇔ ε∗t = 0.
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(iii) If f is nonnegative on [−1, 1]n, then limt→∞ ε
∗
t = 0.

Proof. Here we prove (i). Since y = 0 is a solution to (3.31), we see the
feasible region of (3.31) is non-empty. Furthermore, assume y is a feasible
solution of (3.31). Then, because y0, y(2t,0,...,0), ..., y(0,...,0,2t) are diagonal el-
ements of Mt(y) and because their sum is less or equal then 1 (from the
constraint of (3.31)), we know that 0 ≤ y0, y(2t,0,...,0), ..., y(0,...,0,2t) ≤ 1. Now
by using Corollary 3.7, we deduce that |yα| ≤ 1 for all α. Therefore we know
that the feasible region of (3.31) is bounded. So the infimum is attained and
−∞ < ε∗t ≤ 0.

Here we prove (ii). First we will show that the dual of ε∗t is given by:

d∗t = sup
λ≥0
{−λ : f + λΘt is an sos}. (3.32)

The main step in showing this, is to write ε∗t in standard form as described
in (1.6). For this purpose we write 1 − yTΘt = 1 − y0 −

∑
i y2tei . Moreover

note again that Mt(y) =
∑
|α|≤2tAαyα, where Aα is defined as in (3.14), so

Aα has order s(n, t). In order to obtain the right standard form constraints,
we define the following matrix of order s(n, t) + 1:

Ãα =

(
Aα 0
0 −1

)
if α ∈ {0, 2te1, ..., 2ten} (3.33)

and

Ãα =

(
Aα 0
0 0

)
else. (3.34)

Further we set C ′ = −C, where C is described in (3.16). Now ε∗t can be
written as the following standard form:

inf{
∑
|α|≤2t

fαyα :
∑
|α|≤2t

yαÃα − C ′ � 0}. (3.35)

Its dual is
sup{〈C ′, X̃〉 : X̃ � 0, 〈Ãα, X̃〉 = fα for all α}, (3.36)

where X̃ ∈ Ss(n,t)+1. Let us set X̃s(n,t)+1,s(n,t)+1 = λ. Note that the constraint

〈Ãα, X̃〉 = fα of the program described in (3.36) can be rewritten as follows:〈(
Aα 0
0 0

)
, X̃

〉
= fα + λ if α ∈ {0, 2te1, ..., 2ten} (3.37)
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and 〈(
Aα 0
0 0

)
, X̃

〉
= fα else. (3.38)

Let X ∈ Ss(n,t). We can rewrite (3.36) now as follows:

sup
λ≥0
{−λ : X � 0, (f − λΘt)α =

∑
β,γ:β+γ=α

Xβ,γ for all α}. (3.39)

From Lemma 2.10 we know that f − λΘt is an sos if and only if there exists
an X ∈ Ss(n,t) such that X � 0 and that (f − λΘt)α =

∑
β+γ=αXβ,γ for all

α. So now it should be clear that the dual of ε∗t can be given by

d∗t := sup
λ≥0
{−λ : f + λΘt is an sos}. (3.40)

Further we see that (3.31) is strictly feasible, because we can pick a sequence
of moments of a measure that has positive density all over Rn, where the
moments up to order 2t are finite. Then after rescaling (if necessary) we ob-
tain a moment sequence such that yTΘt ≤ 1. So we obtain a strictly feasible
solution.
Since (3.32) is also bounded from above, we use strong duality (see The-
orem 1.2) and conclude that (3.32) attains its supremum and there is no
duality gap (ε∗t = d∗t ). Now note the following equivalence: f + εΘt is an
sos ⇔ −ε ≤ d∗t = ε∗t , (i.e. ε ≥ −ε∗t ). Here the direction ’⇐’ is trivial.
For the direction ’⇒’ we note that −ε∗t + c = ε for some c ∈ R≥0. Hence
f + εΘt = f + (−ε∗t + c)Θt which clearly is an sos since Θt and f − ε∗tΘt are
sums of squares.

Here we prove (iii). First note that, from (i), we know that ε∗t ≤ 0
for all integers t > 0. So we only need to show that limt→∞ ε

∗
t ≥ 0. The

idea is to take a subsequence of (ε∗t )t≥0 and then to show that this sequence
only has one accumulation point which is larger than or equal to 0. We
start by assuming y(t) is the optimal solution for (3.31). From the proof
of (i) we know that y(t) ∈ [−1, 1]N

n
2t . Now we complete y(t) to the element

ỹ(t) = (y(t), 0, ..., 0) ∈ [−1, 1]N
n

and we consider the sequence (ỹ(t))t≥0. Since
[−1, 1]N

n
is compact, we know this sequence has a converging subsequence

(ỹ(tl))l≥0 which converges to some limit y∗ ∈ [−1, 1]N
n
. To this limit we want

to apply Theorem 3.8. Therefore first note that the there is coordinate-wise
convergence to y∗, i.e. ỹ

(tl)
α → y∗α as l → ∞. Since Mtl(y) � 0 (sine we
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assumed that y(t) is the optimal solution for (3.31)) for all l ≥ 0, we know
that M(y∗) � 0. Moreover, recall that y ∈ [−1, 1]N

n
. So we can deduce from

Theorem 3.8 that y∗ has a representing measure µ on [−1, 1]N
n
. In particular,

we see that fTy∗ =
∫

[−1,1]n
f(x)µ(dx). By assumption, we know that f ≥ 0

on [−1, 1]n, so fTy∗ ≥ 0. Now we see that liml→∞ ε
∗
tl
≥ 0. Therefore we can

conclude that ε∗t also converges to 0 as t→∞.

Now we can prove Theorem 2.8. Let ε > 0. From (iii) from Proposition
3.11 we know that limt→∞ ε

∗
t = 0. So there exists a t0 ∈ N such that ε∗t ≥ −ε

for all t ≥ t0. Then from (ii) from proposition 3.11 , we now know that
f + εΘt is an sos.

41



Chapter 4

Positivstellensätze

In this chapter we start by showing the relation between classical algebraic
geometry and real algebraic geometry. Further, we introduce quadratic mod-
ules and preorderings. Then, after these preliminaries, we are able to state
several Positivstellensätze.

Where classical algebraic geometry deals with zeros of polynomial equations
as subsets of Cn, real algebraic geometry deals with subsets of Rn defined
by polynomial equations and inequalities. These subsets are called semi-
algebraic sets. A basic closed semi-algebraic set K is given by

K = {x ∈ Rn : g1 ≥ 0, ..., gm ≥ 0}, (4.1)

where g1(x), ..., gm(x) ∈ R[X]. Throughout we set g0 = 1.
Classical and real algebraic geometry both deal with Stellensätze. In classical
algebraic geometry, Nullstellensätze are considered. The first Nullstellensatz
was discovered by Hilbert and was given as follows:

Theorem 4.1. [Hilbert’s Nullstellensatz] For p, g1, ..., gm ∈ R[X] we have
that

p = 0 on {x ∈ Cn : g1(x) = 0, ..., gm(x) = 0} ⇔ pk =
n∑
j=1

ujgj, (4.2)

for some uj ∈ R[X] and k ∈ N.

A corrolary of Theorem 4.3, also referred to as the strong Nullstellensatz,
is the weak Nullstellensatz. The weak Nullstellensatz characterizes when a
system of polynomials has no roots in common.
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Corollary 4.2 (The weak Nullstellensatz). For g1, ..., gm ∈ R[X] and the
ideal I ⊆ R[X] generated by (g1, ..., gm), we have the following:

{x ∈ Cn : g1(x) = 0, ..., gm(x) = 0} = ∅ ⇔ 1 =
n∑
j=1

ujgj for some uj ∈ R[X].

Proof. (⇐). Suppose {x ∈ Cn : g1(x) = 0, ..., gm(x) = 0} is not empty, then
there exists an x ∈ Cn such that 0 =

∑n
j=1 ujgj 6= 1 for all uj ∈ R[X].

(⇒). We apply Theorem 4.3 for the constant polynomial p = 1. The result
immediately follows.

The Real Nullstellensatz, the real variant of Hilbert’s Nullstellensatz, is given
as follows:

Theorem 4.3. [The Real Nullstellensatz] For g1, ..., gm ∈ R[X] we have that

p = 0 on {x ∈ Rn : g1(x) = 0, ..., gm(x) = 0} ⇔ p2k + s =
n∑
j=1

ujgj, (4.3)

for some uj ∈ R[X], s ∈ Σ and k ∈ N.

Analogously as for Hilbert’s Nullstellensatz, a certificate for the nonexistence
of a real solution to a system of polynomial equations can be derived.

Corollary 4.4. For g1, ..., gm ∈ R[X] we have that

{x ∈ Rn : g1(x) = 0, ..., gm(x) = 0} = ∅

if and only if

−1 = s+
n∑
j=1

ujgj

for some uj ∈ R[X], s ∈ Σ.

Proof. The proof is analogous to the proof of Corollary 4.2.

Remark 4.5. Considering Hilbert’s Nullstellensatz, we see that checking
whether pk equals sum

∑n
j=1 ujgj, amounts to solving a linear program af-

ter setting bounds on the degree of the uj. The constraints from this li-
near program are obtained by equating the coefficients of pk with the co-
efficients of

∑n
j=1 ujgj. However, in The Real Nullstellensatz there is an
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sos polynomial s involved. Finding s and the uj now amounts to solving
an SDP. For this purpose, we again set a degree bound on the uj. Since
deg(s) = deg(

∑n
j=1 ujgj−p2k), we can find an integer d such that s ∈ R[X]d.

So we have to try to find a PSD matrix Q such that s = [X]dQ[X]d, such
that p2k + s =

∑n
j=1 ujgj.

The analogue of a Nullstellensätz in real algebraic geometry is a Positivstel-
lensatz. This is a result of the following form:

p > 0 on K ⇒ p =
∑
j

sjgj (4.4)

for sj ∈ Σ and gj as in (4.1) and (possibly) a condition on K.

Before formulating Krivine’s Positivstellensatz, we introduce the following
terminology following [20].

Let R be a commutative ring in which 2 is a unit.

Definition 4.6. A preordering of R is a subset T of R that satisfies the
following properties: T + T ⊆ T, T · T ⊆ T and f 2 ∈ T for all f ∈ R.

For example, the preordering of R[X] generated by g = (g1, ..., gm) (with the
g1, ..., gm ∈ R[X]) is given by

T(g) =

s0 +
∑

J⊆{1,...,m}

sJgJ : s0, sJ ∈ Σ

 , (4.5)

where gJ =
∏

j∈J gj.

Remark 4.7. Note that there are 2n different subsets of {1, ..., n}. So there
can be involved up to 2n sos polynomials in an element of T(g).

Theorem 4.8. [11][Krivine’s Positivstellensatz,1964]. For K as in (4.1) and
p ∈ R[X], the following assertions hold.

(i) p > 0 on K ⇔ pf = 1 + h for some f, h ∈ T(g).

(ii) p ≥ 0 on K ⇔ pf = p2k + h for some f, h ∈ T(g) and k ∈ N.
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(iii) p = 0 on K ⇔ −p2k ∈ T(g) for some k ∈ N.

(iv) K = ∅ ⇔ −1 ∈ T(g).

Proof. For a proof see Chapter 2 of [20].

Note that T(g) ⊆ P (K). These sets are not equal in general. Consider the
following example.

Example 4.9. Let B = {x ∈ R : g = (1−x2)3 ≥ 0} and p = 1−X2. Clearly
p = (1− x2) ≥ 0 on B. Now, assume for contradiction that p ∈ T(g). Then

1−X2 = s0 + s1(1−X2)3

for some s0, s1 ∈ Σ. Then, since both 1−X2 and (1−X2)3 can be divided by
1−X2, also s0 can be divided by 1−X2. Since s0 ∈ Σ, this would mean that
(1−X2)2 also divides s0. However, now (1−X2)2 divides s0+s1(1−X2)3, but
clearly it does not divide 1−X2, so we have a contradiction. Hence p ∈ P (B)
and p /∈ T((1 − X2)3). However, note that pg = p4, which supports (ii) of
Theorem 4.8.

Schmüdgen discovered the following Positivstellensatz, which gives a repre-
sentation result for positive polynomials on compact sets. This has been a
very important improvement on (i) of Theorem 4.8, since it gives a denomi-
nator free representation of a polynomial.

Theorem 4.10. [33][Schmüdgen’s Positivstellensatz,1991] Assume that K
from (4.1) is compact. Then the following implication holds:

p(x) > 0 for all x ∈ K ⇒ p ∈ T(g). (4.6)

We will not prove this theorem here. However, we would like to mention
that Schmüdgen’s Positivstellensatz can be given as a direct application of a
representation theorem (Theorem 5.4.4 of [20]), by using the following result
of Wörmann.

Theorem 4.11. [35] For T(g) as in (4.5) and K as in (4.1), the following
holds.

T(g) is Archimedean if and only if K is compact. (4.7)

Proof. We postpone the proof to the end of this chapter.
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Although Schmüdgen’s Positivstellensatz clearly is an improvement on (i) of
Theorem 4.8, there still are 2n unknown sos polynomials in the representation
of p. So for semi-definite programming purposes an improvement is needed.
Putinar has found such an improvement on Schmudgen’s Positivstellensatz
by setting a stronger condition on K. He proved that, under this stronger
condition, there is a representation of p with only n + 1 unknown sos poly-
nomials. We introduce the following terminology.

Definition 4.12. A quadratic module of a ring R is a subset M of R with
the following properties:

M +M ⊆M,ΣM ⊆M and 1 ∈M. (4.8)

For example, a quadratic module can be given by

M(g) =

{
s0 +

m∑
j=1

sjgj : sj ∈ Σ for j ∈ {0, 1, ...,m}

}
, (4.9)

where g = (g1, ..., gm).

Remark 4.13. [20] For a quadratic module M ⊆ R, M∩−M is an ideal. To
see this let I = M ∩−M . Then I+ I ⊆ I. Further −(M ∩−M) = M ∩−M ,
so I = −I. Further 0 ∈ I, since 0 ∈ R. Moreover a2I ⊆ I for all a ∈ R, since
a2M ⊆ M and a2(−M) ⊆ −M . Now assuming that 2 is a unit in A, we see
that aI ⊆ I for any a ∈ A, since

aI =

((
a+ 1

2

)2

−
(
a− 1

2

)2
)
I =

(
a+ 1

2

)2

I −
(
a− 1

2

)2

I ⊆ I, (4.10)

where we use that −(a−1
2

)2I ⊆ −I = I for the last inclusion.

Proposition 4.14. The following conditions on a quadratic module M(g)
are equivalent.

(1) There exists an h ∈M(g) such that {x ∈ Rn : h(x) ≥ 0} is compact.

(2) There exists an N ∈ N such that N −
∑n

i=1X
2
i ∈M(g).

(3) For all f ∈ R[X], there exist an N ∈ N such that N + f ∈ M(g) and
N − f ∈M(g).
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Proof. (3)⇒ (2) is clear. For (2)⇒ (1), recall that in Rn a set is compact if
and only if it is closed and bounded. Clearly, the set

{x ∈ Rn : N −
n∑
i=1

x2
i ≥ 0}

satisfies both of these conditions. For (1) ⇒ (3), consider a polynomial
f ∈ R[X] and note that the set K = {x ∈ Rn : h(x) ≥ 0} is bounded.
Now, since f is a polynomial and thus a continuous function, there exists
a natural number N ∈ N such that −N < f(x) < N on the compact
set K. So N + f,N − f > 0 on K. Now by Theorem 4.10 we see that
N +f,N −f ∈ T(h). To conclude, note that T(h) ⊆M(g), since h ∈M(g).
Therefore N + f,N − f ∈M(g).

Definition 4.15. We say that M(g) is Archimedean if (1), (2) or (3) of
Proposition 4.14 is satisfied.

Example 4.16. Consider the set K = {x ∈ Rn : xi ≥ 0,
∑n

i=1 xi ≤ 1}. We
will show that the quadratic module QM = M(X1, ..., Xn, 1−

∑n
i=1Xi) that

corresponds to K is Archimedean. For this end we show that condition (2)
of definition 4.15 holds, i.e. that there exists an N ∈ N such that

N −
n∑
i=1

X2
i ∈ QM.

We pick N = n and show that n −
∑n

i=1 X
2
i ∈ QM . Note the following

manipulations.

n−
∑
i

X2
i =

∑
i

(1−X2
i ) =

∑
i

(1−Xi)(1 +Xi)

=
∑
i

(
1 +Xi

2
+

1−Xi

2

)
︸ ︷︷ ︸

=1

(1−Xi)(1 +Xi)

=
∑
i

(1 +Xi)
2

2
(1−Xi) +

(1−Xi)
2

2
(1 +Xi).

Now note that 1 − Xi = (1 −
∑

j Xj) +
∑

j 6=iXj ∈ QM . So, since also
1 +Xi ∈ QM , we are done.
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Putinar discovered the following Positivstellensatz, using this Archimedean
property.

Theorem 4.17. [28][Putinar’s Positivstellensatz, 1993]. Assume that the
quadratic module M(g) as in (4.9) is Archimedean, then the following im-
plication holds:

p(x) > 0 for all x ∈ K ⇒ p ∈M(g). (4.11)

Proof. For a proof see Chapter 13 of [16].

One could wonder whether every compact setK corresponds to an Archimedean
quadratic module M(g). The answer is no. However, constructing such an
example is not trivial. The first explicit counterexample with this property
was given by Jacobi and Prestel [10].

Example 4.18 (Jacobi-Prestel example). Consider the semi-algebraic set

S = {x ∈ Rn : g1(x) ≥ 0, ..., gn(x) ≥ 0, gn+1(x) ≥ 0}, (4.12)

with g1 = X1 − 1
2
, ..., gn = Xn − 1

2
, gn+1 = 1−

∏n
i=1Xi.

Clearly S is closed and bounded and thus compact. Now we construct a
quadratic module H ∈ R[X] with the following properties:

(i) H contains g1, ..., gn+1.

(ii) k −
∑n

i=1 X
2
i /∈ H for all k.

If we can construct such a quadratic module, which clearly is non-Archimedean
because of property (ii), we see that the quadratic module M(g) correspon-
ding to S also is non-Archimedean. This can be understood by consider-
ing (1) of Proposition 4.14 as definition for the Archimedean property for a
quadratic module.
We are going to construct a quadratic module satisfying the above properties.
For this purpose we consider the group Γ := Zn ordered lexicographically.
Now for f ∈ R[X], f 6= 0, we define the ’degree’ δ(f) of f as the largest
k = (k1, ..., kn) with respect to the lexicographic order, of which the corre-
sponding monomial Xk = Xk1

1 · · ·Xkn
n has a non-zero coefficient in f . Fur-

thermore, we define the ’leading coefficient’ a(f) of f as the coefficient of the
monomial Xδ(f) in f . Now we pick for H the set that contains {0} and all
f ∈ R[X] such that it satisfies one of the following two properties:
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1) δ(f) 6≡ (1, ..., 1) mod 2Γ and a(f) > 0.

2) δ(f) ≡ (1, ..., 1) mod 2Γ and a(f) < 0.

Clearly g1, ..., gn satisfy 1) since their ’leading coefficient’ is 1 and gn+1 sat-
isfies 2), since its leading coefficient is −1. Furthermore, note that (ii) is
satisfied since it can be seen that there does not exist an integer k such that
k−

∑n
i=1X

2
i ∈ H, since a(k−

∑n
i=1X

2
i ) < 0 and δ(k−

∑n
i=1X

2
i ) 6≡ (1, ..., 1)

mod 2Γ.

Remark 4.19. Here follow two more notes on Archimedean quadratic mod-
ules and their corresponding compact sets.

(1) The set K to which an Archimedean quadratic module M(g) corresponds
is compact. As M(g) is Archimedean, there exists namely a positive
integer N such that N−

∑n
i=1X

2
i ∈M(g). So this means that ||x||2 ≤ N

for all x ∈ K, hence K is compact.

(2) If K is compact, it is contained in a ball of radius N for some number
N ∈ N. Hence, we may add the (redundant) inequality N −

∑
iXi ≥ 0

to the description of K. Now the corresponding quadratic module is
Archimedean. So we see that the Archimedean property does not only
depend on K, but also on the inequality description of K.

Here we prove Wörmann’s result as stated in Theorem 4.11.

Proof. First note that every preordering is a quadratic module. Therefore
Definition 4.15 also applies for preorderings.
(⇒). This direction has already been proved in (1) of remark 4.19. For the
other direction (⇐), we show that condition (2) of definition 4.15 holds. So
we assume that K is compact. Then there exists an integer k ≥ 1, such that
k −

∑n
i=1 X

2
i > 0 on K. Now we can apply (1) of Theorem 4.8 to deduce

that there exist p, q ∈ T(g) such that

(k −
n∑
i=1

X2
i )p = 1 + q. (4.13)

Multiplication by k −
∑n

i=1 X
2
i yields that

(1 + q)(k −
n∑
i=1

X2
i ) = p(k −

n∑
i=1

X2
i )2 ∈ T(g).
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We define a new preordering T ′ in R[X] corresponding to

K ′ := {x ∈ Rn : g1(x) ≥ 0, ..., gm(x) ≥ 0, k −
n∑
i=1

x2
i ≥ 0}.

Now since k −
∑n

i=1 X
2
i ∈ T ′, we know by (2) of definition 4.15 that T ′ is

Archimedean. So by (3) of Definition 4.15, we know that for each a ∈ R[X]
there exists an integer m ≥ 1 such that m + a ∈ T ′. So we know that for
some t1, t2 ∈ T(g) we can write m+ a = t1 + (k−

∑n
i=1 X

2
i )t2. Now by using

this, we can obtain that

(m+ a)(1 + q) = t1(1 + q) + p(k −
n∑
i=1

X2
i )2t2 ∈ T(g). (4.14)

If we substitute −q for a in the last equation, we can deduce that

(m− q)(1 + q) ∈ T(g).

So moreover (m
2
−q)2 +(m−q)(1+q) ∈ T(g). We multiply the latter element

of T(g) by k and add (1 + q)(k−
∑n

i=1X
2
i ) and q

∑n
i=1X

2
i , both elements of

T(g), to obtain:

k
(m

2
+ 1
)2

−
n∑
i=1

X2
i ∈ T(g). (4.15)

After again using (2) of Definition 4.15, we are done.

50



Chapter 5

Semi-definite approximation
hierarchies

In this chapter we consider semi-definite programming relaxations of Puti-
nar’s Positivstellensatz, constructed for the optimization problem described
in (5.3) below. By setting different bounds on the sos polynomials in a
quadratic module, a hierarchy of semi-definite relaxations is obtained. We
discuss under which conditions this hierarchy converges in finitely many
steps. Moreover, we consider an alternative semi-definite approximation hi-
erarchy when considering unconstrained optimization.

In this chapter we turn to the following optimization problem:

fmin = inf{f(x) : x ∈ K}, (5.1)

where
K = {x ∈ Rn : g1(x) ≥ 0, ..., gm(x) ≥ 0} (5.2)

and f, g1(x), ..., gm(x) ∈ R[X]. Throughout we have set g0 = 1. Recall that
by P (K) we denote the set of nonnegative polynomials on K. Often, the
problem of (5.1) is reformulated as

fmin = sup
λ∈R
{λ : f − λ ∈ P (K)}. (5.3)

Recall that Putinar’s Positivstellensatz claimed that if a polynomial f is
positive on the set K and M(g) is Archimedean, then f ∈M(g). To use this
we define the following parameter:

fput = sup
λ∈R
{λ : f − λ ∈M(g)}. (5.4)
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Note that fput ≤ fmin and that equality holds if M(g) is Archimedean. If we
want to use semi-definite programming to check whether a polynomial is an
element of M(g), we need to set bounds on the degree of the sums of squares
in M(g). For this purpose we define the truncated quadratic module:

M2t(g) =

{
m∑
j=0

gjsj : sj ∈ Σ, deg(sjgj) ≤ 2t (j = 0, ...,m)

}
. (5.5)

The corresponding obtained parameter is given by

f
(t)
put = sup{λ : f − λ ∈M2t(g)}. (5.6)

Clearly f
(t)
put ≤ fput ≤ fmin for all t ∈ N. By increasing the bounds on the

sos polynomials in M(g), a hierarchy f
(t)
put ≤ f

(t+1)
put ≤ f

(t+2)
put ≤ · · · ≤ fmin

is constructed. In general, the hierarchy of semi-definite relaxations of fmin,
introduced by Lasserre [15], is referred to as Lasserre’s hierarchy. It should be
mentioned that these semi-definite relaxations can also be constructed for the
dual formulation of (5.4), in which moment sequences are involved. However,
in this thesis we will only consider sos relaxations. Note the following result
showing asymptotic convergence of the sos bounds to the infimum of f over
K.

Lemma 5.1. Assume that M(g) is Archimedean. Then f
(t)
put → fmin as

t→∞.

Proof. Let ε > 0. Then f − fmin + ε > 0 on K. Since M(g) is Archimedean,
we know by Putinar’s Positivstellensatz that f − fmin + ε ∈M(g). Moreover
there exists a t ∈ N, such that f − fmin + ε ∈ M2t(g). Combining this and

the definition of f
(t)
put, we know that fmin − ε ≤ f

(t)
put. So if t→∞, this holds

for all ε > 0. Therefore f
(t)
put → pmin as t→∞.

5.1 Finite convergence

As we have seen in the latter lemma, we have asymptotic convergence for the
hierarchy of sos relaxations constructed for fmin. It turns out there is finite
convergence under certain conditions.
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5.1.1 Finite real variety

In this subsection we consider the following optimization problem:

fmin = sup
λ∈R
{λ : f − λ ∈ P (K)}, (5.7)

where K = {x ∈ Rn : g1(x) ≥ 0, ..., gm1 ≥ 0, h1(x) = ... = hm2(x) = 0}.
Here gj, hi, f ∈ R[X] for j ∈ {1, ...,m1} and i ∈ {1, ...,m2}. Before we
formulate Lasserre’s hierarchy for this optimization problem, we introduce
some notation.
Let h = (h1, ..., hm2). Then h generates the ideal h1R[X] + ... + hm2R[X].
Furthermore, for optimization purposes, we define the truncated ideal of h as

〈h〉2k := {
m2∑
i=1

φihi : φi ∈ R[X], deg(φihi) ≤ 2k}. (5.8)

This is called the 2k-th truncated ideal generated by h. Further we define
the real variety of h as

VR(h) = {x ∈ Rn : h1(x) = 0, ..., hm2(x) = 0}. (5.9)

Lasserre’s hierarchy constructed for the problem in (5.7) is the sequence
(fk)k≥1 of the following sos relaxations

fk = max{γ : f − γ = φ+ σ, φ ∈ 〈h〉2k, σ ∈M2k(g)}. (5.10)

Here k is called the relaxation order. Note that indeed φ + σ ≥ 0 on K for
φ ∈ 〈h〉2k and σ ∈M2k(g). Next, we will show that if VR(h) is finite, then fk
converges to fmin in finitely many steps.

Theorem 5.2. [24] Let f, g1, ..., gm1 , h1, ..., hm2 ∈ R[X]. Let fk be the opti-
mal value of the sdp given in (5.10) and fmin be the optimal value of (5.7).
Then if the real variety VR(h) is finite, then fk = fmin for a large enough k.

For the proof we use the following lemma.

Lemma 5.3. Let p, q ∈ R[X]. Further let I ⊆ R[X] be an ideal such that
p2l + q ∈ I for an integer l > 0. Then

sc(t) := 1 + t+ ct2l (5.11)

is an sos for all c ≥ c0 := 1
2l

(1 − 1
2l

)2l−1. Furthermore for all ε > 0 we have
that

p+ ε− (εsc

(p
ε

)
+ cε1−2lq) = −cε1−2l(p2l + q) ∈ I. (5.12)
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Proof. We will prove that sc described in Lemma 5.3 is nonnegative over R
when c satisfies the condition described in Lemma 5.3. Then, since sc is a
univariate polynomial, we can use Theorem 2.5 in combination with Lemma
2.3 to see that sc(t) is an sos. The last statement of the lemma follows by an
easy manipulation.
In order to show that sc is nonnegative, we use the fact that the second
derivative of sc is positive to see that sc is convex. So since sc(t) contains
a positive point (for t = 0 for example), we only need to show that the
minimum is nonnegative. Note that s′c(t) = 1 + 2lct2l−1 and that the unique

real critical point is κ := (−1
2lc

)
1

2l−1 . So to find the minimum of sc, we substitute

κ in sc and obtain sc(κ) = 1 + (−1
2lc

1
2l−1 (1 − 1

2l
)). From this we can deduce

that sc(κ) ≥ 0 if and only if c ≥ c0. As explained this implies that sc is an
sos. Further note that:

p+ ε− (εsc(p/ε) + cε1−2lq)

= p+ ε− (ε(1 +
p

ε
+ c
(p
ε

)2l

) + cε1−2lq)

= p+ ε− ε− p− cε1−2lp2l − cε1−2lq = −cε1−2l(p2l + q).

Since p2l + q ∈ I and −cε1−2l ∈ R[X], we are done.

Proof. Here we prove Theorem 5.2. We will make use of the Real Nullstel-
lensatz (Theorem 4.3) and Lemma 5.3.
Since we have assumed that VR(h) is finite, we can write VR(h) = {u1, ..., uN},
for u1, ..., uN ∈ Rn. Next, we will consider some interpolation polynomials
φi ∈ R[X] for i = 1, ..., N , which attain the following values on the real
variety of h:

φi(uj) =

{
0 if i 6= j,
1 if i = j.

(5.13)

Further we define ai ∈ R[X] as

ai =

{
(f(ui)− fmin)φ2

i if f(ui)− fmin ≥ 0,
(f(ui)−fmin)

gji (ui)
gjiφ

2
i if f(ui)− fmin < 0.

(5.14)

Note that if f(ui)− fmin < 0, then there exists an index ji ∈ {1, ...,m1} such
that gji(ui) is negative, since fmin is the smallest value that f attains on K.
So ai is nonnegative on K.
Now, for N1 large enough we see that ai ∈ MN1(g), since ai is either an
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element of Σ (for the case f(ui)− fmin ≥ 0) or ai is of the form Σgji (for the
case f(ui)− fmin < 0).
Hence we have that σ1 := a1 + ...+ aN ∈MN1(g). Next, we define

f̂ := f − fmin − σ1. (5.15)

Now note that the Real Nullsellensatz (Theorem 4.3) is applicable to f̂ since
f̂ = 0 on VR(h) (NB. σ1(ui) = f(ui) − fmin), i.e. f̂ vanishes on VR(h). The
Real Nullstellensatz implies that there exists an integer l > 0 and an sos
polynomial σ2 ∈ R[X] such that f̂ 2l + σ2 ∈ 〈h〉.
Let c > 0 be a constant that satisfies the condition in Lemma 5.3, when
applied to p = f̂ , q = σ2 and I = 〈h〉. Further for a constant ε > 0 we define

σε := εsc(f̂/ε) + cε1−2lσ2 + σ1 (5.16)

Note that, by Lemma 5.3, we know that sc(f̂/ε) is an sos. Therefore we
see that σε ∈ MN1(g) for all ε > 0. Subsequently we define the following
polynomial using Lemma 5.3:

φε := f̂ + ε+ σ1 − σε = −cε1−2l(f̂ 2l + σ2) (5.17)

Note that φε ∈ 〈h〉 because of Lemma 5.3. This means that there exists an
N2 > 0 such that φε ∈ 〈h〉2N2 for all ε > 0. Now note that the following
holds:

f − (fmin − ε) = φε + σε. (5.18)

Finally, we define N3 := max{N1, N2}. So we see that σε ∈ M2k(g) and
φε ∈ 〈h〉2k for all k ≥ N3 and for all ε > 0. To conclude, note that

fk = max
φ,σ
{f − φ− σ} ≥ max{f − φε − σε} ≥ fmin − ε

for all ε > 0. So fk ≥ fmin for k ≥ N3, but fk ≤ fmin for all k and hence
fk = fmin for all k ≥ N3.

5.1.2 Generic finite convergence

In [25], Nie states that the hierarchy of relaxations as described in (5.10) has
finite convergence on an Archimedean set K if three optimality conditions
on g = (g1, ..., gm1) and h = (h1, ..., hm2) from nonlinear programming the-
ory are satisfied for every global minimizer. These conditions are called the
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constrained qualification, strict complementarity and second order sufficiency
condition. Nie moreover proves that these optimality conditions hold on a
Zariski-open set. This means that Lasserre’s hierarchy has finite convergence
generically. Below we introduce the above mentioned conditions.
We are still considering the minimization problem from (5.7). Let u be a
local minimizer of (5.7). We call the set of active inequality constraints
J(u) = {1 ≤ j ≤ m2 : gj(u) = 0} and write J(u) = {j1, ..., jr}. We say that
the constraint qualification condition holds at u if the following condition is
satisfied:
if the gradients ∇h1(u), ...,∇hm1(u),∇gj1(u), ...,∇gjr(u) are linearly inde-
pendent, then there exist Lagrange multipliers λ1, .., λm1 , µ1, ..., µm2 such that
the following equalities and inequalities are satisfied:

∇f(u) =

m1∑
i=1

λi∇hi(u) +

m2∑
j=1

µj∇gj(u)

µ1g1(u) = · · · = µm2gm2(u) = 0

µ1 ≥ 0, ..., µm2 ≥ 0.

If we furthermore have that

µ1 + g1(u) > 0, ..., µm2 + g2 > 0, (5.19)

then the strict complementarity condition holds at u.
Corresponding to the Lagrange multipliers we define the Lagrange function:

L(x) = f(x)−
m1∑
i=1

λihi(x)−
∑
j∈J(u)

µjgj(x). (5.20)

Further by G(x), we denote the Jacobian of the active constraining polyno-
mials:

G(x) = [∇h1(x) · · · ∇hm1(x) ∇gm1(x) · · · ∇gjr(x)] . (5.21)

By G(u)⊥ we denote the null space of G(u). Now we say that the second
order sufficiency condition holds at u if

vT∇2
xL(u)v > 0 for all 0 6= v ∈ G(u)⊥. (5.22)
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5.2 Unconstrained minimization

Another development focuses on unconstrained minimization. Recall that
this problem is formulated as follows: find

pmin := min
x ∈Rn

p(x). (5.23)

Firstly, we assume that deg(p) = 2d, since pmin = −∞ if deg(f) is odd.

Further recall that p
(t)
put is given as in equation (5.6) by

p
(t)
put = sup{λ : p− λ ∈M2t(g)}. (5.24)

Since there are no constraints, we get that

p
(t)
put = p

(d)
put ≤ pmin for all t ≥ d.

Moreover pmin = p
(t)
put if and only if p− pmin is an sos. So it seems a natural

idea to transform the unconstrained problem into a constrained problem.
Nie, Demmel and Sturmfels proposed in [26] to make use of the gradient
ideal defined as follows:

Igradp =

(
δp

δx1

· · · δp

δxn

)
. (5.25)

Recall that if x is global minimizer of p over Rn, then all derivatives of p
vanish at x. Using this, the latter authors proposed to turn the problem of
(5.23) into the following problem: find

pmin = min
x∈VR(Igradp )

p(x). (5.26)

Note that we need to assume that p has a minimum. Consider for example
p = X2

1 + (1 − X1X2)2. Then pmin = 0, but minx∈VR(Igradp ) p(x) = 1 since

VR(Igradp ) = {0}.
So in the obtained constrained case we would like to look at a hierarchy
of approximations. However, VR(Igradp ) does not satisfy the Archimedean
property so we can not apply Lemma 5.1. Yet, asymptotic convergence
holds and sometimes even finite convergence holds. This is proven in [26]
and based on the following theorem.
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Theorem 5.4. [26] If p(x) > 0 for all x ∈ VR(Igradp ), then p is an sos modulo
its gradient ideal Igradp .

So in an analogous manner as Lasserre’s hierarchy was formulated for a
minimization problem using Putinar’s Positivstellensatz, a hierarchy can be
formulated for approximation of pmin using Theorem 5.4 by setting bounds
on the sos. In [3] it is shown that, if the minimum of a polynomial is attained,
there is a hierarchy of relaxation problems which involve the gradient ideal
for which there always is finite convergence.
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Chapter 6

Sums of squares representations
for optimization over the unit
hypercube

A basic idea in order to find the errors that are made when considering
Putinar type semi-definite relaxations, is to relate the truncated quadratic
module Mn(g) and the truncated preordering Tn(g) (defined in (6.2) below),
where g = (g1, ..., gn) is the set of polynomials describing the unit hypercube.
Therefore, in this chapter we will consider the polynomial X1 · · ·Xn ∈ Tn(g)
and we try to find the smallest constant Cn such that X1 · · ·Xn+Cn ∈Mn(g).
This chapter is based on the final remarks of [18].

Let g = (g1, ..., gm) for gi ∈ R[X]. Further g0 = 1. Recall that the truncated
quadratic module is given by:

M2t(g) =

{
m∑
j=0

gjsj : sj ∈ Σ, deg(sjgj) ≤ 2t

}
. (6.1)

Similarly, the truncated preordering is given by

T2t(g) =

 ∑
J⊆{1,...,m}

sJgJ : deg(sJgJ) ≤ 2t, s0, sJ ∈ Σ

 , (6.2)

where gJ =
∏

j∈J gj.
In this chapter we consider optimization over the n-dimensional unit cube,
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given by
UQ = {x ∈ Rn : x1 − x2

1 ≥ 0, ..., xn − x2
n ≥ 0}. (6.3)

Note that as explained in Remark 0.2, optimization over the unit hypercube
in general is a hard problem.
Let M2t(g) and T2t(g) be the truncated quadratic module and truncated
preordering corresponding to the unit cube, respectively, where we have set
g = (X1−X2

1 , ..., Xn−X2
n). Clearly we have that M2t(g) ⊆ T2t(g). However

the reverse inclusion does not hold, since the monomial
∏k

i=1 Xi does not
belong to M(g) for 1 < k ≤ n. We prove this in the following lemma:

Lemma 6.1.
∏k

i=1Xi /∈M(g) for 1 < k ≤ n.

Proof. Suppose there exist σ0, σ1, ..., σn ∈ Σ such that

X1 · · ·Xn = σ0 +
n∑
i=1

σi(Xi −X2
i ). (6.4)

Let low(f) denote the smallest degree of all non-zero monomials of a polyno-
mial f . Clearly σ0 contains no constant term. Therefore low(σ0) ≥ 2. This
implies that low(σi) ≥ 1 and thus that low(σi) ≥ 2 for all i ∈ {1, ..., n}.
Subsequently, this implies that low(σ0) ≥ 3. Since σ0 is an sos, this means
that low(σ0) ≥ 4, which implies that low(σi) ≥ 3, which implies low(σi) ≥ 4
and so on until we have that low(σ0) = n or low(σi) = n − 2. Suppose
low(σ0) = n. This would imply that σi = 0 for i ∈ {1, ..., n}, which
would mean that σ0 = X1 · · ·Xn which gives a contradiction. Suppose
low(σi) = n − 2. As above explained this means that low(σ0) = n, so
we are done.

In this chapter we are interested in finding the smallest real constant Cn for
n even such that the following holds:

X1 · · ·Xn + Cn ∈Mn(g). (6.5)

Already in [18] it is proved that (6.5) holds for Cn ≤ 1. The argument is that∏n
i=1 xi + 1 +

∑n
i=1(x2

i − xi)xn−2
i is an sos, as we have explained in example

2.18. So for this case si = xn−2
i for i ∈ {1, ..., n} and σ0 = 0. In [18] it is

moreover conjectured that Cn = 1
n(n+2)

. In Lemma 6.3 below, we give an
analytic proof of this conjecture for the case n = 2. First note that looking
for the smallest real constant Cn such that equation (6.5) is satisfied, is the
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same as looking for −f (n
2

)
put from equation (5.6) when setting f = X1 · · ·Xn

and setting Mn(g) = Mn(g):

f
(n
2

)
put = sup{λ : f−λ ∈Mn(g)} = − inf{−λ : X1 · · ·Xn+λ ∈Mn(g)} = −Cn.

Since the degrees in Mn(g) are bounded we can compute Cn with a semi-
definite program in which n+ 1 PSD matrices corresponding to σ0, ..., σn are
involved. The following result shows that if there is a solution for (6.5) then
there also is a symmetric solution. This means that instead of n+ 1, we only
have to find two PSD matrices.

Lemma 6.2. Let Sn denote the symmetrical group that acts on the poly-
nomial ring in n variables by permuting the variables. Let τ1j ∈ Sn such
that τ1j(f(X1, ..., Xn)) = f(Xj, X2, ..., Xj−1, X1, Xj+1, ..., Xn) for a polyno-
mial f ∈ R[X]. The claim is the following: if there exist σ0, ..., σn such
that

X1 · · ·Xn + Cn = σ0 +
n∑
i=1

σi(Xi −X2
i ) (6.6)

holds for some real constant Cn > 0, then there exist another solution given
by σ′0, ..., σ

′
n such that τ1j(σ

′
1) = σ′j and σ′0 is invariant under Sn

Proof. Note that

p = X1 · · ·Xn + Cn = σ0 +
n∑
i=1

σi(Xi −X2
i ) (6.7)

is invariant under Sn. For π ∈ Sn and f ∈ R[X] we now have:

p = πp = πσ0 +
n∑
i=1

πσi(Xπ(i) −X2
π(i)). (6.8)

If we sum over all π ∈ Sn we obtain:

n!p =
∑
π

πσ0 +
∑
π

n∑
i=1

πσi(Xπ(i) −X2
π(i)). (6.9)

So let us set σ′0 =
∑

π πσ0. Clearly σ′0 is invariant under Sn. Further we
write ∑

π

n∑
i=1

πσi(Xπ(i) −X2
π(i)) =

n∑
i=1

∑
π

(Xπ(i) −X2
π(i))πσi

=
∑
i

φi(Xi −X2
i ),
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where we have set

φj =
∑

i,π:π(i)=j

πσi for j = 1, ..., n. (6.10)

Now the claim is that φj = τ1jφ1 for j ∈ {1, ..., n}. To see this note the
following:

τ1jφ1 =
∑

i,π:π(i)=1

τ1jπσi

=
∑

i,π′:π′(i)=j

π′σi

= φj,

where we have set π′ = τ1jπ. Here we have used that when π(i) = 1 we have
that π′(i) = τ1j(1) = j.

By this result we are able to prove analytically that C2 = 1
8
.

Lemma 6.3. C2 = 1
8
.

Proof. We want to solve C2 out of the following equation:

X1X2 + C2 = σ0 + σ1(X1 −X2
1 ) + σ2(X2 −X2

2 ),

where σ0, σ1, σ2 ∈ Σ. We use Lemma 2.10 to rewrite the equation as follows:

X1X2 + C2 =

 1
X1

X2

T a b c
b d e
c e f

 1
X1

X2

+ σ1(X1 −X2
1 ) + σ2(X2 −X2

2 ),

where

a b c
b d e
c e f

 � 0 and a, b, c, d, e, f ∈ R. Further deg(σ1), deg(σ2) = 0,

so σ1, σ2 are constants. Since we know from Lemma 6.2 that there is a
solution such that σ1, σ2 are equal under symmetry, we we can pick σ1 = σ2.
We equate the coefficients of the monomials in the equation above to get that
a = C2, 2b = −σ1, 2c = −σ1, d = σ1, 2e = 1 and f = σ1. Now we can obtain:

X1X2+Cn =

 1
X1

X2

T  C2 −1
2
σ1 −1

2
σ1

−1
2
σ1 σ1

1
2

−1
2
σ1

1
2

σ1

 1
X1

X2

+σ1(X1−X2
1 )+σ1(X2−X2

2 ).

62



Since the principal minors of C2 −1
2
σ1 −1

2
σ1

−1
2
σ1 σ1

1
2

−1
2
σ1

1
2

σ1


are nonnegative, we get that σ1 ≥ 1

2
and that C2 ≥ 1

4
σ1. So we see that

C2 ≥ 1
8
. Now the following identity concludes the proof:

X1X2 +
1

8
=

1

2

(
X1 +X2 −

1

2

)2

+
1

2
(X1 −X2

1 ) +
1

2
(X2 −X2

2 ).

As already stated in [18], we can compute that C4 ≤ 1
24

and that C6 ≤ 1
48

using the programs MATLAB, in which the modelling language of YALMIP
is integrated. In the Appendix we give two programs that compute C4. In
one of them we use Lemma 6.2. The program that uses this result is slightly
faster than the program that did not do this, as expected.
Further, we also have tried to compute C8. However, the sizes of the matrices
corresponding to the sos polynomials then become 165× 165, which is equal
to precisely

(
8+3

3

)
, as is explained in Remark 2.1. These sizes were to big for

a standard computer to deal with. Clearly, also the significance of Lemma
6.2 rapidly reduces as the number of variables grows.
Concluding, we can say that the conjecture that Cn = 1

n(n+2)
is not proven

yet. However, the result we presented in Lemma 6.2 on the symmetry of the
solutions of (6.5) is a small step in the right direction for an analytical proof
of the conjecture.
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Appendix

Computation of an upper bound for C4

With the following MATLAB programs in which the YALMIP modelling
language is integrated, we compute an upper bound for C4. Recall that this
is the smallest value C4 such that

X1 · · ·X4 + C4 ∈M4(g) (6.11)

holds, where g = (g1, ..., g4) and gi = Xi −X2
i . The programs below look for

the smallest value (in the program called ’lower’) C4, such that it can find sos
decompositions for σ0, σ1, ..., σ4. For the search of these sos decompositions
YALMIP is used. Both programs below obtained C4 ≤ 0.0417 ≈ 1

24
. In the

following program we have not used the idea of Lemma 6.2.

% Here we define the decision variables. By ’lower’ we denote C_4.

sdpvar x1 x2 x3 x4 lower;

p4=x1*x2*x3*x4;

g=[x1-x1^2;x2-x2^2; x3-x3^2; x4-x4^2];

% Here we define 4 polynomials in the variables

% x1,...,x4 with degree at most 2.

[s1, c1]=polynomial([x1 x2 x3 x4],2);
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[s2, c2]=polynomial([x1 x2 x3 x4],2);

[s3, c3]=polynomial([x1 x2 x3 x4],2);

[s4, c4]=polynomial([x1 x2 x3 x4],2);

%Here we define the constraints for the function below.

F=[sos(p4+ lower - [s1 s2 s3 s4]*g), sos(s1), sos(s2), sos(s3), sos(s4)];

%We use the function solvesos that has the following form:

%[sol,m,B] = solvesos(Constraints,Objective,options,decisionvariables)

solvesos(F, lower,[],[c1;c2;c3;c4;lower]);

Below we show the program that uses Lemma 6.2 to compute an upper bound
for C4.

%First we define decision variables.

sdpvar x1 x2 x3 x4 lower;

p4=x1*x2*x3*x4;

g=[x1-x1^2;x2-x2^2; x3-x3^2; x4-x4^2];

% The commands below generate a vector of

% monomials in variables x1,...,x4 up to degree 1.

% The number 1, indicates the maximum degree these monomials.

v1=monolist([x1 x2 x3 x4],1);

v2=monolist([x2 x1 x3 x4],1);

v3=monolist([x3 x2 x1 x4],1);

v4=monolist([x4 x2 x3 x1],1);

% Here we generate a matrix of variables.

H=sdpvar(length(v1));
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% Here use the symmetrical properties of

% the sums of squares s1,...,s4.

s1=v1’*H*v1;

s2=v2’*H*v2;

s3=v3’*H*v3;

s4=v4’*H*v4;

% We have the following constraints:

F=[sos(p4+ lower - [s1 s2 s3 s4]*g), sos(s1)];

% The function below computes ’lower’ and computes

% the PSD matrix Q such that s_i=v_i*Q*v_i.

[sol,v,Q]=solvesos(F, lower,[],H);

% In the remaining lines of the program we

% check whether we have found the correct matrix Q.

SS1=v1’*Q{2}*v1;

SS2=v2’*Q{2}*v2;

SS3=v3’*Q{2}*v3;

SS4=v4’*Q{2}*v4;

% The command clean(x,1e-6) checks whether x is in a neighbourhood

% of 1e-6 of 0. So in fact we just substitute our results in the

% equation and check whether it holds.

clean(p4+0.0417-[SS1 SS2 SS3 SS4]*g-v{1}’*Q{1}*v{1},1e-6)
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