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We call a diagram of a link well-connected if it is connected, has no 2-edge cuts, 
and the only 4-edge cuts are those made by a crossing. We prove Tait's flyping 
conjecture for well-connected diagrams, i.e., any two well-connected alternating 
diagrams represent equivalent (=ambient itotopic) links, if and only if these 
diagrams are the same up to trivial operations. 1993 Academic Press, Inc. 

I. INTRODUCTION 

A knot is a subset of IR 3 homeomorphic to the unit circle, A link is a 
disjoint union of a finite number of knots ( cf. [ 1] ). 

We assume knots and links to be tame. Moreover, for the purpose of 
this paper we may assume that for each link K considered, the projection 
n[K] of K to IR 2 is a 4-regular planar graph, with a finite set of vertices, 
edges, and faces. Here n denotes the projection from IR 3 onto IR 2 with 
n(x 1 , x 2 , x 3 ) := (x 1 , x 2 ). Throughout, by projecting we mean projecting 
by rr.. 

We can associate with a link K the diagram of K that arises by projecting 
K to IR 2, indicating at each crossing which of the two curve segments goes 
over the other as in Fig. 1. 

In this paper, by the diagram of a link we mean the diagram obtained 
under projecting by rr.. The diagram is called alternating if, when following 
each component of the link in its diagram, we go alternatingly over and 
under, like in Fig. 2. 

Two links K and K' are equivalent if there exists an isotopy of IR 3 

bringing K to K'. (An isotopy of a topological space X is a continuous 
function <!>: [O, 1] x X--+ X such that ct>(O, u) = u for each u EX, while for 
each fixed t E [O, 1] the function et>( t, . ) is a homeomorphism of X. It brings 

Y to Y' if ct>(l, Y) = Y'.) 
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Two link diagrams are called equivalent if one arises from the other by 
a finite sequence of the following operations: 

(i) reflecting the diagram in IR 2, e.g., with respect to the x 1axis, 
and interchanging over and under; 

(ii) rerouting one of the edges of the diagram through the 
unbounded face, as in Fig. 3. 

( 1 ) 

(Operation (i) corresponds to rotating the link (in IR 3 ), around the 
x 1-axis-this corresponds to an isotopy. The box in Fig. 3 denotes the rest 
of the diagram.) 

Remark 1. It has been shown by Reidemeister [7] that if two diagrams 
represent equivalent links, then these diagrams can be obtained from 
each other by a finite sequence of the operations given in Fig. 4. These 
operations are called the Reidemeister moves. 

Clearly, if two links have equivalent diagrams, they are equivalent. The 
converse need not hold in general. However, as we show in this paper, if 
the diagrams are well-connected and alternating the converse does hold. 
We call the diagram n[K] of a link K well-connected if (as a graph) n[K] 
is connected, has no 2-edge cut sets, and the only 4-edge cut sets are those 
determined by one vertex of n[K] (that is, the four edges incident with a 
vertex ( = crossing) of n [ K] ). 

THEOREM. Let K and K' be links v.·ith well-connected alternating 
diagrams. ff K and K' are equivalent, then their diagrams are equivalent. 

This is a special case of the Tait flying conjecture [8], which does not 
require well-connectedness but the weaker reducedness instead (a diagram 
is reduced if the graph is connected and has no loops and no cutpoints ), 
while the operations ( l) should be extended by flyping-cf. Fig. 5 (it is also 
a flype if over and under in the two crossings given are interchanged). 1 

Note that flypes are not possible for well-connected diagrams. (Tait: 
"The deformation process is, in fact, simply one of flyping, an excellent 
word, very inadequately represented by the nearest equivalent English 
phrase turning outside in." [8]; "When we flype a glove (as in taking it off 
when very wet, or as we skin a hare), we perform an operation which 
changes its character from a right-hand glove to a left" [9].) 

Remark 2. By an idea of Tait, the diagram n[K] of any link K gives 
a planar graph HK as follows. Color the faces of n [K] black and white 

1 Meantime, W. W. Menasco and M. B. Thistlethwaite (The Tait Oyping conjecture, 
Bull. Amer. Math. Soc. 25 (1991), 403-412) have announced a proof of the full Tait Oyping 
conjecture. 
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such that adjacent faces have different colors, and such that the unbounded 
face is colored white. Put a vertex in each black face, and for each crossing, 
make an edge connecting the vertices in the two (possibly identical) black 
faces incident with the crossing (in such a way that the edge crosses the 
crossing). 

Now a link K is well-connected if and only if the graph HK is 3-vertex­
connected (i.e., has no vertex cut of less than three vertices and has no 
parallel edges (except if it has only two vertices connected by at most three 
parallel edges)). 

2. PROOF OF THE THEOREM 

We will associate with any link Ka compact bordered surface EK in IR 3, 

with bd(E K) = K. (bd denotes boundary.) A pictorial impression of EK is 
given in Fig. 6. Here any two black faces are connected at a crossing by a 
twisted band as in the Mobius strip (Fig. 7) (or the twist the other way 
around if over and under are interchanged). 

More precisely, EK is defined as follows. For any link K, let V K denote 
the set of vertices of n[K], and let 

(2) 

For each vertex v of the graph n[K], let p!, and p;, be the two points in 
Kn n - 1(v), where p; is above pf,. (Here and below, above and under refer 
to larger and smaller x 3 coordinate.) 

Moreover, let e,. be the open line segment in n 1(v) connecting pI, and 
p;,. Define 

T:=Ku U e,,. (3) 
VE VK 

FIGURE 6 
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FIGURE 7 

So T forms a 3-regular graph embedded in IR 3, with 2v(K) vertices and 
3v(K) edges. 

Let K be a link with alternating diagram n[K]. Call a face F of n[K] 
even if at each vertex v incident with F one has a crossing as in Fig. 8. 
(So if Fis bounded then when following the boundary of Fin clockwise 
orientation, we follow the edges from up to down.) The other faces are 
called odd. 

Note that of any two adjacent faces, one is even and the other is odd. So 
if the unbounded face is even, then the white faces are even, and the black 
faces are odd. If the unbounded face is odd, then the white faces are odd, 
and the black faces are even. 

Note moreover that any link diagram can be transformed into one in 
which the unbounded face is even, by (possibly) rerouting through the 
unbounded face (operation (1 )(ii)). So the condition that the unbounded 
face be even, is not a restriction. 

Let K be a link with connected alternating diagram, such that the 
unbounded face of n[K] is even. Let ;JJ denote the collection of odd faces. 
Consider an odd face F. The set n · 1[bd(F)]11 T is a simple closed curve, 
consisting of parts of Kand of the line segments e,,, for those vertices v of 
n[K] that are incident with F. So it is the boundary of some open disk D F 

such that n maps D F one-to-one onto F. Fix for each odd face F one such 
open disk D F· Then we define: 

J;K :=Tu U DF. (4) 
Fe.JI 

So I: K indeed is a compact bordered surface with boundary K. 
Our proof is based on the following two theorems, which might be 

interesting in their own right: 

FIGURE 8 
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THEOREM A. Let K and K' be links with well-connected alternating 
diagrams, such that the unbounded faces of n[K] and n[K'] are even. If K 
and K' are equivalent, then there is an isotopy of S 3 bringing ;; K to ;; K'• 

(S 3 is the 3-dimensional sphere, considered as one-point compactification 
of IR 3.) 

THEOREM B. Let K and K' be links with well-connected alternating 
diagrams, such that the unbounded faces of n[K] and n[K'] are even. If 
there is an isotopy of S 3 bringing ;; K to ;; K'• then the diagrams of Kand K' 
are equivalent. 

Theorems A and B clearly directly imply the theorem. Although 
Theorem A above holds in general, to avoid several technicalities, in this 
paper we prove Theorem A only under the condition that 

the unbounded face of n[K] is bounded by at least four 
edges of n [ K]. 

(5) 

This is enough to derive the theorem, since we may assume that either 
n[K] or n[K'] has at least one face that is bounded by at least four edges. 
(If all faces of n[K] and of n[K'] are bounded by at most three edges, 
then, by the well-connectedness of Kand K', n[K] and n[K'] have either 
at most three vertices or both are the octahedron, and the theorem is easy 
to check under these assumptions.) Then by applying operations (1) and 
possibly mirroring Kand K' in the x 1 - x 2 plane we can obtain condition 
(5). (Mirroring in the x 1 -x2 plane by itself is not an isotopy, but it 
maintains equivalence of Kand K'.) 

Remark 3. In fact a more general statement than Theorem A holds: 

Let K and K' be links with reduced alternating diagrams 
such that the unbounded faces of n[K] and n[K'] are even. 
If K and K' are equivalent, then there is an isotopy of S 3 

bringing ;; x to ;; R·, where K' is a link the diagram of which 
can be obtained from that of K' by a series of flypings. ( 6) 

Remark 4. The following can be proved by methods similar to those 
used in this paper to show Theorem B: 

Let K and K' be links with reduced alternating diagrams, 
such that the unbounded faces of n[K] and n[K'] are even. 
If there is an isotopy Of S 3 bringing J; K to J; K'• then the cycle 
spaces of H x and H x· are isomorphic. (7) 
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Here the cycle space of a graph is the collection of its cycles. A cycle is an 
edge-disjoint union of circuits. 

Statements ( 6) and (7) imply that if K and K' are equivalent links with 
reduced alternating diagrams such that the unbounded faces of n[K] and 
n[K'] are even, then the cycle spaces of HK and HK' are isomorphic. By 
a theorem of Whitney [14], (7) directly implies Theorem B. 

3. PRELIMINARIES ON LINKS AND SURFACES 

We give some preliminaries on links and surfaces (see [ 4, Sects. I-IV] in 
which the information on links given below can be found). 

Kauffman [3], Murasugi [5] and Thistlethwaite [10] (cf. Turaev [13]) 
showed that if K and K' are equivalent links with reduced alternating 
diagrams, then v(K) = v(K' ). In fact they showed that any reduced 
alternating diagram of a link K attains the minimum number of crossings 
among all diagrams of links equivalent to K. 

A second invariant is obtained as follows. Give each component of K 
some orientation. This way we obtain an oriented link. Then there are two 
types of crossings, positive and negative-see Fig. 9. The writhe w(K) of K 
is the number of positive crossings minus the number of negative crossings. 
This number is not invariant under equivalence of links. However, 
Murasugi [ 6] and Thistlethwaite [ 11] showed that if K and K' are 
equivalent links with reduced alternating diagrams, then w(K) = w(K'). 
Similarly, Murasugi [6] and Thistlethwaite [12] showed that the number 
b(K) of odd faces is an invariant for reduced alternating diagrams of 
equivalent links. 

Let K 1 and K 2 be two disjoint oriented links. Consider the diagram made 
by K 1 u K2 • Define 

lk(Ki. K2 ) := 1(( #positive K1 - K2 crossings) 

- ( # negative K 1 - K 2 crossings)). 
(8) 

(A K 1 - K2 crossing is a crossing of K1 with K2 • # means "number of." 
Here no condition is put on which of K 1 and K 2 is above the other at the 
crossing.) This number is invariant under isotopy of S 3 : if (K;, K~) 

x x 
positive negative 

FIGURE 9 
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is brought to (K1'K2 ) by some isotopy then lk(K;,K~)=lk(Kt,K2 ) 

(assuming that K; and K~ are oriented as induced through the isotopy by 
the orientations of K 1 and K 2 ). This invariance of lk( ·, ·)follows directly by 
considering the Reidemeister moves. 

Let K be an oriented link and let E be a disjoint union of a finite number 
of compact bordered surfaces embedded in IR 3 and containing K. We define 
a number r(K, 17) as follows. 

If each component of K is an orientation-preserving curve on E, we take 
for each component K of K a curve i( parallel on E to K. The union of these 
i( forms a link K. Then r(K, 17) := 2 lk(K, K), where we orient Kand R in 
the same direction. 

If at least one component of K is orientation-reversing, we consider a 
link J homotopic on 17 to the set of closed curves that follow the 
components of K twice. So each component of J is orientation-preserving. 
We define r{K, 17) := *r(J, 17). 

Clearly, if Kand K' are homotopic on 17, then r(K, 17) = r(K', 17). (This 
follows from the fact that there exists an isotopy fixing 17 bringing K to K'. 
Hence if each component of K is orientation-preserving, then there exists 
an isotopy fixing 17 bringing (K, K) to (K', K'), where Rand K' are the 
shifted Kand K', respectively. So lk(K, K) = lk(K', K'). Similarly for J if 
some component of K is orientation-reversing.) 

More generally, if some isotopy of S3 brings (K, 17) to (K', E'), then 
r(K, 17) = r(K', 17'). 

Direct calculation shows that for any oriented link K with alternating 
diagram for which the unbounded face of n[K] is even one has 

r(K, EK)= 2(v(K) + w(K)) = 4( # positive crossings of K). (9) 

Indeed, observe that K is orientation-preserving, since it is a boundary 
component of 17 K· Consider a positive crossing of K. Let K', K" and K', K" 

0 k' 

I< I 
i(' 

FtGURE JO 
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k' i<" 
FIGURE 11 

be the parts of K and K as in Fig. 10. Then K' and K' make a positive 
crossing, K' and K" make a positive crossing, K" and K' make a positive 
crossing, and K" and K" make a positive crossing. So a positive crossing 
contributes 4 to r(K, .I: K). 

Consider next a negative crossing of K (Fig. 11 ). Again K' and K' make 
a positive crossing and K" and K" make a positive crossing. On the other 
hand, K" and K' make a negative crossing and also K' and K" make a 
negative crossing. Hence a negative crossing contributes 0 to r(K, .I: x ). 

Finally, as is well-known, the Euler characteristic x(.I: K) of a surface .I: K 
is equal to: number of faces, minus number of edges, plus number of 
vertices of any graph embedded on the surface (with all faces being an open 
disk). So 

x(.I: K) = b(K)- v(K), ( 10) 

where b(K) denotes the number of odd faces of the diagram of K. (This 
follows from the facts that T has 2v(K) vertices and 3v(K) edges, and that 
I: K \ T consists of b( K) open disks.) 

4. THEOREM A 

In this section we consider: 

THEOREM A. Let K and K' be links with well-connected alternating 
diagrams such that the unbounded faces ~f n [ K] and of n [ K'] are even. If 
K and K' are equivalent, then there is an isotopy of S 3 bringing .I: K to .I: K'. 

We show Theorem A under the condition that the unbounded face of 
n[K] is bounded by at least four edges of n[K]. 
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Proof It suffices to show: 

LEMMA. Let K be a link with well-connected alternating diagram such 
that the unbounded face of n[K] is even. Let E be the disjoint union of 
compact bordered surfaces satisfying: 

(i) bd(l') = K, 

(ii) x(l') ~ b(K)- v(K), (11) 

(iii) _r(K, l') = 2(v(K) + w(K) ). 

Then there exists an isotopy of S3 bringing ..r to ..r K· 

("Disjoint union of compact bordered surfaces" implies that each 
component of l' has a nonempty border (being a nonempty disjoint union 
of closed curves). Observe that condition (11 )(iii) is independent of the 
orientations chosen for K (since r(K, l')- 2w(K) represents the total twist 
of annular neighbourhoods on l' of the components of K). The conclusion 
in the lemma implies that l' is connected and that equality holds in 
( 11 )(ii).) 

We prove the lemma under the condition that the unbounded face of 
n[K] is bounded by at least four edges. 

Remark 5. The lemma also holds if this last condition is not satisfied. 
In fact, the lemma can be extended to links with reduced, not necessarily 
well-connected diagrams. In that case the conclusion is that there exists an 
isotopy of S 3 bringing l' to l' ;;;_, where K is some link the diagram of which 
is obtained from that of K by a series of flypings. 

To derive Theorem A from the Lemma, let K and K' be equivalent links 
with well-connected alternating diagrams such that the unbounded faces of 
n[K] and n[K'] are even, and such that the unbounded face of n[K] is 
bounded by at least four edges. 

Let <I> be an isotopy of S 3 bringing K' to K. Let l/J(x) := <P(l, x) for all 
xeS3. So K=l/l[K']. 

Applying the lemma to l' :=l/J[l'K.] gives Theorem A (since 

r(K, i/l[l'K.])=r(i/l[K'], l/l[l'K.]) =r(K', ..rK.) 

= 2(v(K') + w(K')) = 2(v(K) + w(K)) (12) 

and 

X(i/t[l'K.]) = X(l'd = b(K')-v(K') = b(K)-v(K)). (13) 
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Proof of the Lemma. Let 

G := n:[K], 

V:= VK, (14) 

p := {p~ I VE V} u {Pt I VE V}. 

Throughout we identify an embedded graph with its image. We consider 
edges as open curves, and faces as open regions. 

In proving the lemma, we make the assumption that E is tame and in 
general position with respect to the link K and the projection function n:. 
In particular we assume that E has a simplicial decomposition into a finite 
number of vertices, edges, and faces, in such a way that each edge and each 
face projects one-to-one to IR 2• So the number 

(15) 

is finite for each x E IR 2• 

Moreover, there exists a planar graph H in IR 2, with a finite number of 
vertices, edges, and faces, such that w is constant on each edge and on each 
face of H. We may assume that w takes the value 0 in the unbounded face 
of H. (So E does not contain the point in S 3 \IR 3. This is no restriction as 
we can easily shift E slightly.) 

The simplicial decomposition of E implies that there exists a finite set W 
of points on K that do not have a neighbourhood in E that projects one-to­
one to IR 2. We may assume that the neighbourhood of any point in W is 

(I>) 

~~ (c) 

FIGURE 12 
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FIGURE 13 

like one in Fig. 12. (In this and following figures, the bold lines indicate 
parts of Kor of n[K]. The wriggled lines give the cuts through E bounding 
the neighbourhood.) 

As an illustration, one could represent a twisted band as in Fig. 7 as 
follows. Take a slip of paper as in Fig. 13 and fold it as in Fig. 14. The two 
sides of the slip form a crossing at x, and locally the surface is isotopic to 
the part in Fig. 7. The points wI and w2 are in W; the neighbourhood of 
wI is of type (a) in Fig. 12 and that of w2 is of type (c) in Fig. 12. Doing 
this for each crossing we obtain a surface isotopic to EK· 

We may assume that P n W = 0. Moreover, we may assume that the 
projection of any vertex of the simplicial decomposition of E is not 
contained in the projection of any edge of this decomposition. 

Define 

(16) 

and 

LI := { x EE I x has no neighbourhood on E that is an open disk 
and that projects one-to-one to IR 2 }. (17) 

By the tameness and general position assumption r and LI are graphs 
(embedded in IR 3 ), with a finite number of vertices and edges. 

The link K is contained both in rand in LI. The graph LI consists of K 
together with all "fold" edges of E. The set W is the set of vertices of LI of 
degree 3, all other vertices of LI having degree 2. Note that 

H = n[LI]. (18) 

FIGURE 14 
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FIGURE 15 

(It is not difficult to see that these assumptions can be satisfied. In fact, 
if we take I:= t/t [I: K'] as in the beginning of this section, these assumptions 
are easily fulfilled, as the isotopy can be described by Reidemeister moves.) 

We introduce some further notation and terminology. Let wr denote the 
set of points of type (a) or (b) in Fig. 12, and let wJ denote the set of 
points of type (c) or (d) in Fig. 12. Let w+ denote the set of points of type 
(a) or (c) in Fig. 12, and let w- denote the set of points of type (b) or (d) 
in Fig. 12. This notation is motivated by the fact that 

a link K on I: parallel and close to K, makes a positive 
crossing with K near any point we w+, and a negative 
crossing with K near any point we w-. (19) 

For instance, in (a) of Fig. 12, a positive K - K crossing can be seen 
(Fig. 15). 

Let U be the set of points in n - 1 [ G] that are on fold edges of LI. That 
IS, 

(20) 

So U is the set of points u that have in I: n n -· 1 [ G] a neighbourhood as 
in Fig. 16. Moreover, define (for any X) 

VX :=set of vertices of X, 

EX:= set of edges of X, 

FX :=set of faces of X, 

CC :=set of components of E\rr - 1 [ G], 

F0 :=unbounded face of G. 

Call a component of K\(P u W) (i.e., an edge of r on K) a segment. 

FIGURE 16 

(21) 
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By extension, define for any xE IR 3 : w(x) := w(n(x)). Call a point x in 
IR 2 or IR 3 even or odd if m(x) is even or odd. For any set X, Xeven denotes 
the set of even points in X, and Xodd denotes the set of odd points in X. 

For any nonempty subset X of IR 2 or IR 3 let 

µ(X) :=min{m(x) I xEX}. (22) 

Minimality of E. Suppose E is a counterexample to the lemma. We 
may assume that we have chosen I: in such a way that: 

(i) x(I) is as large as possible; 

(ii) L w( v) is as small as possible; 
v e VG,.., bd(Fol 

(iii) L w( v) is as small as possible; 
iie VG (23) 

(iv) I WI is as small as possible; 

(v) L µ( u) is as small as possible; 
a segment 

(vi) I UI is as small as possible. 

(In this order: (ii) should hold under condition (i), and so on.) 

I: is determined by r. The surface I: is determined by the graph I' (up 
to inessential deformations). To see this, note that by our general position 
assumption, the boundary of any component C E CC is a disjoint union of 
simple closed curves. In fact it is only one closed curve: 

CLAIM l. Each component C E <(f is an open disk. 

Proof Consider a face F of G. For any component C E CC contained in 
n - 1 [F], the boundary bd( C) of C is a union of pairwise disjoint simple 
closed curves on bd(n - 1 [F] ). 

Moreover, C is orientable, since we can extend C to a closed surface 

FIGURE 17 
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FIGURE 18 

in IR 3 by adding disjoint closed disks to the boundary components of C 
(outside a finite section of n- 1[F]). 

Suppose n- I [F] contains a component in C& that is not an open disk. 
Then we can choose a component C EC& contained in n - I [F] such that C 
is not an open disk and such that for one of its boundary components y, 
one of the components of n - t [bd(F)] \y is minimal (inclusion-wise). 
(Minimal taken over all C that are not open disks, over all boundary 
components y and over the two components of n- 1 [bd(F)] \y.) 

By this minimality assumption, we know that there exists an open disk 
C 2 in n - i [F] with boundary y, and disjoint from E. Near to C 2 we can 
do surgery on C so as to obtain a bounded surface C 1 in n - 1 [F] with 
boundary bd(C)\y, and disjoint from (.E\C)u C 2 (cf. Fig. 17). Thus 

x(C1) + x(Cz) = x(C) + 2. (24) 

Let .E' be the manifold obtained from .E by replacing C by C 1 and C 2 • 

So x(.E') = x(.E) + 2. 
Let .E" be the union of those components of .E' that have a nonempty 

border (i.e., are not closed). So bd(.E") = K. Note that .E'\.E" has at most 
one component, because each component of .E has a nonempty border. If 
x(.E") > x(E), we would obtain a counterexample with larger Euler charac­
teristic, contradicting our assumption (23)(i). (It is a counterexample, since 
clearly r(K, .E") = r(K, .E) and since x(.E") > x(.E) ~ b(K) - v(K) = x(.E K).) 

So x(.E"):::;; x(.E). Hence x(E'\.E");;;: 2, and hence .E'\E" is a 2-sphere S. 
Then K is either enclosed by S or is contained in the exterior of S. (Indeed, 
n[K] attains the minimum number of crossings among all links equivalent 

o( :-iv o< :-1v or 

OC I 0(-1 

(a) (b) 

FIGURE 19 
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to K ( cf. Section 3 ). Hence there cannot exist a 2-sphere separating two 
components of K.) 

By (possibly) applying an isotopy of S 3 we may assume that K is 
contained in the exterior of S. 

It follows that there is an isotopy bringing (S\( C 1 u C 2 )) u C to a 
bordered surface contained in n- 1[F], fixing I'\((S\(C 1 u C2 )) u C). 
Thereby we decrease I VI or w( v) for at least one v E V, and we do not 
increase w(v) for any vE VG, or IWI, or µ(a-) for any segment a-. This 
contradicts the minimality assumption (23 ). I 

It follows that, up to isotopy, we can reconstruct I' from r, because up 
to isotopy there is a unique way to fill disjoint closed curves on a cylinder 
by disjoint disks inside the cylinder. (This follows inductively from the 
homotopic triviality of the solid cylinder.) Note that at edges e of r not 
on K, the surface I' is attached at both sides of n 1[n[e]]. At each 
segment Cf on K (=edge of r on K), I' is attached at only one side. We 
can determine this side, as it is at the "odd face side" if µ( Cf) is odd, and 
at the "even face side" if µ(a-) is even. (µ( o-) is determined by r.) 

The graphs G and H. Note that G = n[K] is a subgraph of H, and if 
x ~ H, that w(x) is odd if x belongs to some odd face of n[K], and w(x) 

is even if x belongs to some even face of n[K]. 
Note moreover that if e is an edge of H, and F and F' are the two faces 

of H incident with e, then lµ(F)- µ(F')I = 1 if e is part of G, and 
lµ(F)- µ(F')I = 2 otherwise. 

H has three types of vertices: vertices that are also vertices of G, vertices 
that are on an edge of G, and vertices that are in a face of G. Consider a 
vertex v of H, and let ct. := w( v ). 

If v is also a vertex of G, it has degree 4 both in G and in H. Its 
neighbourhood is like that in Fig. 18. (In Figs. 18- 23, the numbers in the 
faces of H give their µ-values.) 

If v is on an edge of G, it has degree 3 or 4. If it has degree 3, it is the 
projection n(w) of some point win W, and (see Fig. 12) its neighbourhood 
is as in Fig. 19. 

If v has degree 4, it is the projection n(u) of some point u in U, and its 
neighbourhood is as in Fig. 20. 

C(-2. (){-I 

~ '{ or 

0(-tl ()(+I 0( 

FIGURE 20 
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o( d+Z. 

v 

FIGURE 21 

If v is in a face of G, it has degree 2 or 4 in H. If it has degree 4, its 
neighbourhood is as in Fig. 21. 

Sometimes, we will indicate by a little arrow crossing any edge e of H 
which of the two faces incident with e has highest µ-value as in Fig. 22. 

Moreover, we orient each edge e of H so that the face of H with highest 
µ-value is at the right hand side of e, cf. Fig. 23. 

The set W. For any w E W, let Bw be the (unique) edge of H incident 
with :n:(w) but not a part of G. Note that 

W belongs to W+ if either WE WI and s,,. is oriented towards 
:n:(w), or w E W! and s"' is oriented away from :n:(w); similarly, 
w belongs to w- if either w E wr and s.,. is oriented away 
from n(w), or wE wi and i:,,. is oriented towards :n:(w) (25) 

(cf. Fig. 12). We show: 

CLAIM 2. Let w and w' be two points in W connected by a segment a. 
Then one of wand w' belongs to wr, the other to W!. 

Proof Suppose to the contrary that both w and w' belong to W1, say. 
Thus we would have configurations (a) and (b) of Fig. 12 consecutively. 
(They can be pasted together in four ways.) For instance, we would obtain 
Fig. 24. This configuration can be replaced by Fig. 25. Note that Figs. 24 
and 25 have a similar boundary (the wriggled curves and the part of the 
knot). So the rest of E can be attached to either of these figures. Moreover, 
locally Fig. 24 can be brought to Fig. 25. (One way of seeing this is that 
both Fig. 24 and Fig. 25 form an open disk with boundary the "same" 

0( o<+2 

or 

FIGURE 22 
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FIGURE 28 

closed curve (being the union of the wriggled curve and the given part of 
the link).) Let e be the edge of G containing n [a]. 

In n- I [e ], replacing Fig. 24 by Fig. 25 means replacing Fig. 26 by 
Fig. 27. 

We thus do not change w(v) for any vE VG, but we do decrease IWI, 
contradicting the minimality assumption (23 ). 

Similar arguments hold for the three other ways of pasting (a) and (b) 
of Fig. 12 together. I 

Moreover: 

CLAIM 3. Let w and w' be two points in W connected by a segment. Then 
one of e,.,, e..,, is oriented towards n(w) or n(w'), the other one away from 
n(w) or n(w'). 

Proof Suppose Fig. 28 would occur. Then µ(F3 ) = µ(F2 ) + 2 = 
µ(F 1) + 4. However, µ(F4 ) differs by at most one from both µ(F1 ) and 
µ(F3 ), a contradiction. 

Similarly the configurations in Fig. 29 lead to a contradiction. I 
As a direct corollary we have: 

CLAIM 4. For each edge e of G, either all points w E W with n( w) Ee 

belong to w+' or all belong to w ~. 
Proof Directly from Claims 2 and 3 (cf. (25)). I 

t t , 

FIGURE 29 
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FIGURE 30 

The set U. Consider an edge e of G, connecting vertices v and v' of G. 
Assume without loss of generality that e is a straight line segment in ~ 2• 
Consider the intersection J := J; I\']'[ I [ e]. 

The set J forms a graph with vertices of degree 1 on the boundary of 
n 1 [e] and vertices of degree 3 in each point in W n n - 1 [ e]. Moreover, 
one of pJ, p; and one of pJ,., pt,. might be an isolated vertex of J. All other 
vertices of J have degree 2. 

By the minimality assumption (23 ), we may assume that each 
component I of J\K is a straight line segment, or the union of two straight 
line segments "above each other," making an angle at a point u in U, as 
in Fig. 30. In the latter case, the straight line segment connecting the end 
points q and q' of I contains a point p E P, which is an isolated point 
of J. Moreover, above or under I there is no point in W (i.e., n[/] n 
n[ W] = 0 ). So there is a segment a of K such that n[/] c n[a] and such 
that <J is incident with at least one point in P. 

The neighbourhood of n 1 [ v] for vertices v of G. Consider a vertex v of 
G and its neighbourhood, as in Fig. 31. Here F 1 , F1 , F3 , F4 denote the faces 
of G incident with v. Let a 1 , a2 , <J 3 , a 4 be the segments incident with p;, 
and p~ so that n[a;] is incident with F; and F;+ 1 (i= !, .. ., 4, taking indices 
mod 4). 

F, TT(a;) 

'TT{~) 

FIGURE 31 
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FIGURE 32 

For each i = 1, ... , 4, choose some subinterval 1 1 of n[a;] u { v} u 
n[a,_ 1 ] containing all points in n[U]n(n[a;]un[<T1_ 1 ]). 

First consider the case where IX:= w(v) is odd. Then the diagram is 
locally as in Fig. 32. Consider now rr- 1[13 ] as "seen" from F3 . It is either 
as in Fig. 33 or as in Fig. 34. 
The numbers {3I,, {3f,, q>J, q>f,, (,,, 17, are the numbers of occurrences of the 
given type of curve. 

We set 17,, := 0 if Fig. 33 applies, and C := 0 if Fig. 34 applies. Define 

rp := L: rp,,, I'/:= L '1v· (26) 
VE V ['E V VE V 

FIGURE 33 
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Note that 

!VI =c,o+2(. (27) 

n - 1 [J2 ] seen from F 2 is as in Fig. 35. A symmetric picture applies to 
n- 1[J4 ] seen from F4 • 

Finally, n - I [J1] seen from F 1 is as in Fig. 36. 
Symmetric pictures and notation apply in case w(v) is even. 

Segments connecting P and W. Consider a segment (j incident at one 
end with a point p~ and at the other end with a point w in W. Let e be 
the edge of G containing n[O"]. Let I be the component of (n - 1 [e] n L)\K 
incident with w. Then we have: 

er, 

FIGURE 35 
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~~ .... ?;-rll~{: 
\V '1 ~t c....' -------~--------

FIGURE 36 

CLAIM 5. Locally in n 1[e], the configuration is like one of those in 
Fig. 37. 

Proof Indeed, the alternative would be that it is one of the configura­
tions in Fig. 38. In both of these two cases there is an isotopy (moving w 
along K), reducing w( v) (and not changing any w( v') for any v' of- v ), 
contradicting the minimality assumptions (23 )(ii) and (iii). I 

Similar statements hold for segments connecting p; and a point in W. 

The boundaries of components in <tf§'. Consider a component C E <ff. Let 
n[ CJ be contained in face F of G. Then either bd( C) is a homo topically 
trivial circuit on n- 1 [bd(F)], or not. Let <tf5~ be the collection of components 
of the first kind, and let 'iG'i be the collection of components of the second 
kind. Note that if F is the unbounded face F0 of G, then all components 
C E <ff contained in n - 1 [ F] belong to <c0 (since Is IR 3 ). 

In order to study <fJ, consider a segment a. Let e and e' be two parts of 
edges of r above a, in such a way that e and e' have the same projection 
as a as in Fig. 39. (Here e might be incident with one of the end points 
of er). Let e and e' be on the boundaries of components C and C' in <6', 
respectively. Then: 

CLAIM 6. C and C' are different. 

Proof Suppose C =C. Then we may assume that there is no other 
edge part of r in between e and e' with the same projection as a. Otherwise 
there would be two such edges e" and e111 in between being part of the 
boundary of the same C" in <ef!'. (This follows from the fact that if I is a line 
segment inn 1[n[a]] connecting e and e', then I is contained in some 

P.t (j" VJ P.t er IN t <T" w :t y 
P,, ' 

~ 
P,.' 

~7 F,•::::? w f'!. p.i.. , 
FIGURE 37 
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FIGURE 38 
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circuit in I u bd( C) that is homotopically trivial in rr 1 [bd(F) ], where Fis 
the face of G containing rr[C]. Hence for every component C", bd(C") 
crosses I an even number of times.) 

By replacing e, e' by e", e"' and repeating the argument, we obtain two 
"neighbouring" e, e'. 

Now modify r by replacing the configuration in Fig. 39 by that in 
Fig. 40. In ~ 3 this amounts to an isotopy with the effect as in Fig. 41. This 
way we reduce µ( O") for at least one segment O", and not changing any other 
µ(O"} or any w(v) or I WI. This contradicts the minimality assumption 
(23}(v}. I 

It follows that for any C E <t', with n [CJ contained in face F of G, and 
for any x E bd(F}, bd( C) has at most three intersections with rr - 1(x ). 

For any C E <t', let B( C) denote the set of all points in C for which no 
neighbourhood in C projects one-to-one to ~ 2 • 

So 

L1 =Ku U B(C}, (28) 
Ce<6 

and hence 

H=n:[J]=Gu U n:[B(C)]. (29) 
Ce<6 

Let CE~ and let F be the face of G containing n[C]. We call a point 
x of bd(C) a turning point of bd(C) if on n - 1[bd(F)] the neighbourhood 
of x in bd( C) is as in Fig. 42. Thus each turning point belongs to Wu U. 

If C E <t'0 , then Claim 6 implies that bd( C) has exactly two turning 
points, and n[bd(C)] '°'bd(F). We may assume that ln-- 1(x)nCJ ~2 for 
all x E F, and that B( C) is a curve connecting the two turning points on 
bd( C). Moreover, we may assume that C = D' u B( C) u D" for two open 
disks D' and D" such that both D' and D" project one-to-one to IR 2• 

FIGURE 44 
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ever\.. I e -v I V' 
o&.d. 

FIGURE 45 

If CE<'C1 , then at any xEbd(F) one has In- I(x) n bd(C)I = 1or3, except 
if n - 1 (x) contains a turning point of bd( C). Call a curve of type (in Fig. 33 
a Z-type curve. Then by Claim 6, if In- I(x) n bd( C)I = 3, the middle ele­
ment of n- 1(x)nbd(C) is either part of a Z-type curve or is on K. So 
bd( C) can have turning points only at Z-type curves or at segments a on 
K that are incident with two points in Wand that are locally as in Fig. 43, 
which we call Z-type segments. 

We may assume that ln-I(x)nCj,,;;3 for all xEF. In fact, we may 
assume that the set { x E FI In - 1 (x) n Cl = 3} forms a collection of pairwise 
disjoint open regions, each corresponding to one Z-type curve or Z-type 
segment. This follows from the fact that up to isotopy C is fully determined 
by bd( C). Since there exists an open disk C with bd( C) = bd( C) for which 
the set { x E F I In - 1 ( x) n Cl = 3 } forms a collection of pairwise disjoint 
open regions, we may assume that C itself has this property. So "fold 
edges" going across from one Z-type curve or segment to another can be 
removed. 

The set B( C) forms a disjoint union of curves, each of them connecting 
two turning points on some Z-type curve or segment on the boundary of 
C. We may assume that B(C) projects one-to-one to IR 2 (the curves do not 
touch each other), as in Fig. 44. 

The graph H along an edge of G. Consider an edge e of G, let it go 
from v to v' as in Fig. 45. Following e from v to v', we first meet some (or 
none) points in n[ U], each having degree 4 in H. Next we meet some (or 
none) points in n[ W], each having degree 3 in H. Finally we meet again 
some (or none) points in n[U], each of degree 4 in H (cf. the observations 
concerning Fig. 30 ). 

± +++ 
{Cl) (b} 

FIGURE 46 
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FIGURE 54 

We first show: 

CLAIM 7. The configurations in Fig. 46 do not occur on any edge e of G. 
Similarly for those configurations which arise from exchanging up and down 
and left and right in this figure. 

Proof By Claim 2, Fig. 46( a) gives Fig. 4 7 in TC - 1 [ e] (up to exchanging 
up and down). Curve i:3 comes from the fact that 8~ and i;~ in Fig. 48 
should lead to each other (by Claim 6 ). 

Then the boundary of some component C E ~ contains 8 1, ... , e5 (at one 
side of TC- 1[e] or the other). So bd(C) contains both 81 and 8 5 . This 
contradicts Claim 6. 

Similarly, Fig. 46(b) gives Fig. 49 (up to exchanging up and down), 
again contradicting Claim 6. I 

Partition the set W n TC - i [e] into classes W 1 , W2 , ••• , Wk in such a way 
that 

(i) k is even; 

(ii) TC[W1], ••• , n[Wk] occur consecutively along e, as in 
Fig. 50; (30) 

(iii) W; #- 0 for i = 2, ... , k - 1; 

(iv) the arrow crossing any edge 8.,. with w E W; goes from 
right to left if i is odd, and from left to right if i is even. 

(Again, 8"' denotes the edge of H incident with TC(w) not being part of G.) 
This partition is trivially unique. 

As Fig. 46(a) does not occur, by Claim 3 we know that if i is even and 
i:::'.:;k-2 then IW;l~2. Similarly, if i is odd and i~3 then IW;l~2. So 
1 ::::;; I W; I ~ 2 for i = 2, ... , k - 1. 

I 
7 

FIGURE 55 
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FIGURE 56 

As Fig. 46(b) does not occur, we know that if i is even, i ~ k - 2 and 
W;+ 2 #0 then IW;l~IW;+il· Similarly, ifiis odd, i~3 and W,_ 2 #0 
then IW;l~IW;_ 1 I. Hence IW;l=IW;+il for i even, 4~i~k-4; 
moreover, IW2l=IW3I if W1#0, and IWk-zl=IWk-11 if Wk#0. So 
there are the following possibilities: 

( i) I W; I = I W; + 1 I E {I, 2} for each even i with 2 ~ i ~ k - 2; 

(ii) k~4, W,=0, IW2l=l, IW31=2, IW;l=IW;+1IE 
{ 1, 2} for each even i with 4 ~ i ~ k - 2; 

(iii) k~4, IW,l=IW;+ilE{l,2} for each even i with 
2::S;i~k-4, IWk 21=2, IWk 11=1, Wk=0; 

(iv) k~6, W1=0, IW21=1, IW3 1=2, IW;l=IW;+1IE 
{1, 2} for each even i with 4::S;i::S;k-4, IWk-zl =2, 
IWk-1=1, Wk=0. 

(31) 

If we have two neighbouring edges i:., and i;w. with arrows pointing 
towards each other as in Fig. 51 (up to exchanging up and down and left 
and right in this figure), then they are in fact one and the same edge as in 
Fig. 52. This follows from the fact that they are projections of some 
component of B( C) for some C E <g1, as the segment on K in between is a 
Z-type segment. 

If I W; I= I W;+ 1 I= 2 with 2 ~ i ~ k - 2 and i even, then we have Fig. 53 
(up to exchanging up and down in this figure). In that case they are part 
of Fig. 54, since in n _, [e] we have Fig. 55 (up to exchanging up and 
down), and hence we have Fig. 56. 

We now consider what we see when following edge e from v to v' (cf. 
Fig. 45). First assume that alternative (31 )(i) applies. We first meet a 
number t ~ 0 of points in n[ U], each having degree 4 in H as in Fig. 57. 
We say that these points of n[U] (and their liftings in U) are near to v. 

~ 
i~o 

FIGURE 57 
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Next we meet a series of points in n[ W] of degree 3. First we meet the 
points in n [WI] (possibly none) as in Fig. 58. Again we say that these 
points of n[ W] (and their liftings in W) are near to v. 

Next we meet a series of configurations given in Fig. 59 made by 
W2 u W3 , W4 u W5 , .•• , Wk 2 u Wk. 1 , in some amount and in some order. 
(In fact, Claim 3 gives conditions under which these configurations can 
succeed each other.) 

After that we have points in n[ Wk] (possibly none) as in Fig. 60. These 
points (and their liftings) are called near to v'. 

Finally, we meet again a number of points of degree 4 in n[ U] ( t' ~ 0 
say) as in Fig. 61. These points (and their liftings) are called near to v'. 

Next assume that alternative (31 )(ii) applies. Then again we first meet a 
number of points in n[U] each having degree 4 in Has in Fig. 57. Again 
we call these points and their liftings near to v. 

Next we meet a configuration made by W 2 u W 3 as in Fig. 62. We say 
that these three points, and their liftings, are near to v. 

After that we meet a series of points as in Figs. 59, 60, and 61. Again we 
call the points in Figs. 60 and 61 and their liftings near to v'. 

If alternative (31 )(iii) applies we have a symmetric situation. Finally, if 
(31)(iv) applies, we obtain a sequence beginning as for (31 )(ii) and ending 
as for (31 )(iii). 

We analyze a little further. Suppose that w belongs to w+ whenever 
n( w) is on e ( cf. Claim 4 ). Let alternative (31 )( i) apply. If W 1 =I- 0 then by 
Claim 5 the first vertex win W, should belong to wr. Hence it is as shown 
in Fig. 12(a), and therefore it should be as in Fig. 63. Similarly, if Wk =I- 0 
and w' is the last point in wk it should be in W1 and hence of type 
Fig. 12(c). So it is as in Fig. 64. Hence using Claim 3 if I W11 is even and 
nonzero then I Wkl is even, and we have Fig. 65 where the interrupted parts 
are optional. Similarly, if I W11 is 0dd then I Wkl is odd or zero, and we 
have Fig. 66. 

Next Jet alternative (31 )(ii) apply. Then we start like in Fig. 67. This 
follows from the fact that if we would have alternatively Fig. 68, then seen 

u , , , 

FIGURE 59 



+ ... t+ 
+ ++ 

TAIT'S FLYPING CONJECTURE 

+ ···+~ : ... ++ 
or ++ + or ++ 

FIGURE 60 

I 
FIGURE 61 

01" 

FIGURE 62 

FIGURE 63 

_jJ_ 
lf(IV? I 
FIGURE 64 

95 

or ++ ···++ + ++ 



96 ALEXANDER SCHRIJVER 

~ W'l 'vl3 ~·tl. W'k-1 
I,./ k. 
~ I 

~ ~ I even. eve.I'\. 

FIGURE 65 

\./, V1 W3 IJ._l. \Vk-r 
.....,k 

I -
odd.. ocl.:1 or- zer-o 

I 
FIGURE 66 

FIGURE 67 

-tHt ± u lT(W') 

F 

FIGURE 68 



TAIT'S FL YPING CONJECTURE 97 

E, 

FIGURE 69 

from F we have Fig. 69 (since w belongs to w+ (using (25))): Then the 
boundary of some component C E <.£ contains £ 1, •.. , a5 • So bd( C) contains 
both B 1 and e 5 , contradicting Claim 6. 

Similarly for the alternatives (31 )(iii) and (iv). 
Summarizing, we have the following five types of edges e with w E w+ 

when n( w) Ee: Fig. 70 with y and () even; Fig. 71 with y odd or 0, and () 
odd or O; Fig. 72 with () even; Fig. 73 with y even; and Fig. 74. 

If w belongs to w- whenever n(w) Ee we should reflect these figures 
with respect to e. 

Note: 

CLAIM 8. All points in U near to a vertex v of G project to at most two 
edges of G incident with v. 

Proof This follows directly from Figs. 33-36. I 
The graph H in the faces of G. Let F be a face of G. Let C and C' be 

two components in <,£ contained in n - 1 [F]. Consider a component Q of 
B(C) and a component Q' of B(C'). So Q and Q' are curves. Suppose that 
the projections n[Q] and n[Q'] cross. Then C # C' (by our analysis after 
Claim 6 ). If C E c.£0 and F is even, then one turning point x of bd( C) is as 
one in Fig. 75 and the other turning point y is as in Fig. 76. So for each 
: E n[bd( C)] the closed vertical line segment connecting the (at most two) 
points in n 1 (z) n bd( C) intersects K, except near the two turning points 
of bd(C). 

HDo····oLJHI 
FIGURE 70 
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~!-----------------
bd(C) bol (C') 

----------------p~ 
FIGURE 77 

Suppose that also C' belongs to 't?0 . As n [ Q] and n [ Q'] cross we know 
n[bd(C)] $ n[bd(C')] $ n[bd(C)], n[bd(C)] n n[bd(C')] # 0 and 
n[bd(C)] u n[bd(C')] # bd(F). So bd(C) and bd(C') do not enclose each 
other. Hence bd(C) and bd(C') should have turning points in U near to 
some vertex v as in Fig. 77. In IR 2 this gives Fig. 78. Suppose next that C' 
belongs to 't?1 • Then by the observation on Fig. 44 we know that Q' must 
be a curve coming from a Z-type curve, say near vertex v of G. Then 
n- 1(v) as seen from Fis as in Fig. 79. In IR 2 this gives Fig. 80. Finally, 
assume that both C and C' belong to ~1 • Then again by the observation 
on Fig. 44 we know that both Q and Q' come from a Z-type curve, say 
near vertex v of G. Then n 1 ( v) as seen from F is as in Fig. 81. In IR 2 this 
gives Fig. 82. 

Symmetric situations arise if Fis odd. Therefore, we always have: 

If n[B(C)] and n[B(C')] have a crossing in F, then there 
exist points, u, u' E U such that u E bd( C) and u' E bd( C' ), 
such that u and u' are near to the same vertex v of G, and 
such that n(u) and n(u') are on different edges of G (incident 
with v). (32) 

We say that such a crossing is near to v. So: 

Each vertex of H of degree 4 in some face of G is a crossing 
near to some vertex v of G; it can occur in only one of the 
four faces of G incident with v (viz. the one with smallest 
µ-value near to v ). 

FIGURE 78 

582b-58, l-8 

(33) 
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FIGURE 83 

We also note: 

CLAIM 9. Let e and e' be two edges of G incident with a vertex v of G, 
such that e and e' are neighbouring in the cyclic order of edges incident with 
v. Let w E W and u E U be near to v such that w projects to e and u projects 
to e'. Then u is on a Z-type curve, and all points in U near to v project to 
e ore'. 

Proof We may assume that n( w) is the point in n [ W] n e that is 
closest to v, and that n(u) is the point in n[U] one' that is closest to v. 
(Note that if u E U is closer to v than u' E U, and if u is on a Z-type curve, 
then also u' is a Z-type curve. See, e.g., Fig. 83. So if the closest point in 
U near to v along a given edge is on a Z-type curve, then all points in U 
near to v along this edge are on a Z-type curve.) 

If the arrow crossing e,.. points towards v then by Claim 5 we have 
Fig. 84 (up to exchanging up and down and left and right in this figure). 
Then u should be in a Z-type curve, since e 1 and e2 cannot lead to each 
other by Claim 5. The second point in U on this Z-type curve should be in 
n- 1[e]. 

If the arrow crossing ew points away from v we have Fig. 85 (up to 
exchanging up and down and left and right in this figure), as we start like 
in Fig. 67. 

In case (a), e1 and e2 should lead to each other (as there are no points 

----------------p~ 

~~-~·----E~_'\, .... w ____ _ 

FIGURE 84 
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in n[U] one closer to v than n(u)). Then u should be on a Z-type curve, 
since otherwise we would have Fig. 86, contradicting Claim 6 (as e3 and e4 

are on the boundary of the same component in 'G'). So u is on a Z-type 
curve, and the second point in U on this curve is in n · 1 [e]. 

In case (b), if 8 1 and 8 2 lead to each other we would have Fig. 87, again 
leading to a contradiction to Claim 6. So <: 1 and s2 do not lead to each 
other, and hence we have Fig. 88. So u is on a Z-type curve, and the second 
point in U on this curve is in n ~ 1 [ e]. I 

As consequence one has: 

Let e and e' be two edges of G incident with a vertex v of G, 
such that e and e' are neighbouring in the cyclic order of 
edges incident with v. Let w E W and u E U be near to u such 
that w projects to e and u projects to e'. Let F be the face of 
G incident with v, e and e'. Then there is no directed path in 
H from n(w) to n(u) or from n(u) to n(w) that is contained 
in F. (34) 

This follows from the fact that by Claim 9, u should be on a Z-type curve 
and hence in F we have Fig. 89 (up to symmetry). So H cannot have a 
directed path as described. 

Another consequence of Claim 9 is: 

Let e and e' be two edges of G incident with a vertex v of G, 
such that e and e' are neighbouring in the cyclic order of 
edges incident with v and such that both e and e' contain 
points in n[ W] near to v. Then each point in U near to v 
projects to e u e'. (35) 

For suppose to the contrary that there exists a point u near to v that 
projects to edge e" incident with v, with e" tf: { e, e' }. Let e" be neighbouring 

FIGURE 89 
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e', say, in the cyclic order of edges incident with v. By Claim 9, u is on a 
Z-type curve, and all points in U near to v project to e' u e". Hence e' 
contains a point, u' say, in n[ U] near to v. Applying Claim 9 again, there 
exists a point in U near to v projecting to e. This contradicts the fact that 
all points in U near to v project to at most two edges of G incident with v. 

A lower bound for If= 1 x( R 2k ). Define for any k, 

Rk :=closure of {x E IR 2 I w(x) ;;?!: k }. 

So Rk = 0 if k is large enough. 

(36) 

Let p be the number of Z-type segments (Fig. 43). We show that the 
Euler characteristic x(R2k) of the sets R2k satisfy: 

CLAIM 10. 4 L:f =I x(R2k) ~ 2 IVevenl + I woddl + I VI + 21 w;ctctl + 
2ri + 2p. 

Proof We first prove: 

SuBCLAIM lOa. If= 1 X(R 2d=1l<t'11-1h(K) - L:,.evaUw(v)- 1)/2J 
+11Woctctl+11VI. Here L J denotes lower integer part. 

Proof We first show that for each face F of G, 

oc 

2: x(R2k 11 F) = UKFJ, (37) 
k=l 

where KF denotes the number of components in CC1 contained in n- 1[F]. 
Note that KF is odd, if and only if Fis odd. 

For any !?fi£{CE<t'IC£n- 1[F]} and XEIR 2 let w!t'(x):=ln- 1(x)11 
Uve!Z'DI and Rf":=F11closure of {xEIR 2 lw!/(x);?!:k}. We show by 
induction on 1.031 that 

00 

L x(Rrd = u lgc 11 eel IJ. (38) 
k= 1 

The case gc = { C E <c I C £ n - 1 [ F] } is ( 3 7 ). 
For gc = 0, (38) is trivial since Rfk = 0 for all k ~ 1. Next let C E <(J\9 

with C£n- 1[F]. Let gc' :=gcu {C}. If C belongs to CC0 then x(n[C])=O 
(since C is the union of two disks above each other and since n[B(C)] 
contributes -1 to x(n:[C])). Moreover, for each k;?!: 1 one has R~~= 
R~ u (R~ _ 2 11 n[C]). Hence 
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JJ 00 

L x(Rf:)= L: x(Rfku(Rfk_ 2 nn[C])) 
k=I k=I 

oc 

= L: (x(Rrk>+x(Rfk-2nn[C])-x(R~nn[C])) 
k=I 

00 00 

=x(R~nn[C])+ L x(Rf!J=x(n[C])+ L: x(R~) 
k=I k=I 

00 

= L: x(R~k>=Ul.@n<6\IJ=Ul.@'n~11J. (39) 
k=I 

Here we use the fact that R~ i;;. R'fi, _ 2 and that x(A) + x(B) = x(A n B) + 
x(A u B) for all A, B. 

If C belongs to ~1 let 

(40) 

Using the observations following Claim 6 one sees that x(Rc) = 0. If 
I.@ n ~1 I is even then for each k;?: 1 one has R~ = Rrk u (R~ _ 2 n Re) and 
then L~= 1 x(Rf:) = U I.@' n ~1 IJ follows similarly as in (39). 

If I.@ n ~1 I is odd then for each k ;?: 2 one has R~; = R~ _ 2 u 
(R 9 R ) h"l "'' 2k _ 4 n c w 1 e R 2 = F. Hence 

·X X; 

L: x(Rr;)=x(F)+ I x(Rrk_ 2 u(R'fi,_ 4 nRc)) 
k=I k=2 

·X1 

= 1 +I x(Rrku(R~_ 2 nRc))= 1 +U.@n~1IJ 
k=I 

( 41) 

(Here the third equality follows similarly as in (39).) This shows (38) 
inductively. 

Adding up (37) over all faces F of G gives 

ex_ 

I x(R2k \G) = I U11: ... J = ~ l~il - ~ b(K). (42) 
k=I FeFG 

We next consider L;'= 1 x(R 2k n G).For any vertex v of H, let fi.(v) be the 
largest integer k such that v belongs to Rk. So fi.(v) is equal to the maxi­
mum value of µ(F}, where F ranges over all faces of H incident with v. 

Note that, for each edge e of H with e c G, µ(e) (defined as the minimum 



106 ALEXANDER SCHRIJVER 

value of w(x) over x e e) is equal to the largest integer k such that e is 
contained in Rk. Hence 

I x(R2knG)= L lfi(v)J- L lµ~)J· (43) 
k=I <•eVH,veG 2 eeEH,ecG 

Consider a vertex v of H. If v is also a vertex of G, then jl( v) = w( v ). Let 
e1, e2 , e3 , e4 be the edges of H incident with v. We can choose indices so 
that µ(ei)=µ(e 2 )=w(v) and µ(e 3 )=µ(e4 )=w(v)- l (cf. Fig.18). Hence 

(44) 

If v = n(u) for some u e U, let e1 and e2 be the two edges of H incident 
with v that are contained in G. We can choose indice so that µ(e 1 ) = jl(v) 
and µ(e2 )=j1(v)-2 (cf. Fig.20). Hence 

(45) 

If v = n(w) for some we W, then jl(v) = w(v) + 1. Let e1 and e2 be the 
two edges of H incident with v that are contained in G. We can choose 
indices so that µ(ei)=jl(v) and µ(e 2 )=j1(v)- l (cf. Fig.19). Hence 

(46) 

if jl( v) is even, i.e., if w E Wodd. Similarly, 

(47) 

if jl( V) is odd, i.e., if W E W even. 

Adding up ( 44) over all v E VG, ( 45) over all u e U, ( 46) over all 
WE Wodd• and (47) over all WE Weven• gives by (43), 

Combined with (42), this gives the claimed equality. I 
Multiplying by 4 gives 

~ lw(v)- lj 4 L. x(R2d = 2 l<t'1 I - 2b(K)- 4 L 
k= I VE VG 2 

(48) 

(49) 
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Rewriting the right hand side gives (since .E,,.vGL(w(v)-1)/2J= 
L,,e VG 1(w(v)- j l-11 Vevenl) 

2(!'ifi'! - ~I WI - ,.~c (w(v)-1 )) 

- 2b(K) - 2 !Cefol + 2 I Vevenl +I WI+ 2 I Wactct! + 2 I UI. (50) 

The first term here contains the Euler characteristic of .E as it can be 
expressed as follows. 

SUBCLAIM !Ob. X(L)=JCefJ-1JWJ-L,,evc(w(v)-1). 

Proof Since each component in Cef is an open disk, one has 

x(.E\n. 1[G])= !'ifil 

Moreover, 

( 51 ) 

x(.Enn 1 [G])=x(I')=-11w1- I (w(v)-1). (52) 
l'E VG 

This follows from the fact that all vertices of I' in Wu P have degree 3, and 
all vertices of r in n .. I [VJ \P have degree 4. All other vertices of r have 
degree 2. Hence 

x(I') =I vri - !EI'! 

=!WuP!-~!WuPI+ I (cv(v)-2)-~ I (w(v)-2) 
UE VG t'E VG 

= -1 IWI- I (w(v)-1), (52) 
VE VG 

since !n. 1(v)\PI =w(v)-2 for each vertex v of G and since IP! =2 IVG!. 
Combining (51) and (52) gives the claimed equality. I 
So (50) is equal to 

2x(.E)- 2b(K) - 2 !Cefol + 2 !Vevenl +I WI+ 2 I Woctdl + 2 I UI. (54) 

As x(.E) ~ b(K)- v(K) = b(K)-1 VI by assumption (ii) in the lemma, this is 
at least 

-21 VI -2 ICefol + 21 vevenl +I WI+ 2 I Woctctl +21 VI. (55) 

Now ICef0 ! satisfies the following equation (recall that p is the number of 
Z-type segments (Fig. 43) and that ( is the number of Z-type curves in 
Fig. 33 ): 

-
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SUBCLAIM IOc. 1%1 =!I WI + I VI - p - (. 

Proof For any C in <€0 , the boundary bd( C) of C should have exactly 
two turning points. Such a turning point should occur at a point in W or V. 

In fact, each point w serves as turning point for exactly one component 
in <c. For let we wr, say as in Fig. 90. Then there is one component C, say, 
in <c that is incident with '! and a, and one component C', say, in <(f that 
is incident with r and a'. C and C' are at different sides of '!. 

Now w can serve as turning point only for C. In fact, w is a turning point 
for some C in <co if and only if w is not contained in some Z-type segment. 
So exactly I WI - 2p points in W serve as turning points for components 
in <€0 • 

Any point u in U is turning point for at least one component in <€0 (viz. 
in the face F2 or F4 as in Fig. 35 ). In fact, u is turning point of two 
components in 'tf0 , if and only if u is not on a Z-type curve. 

Since there are ( Z-type curves, and each of them contains two points in 
V, it follows that the points in V make 2 I VI - 2( turning points for 
components in 'tf0 . 

So 

2 l"iol = I WI - 2p + 2 I VI - 2(, 

and the claimed equality follows. I 
Therefore, ( 55) is equal to 

-2 \VI - I WI - 2 I VI + 2p + 2( + 2 IVevenl +I WI + 2 I Woctctl + 2 I VI 

(56) 

= -2 IVI + 2p + 2( + 2 IVevenl + 21 woctctl· (57) 

Rewriting gives 

(since 

-2 I VI+ I Woctctl + 21 w;ctctl + !(! w+ 1-1 w--1) 

+!(I w:ctctl +I w.~.nl - I w;ctctl - I w~.nl) 
+ 2p + 2( + 2 I Vevenl 

I Woctctl =I w;ctctl +I w:ctctl = 2 I W~<lctl + ~(2 I w:ctctl - 2 I w;ctctl) 

= 2 I w;ctctl +WI w:ctctl +I w~.nl - I w;ctctl - I w~.nl l 

+(I w:ctctl +I w.~.nl - I Wo<lctl - I w.~.nl l) 
=2 IW;ctctl+!(IW+l-IW-1) 

+!<I w:ctctl +I w.~.nl - I w;ctctl - I w.~.nl) ). 

(58) 

(59) 

That this rewriting is helpful is seen by the following two subclaims. 
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w 

FIGURE 90 

SuBcLAIM !Od. I w+ I - I w-1=2v(K). 

Proof One directly derives from ( 19) 

T(K, .EJ =I w+ I - I w-1+2w(K). 

109 

(60) 

Since T(K, .E) = 2(v(K) + w(K)) by assumption (iii) in the lemma, we have 
the required equality. I 

SUBCLAIM !Oe. I w,~ddl +I W:Venl - I wodctl - I we-:enl = 2v(K) + 2q> + 4ry. 

Proof Consider a component e of K\P. Let it connect p;. and p ;,. as in 
Fig. 91. In this figure, rx, /3, rx', ff denote the µ-values in the corresponding 
faces of H incident with v and v'. Note that a and a' are even. 

Define ((e, v) := 1 if f3=a+ 1 and ((e, v) :=0 if f3=rx-1. Similarly, 
define ~(e,v'):=l if /3'=rx'+l and ((e,v'):=O if f3'=a'-1. (So ((e,v) 
indicates at which side of p;, the surface .E is attached. Similarly for 
((e, v').) 

Let vr(e) denote the number of points in U that are above e (they 
necessarily are near to v) and let v1(e) denote the number of points in U 
that are under e (necessarily near to v' ). Let v( e) : = v 1 ( e) + v1 ( e ). 

For any xE IR 3, let 1C(x) denote the number of points in .E strictly under 
x, minus the number of points in .E strictly above x. 

We show 

1C(p;,.)-1C(p;,) = ((e, v) + ~(e, v') + 2v(e) +I W,~ct n el 

+I weven n el - I w;ctct n el - I we+ven n el- (61 l 

Indeed, when traversing e from p;, to p[.., near Pt the number of levels 
above deleted is ((e, v) + 2v r ( e ), while near p;,. the number of levels under 
added is ~(e, v') + 2v 1(e ). 

even- I e et.' ~· 

od.d. 
r, 

FIGURE 91 
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Moreover, traversing any point w in w:dd• if WE W1, then one level 
above is deleted (cf. Figs. 12(a) and 19(a), where rt. is odd), and if we wi, 
then one level under is added (cf. Figs. 12(c) and 19(b) where rt. is odd). 

Similarly, traversing any point win w;dd' if w E Wi, then one level above 
is added (cf. Figs. 12(b) and 19(b), where rt. is odd), and if we wi, then one 
level under is deleted (cf. Figs. 12(d) and 19(a), where rt. is odd). 

Symmetric statements hold for WE w~en and WE w~en· This shows (61). 
Now, for any v E VG, if e and e' are the two components of K\P incident 

with p~, then ~(e, v) + ~(e', v) = l. Similarly for p!,. 
Hence, adding up (61) over all components e of K\P we obtain 

2 ( L K(p;,)- L K(pf,)) 
l•E VG l•E VG 

Now from Figs. 33 and 34 we see that for any v E VG, 

and 
K(p!,) =(pt,+(,,+(/):.+ 1+cpt,+(,,+11i· + <p!,)- (<p!, + (,, + /3~) 

Hence 

K(p!,)- K(pt) = 2<pv + 2(,, + 217 1, + 2. (64) 

Therefore 

I w:ddl +I we-venl - I w;ctctl - I w~.nl 

= 4<p + 4( + 417 + 4v(K)- 2v(K)- 21UI=2v(K) + 2<p + 411 (65) 

since I UI = <p + 2( by (27). I 
Subclaims lOd and IOe imply that (58) is equal to 

which equals 

-2 IVI +I woctctl + 21 w;dctl + IVI + IVI 

+ (/) + 211 + 2p + 2( + 2 IV even I , 

By (27) this is equal to the right hand side in Claim 10. I 

(66) 

An equality for 2:~= 1 c5(R 2d. For any subset R of IR 2 that is the closure 
of the union of some faces of H, let c:5(R) denote the number of times edges 
of G "leave" R. To be precise, for any edge e of G, we say that e leaves R 
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FIGURE 92 

at v if vebd(R) and vee\R. Let {;(R, e) denote the number of times that 
e leaves R (that is, the number of v such that e leaves Rat v), and define 

()(R) := I ()(R, e). (68) 
eeEG 

So if one makes a set of closed curves in IR 2 \R close to the boundary 
components of R, then these curves will have ()(R) crossings with G. 

Proof Consider a vertex v of H. Let a:= w(v ). First let v E VG. 
Consider the neighbourhood of v as in Fig. 92. If a is even, then 
v E bd(R2d <=> 2k =a, and only e1 and e2 leave R. at v. If IX is odd, then 
v E bd(R2k) <=> 2k =a - 1, and no edge of G leaves R. _ 1 at v. 

Next let v en[ U]. Consider the neighbourhood of v as in Fig. 93. If a is 
even, then v e bd(R 2k)-=- 2k =IX, and edge e leaves R. at v. If a is odd, then 
v E bd(R2d <=> 2k =a± 1, and edge e leaves Rn 1 at v, but e does not leave 
R0 _ 1 at v. 

Finally, let v en[ W]. Consider the neighbourhood of v as in Fig. 94. If 
IX is even, then vebd(R2k)<=>2k=a, and no edge of Gleaves R. at v. If IX 

is odd, then v e bd(R2d <=> 2k =IX+ 1, and edge e leaves R>+ 1 at v. 

e e 

0( «+• OH/ 0( 

v or v 

0(-1 oi;-1 0(-t oc-2 

e e 
FIGURE 93 
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e e 
oc+r cc:-1 

<X 

v or -----1v 

oc-1 oc'T-1 

e e 
FIGURE 94 

Adding up over all vertices v of H on G we obtain the claim. I 
The remainder of the proof makes the following intuitive argument 

precise. By Claims 10 and 11, 

~ ~ 

I 6(R2k)=21Vevenl+IW0 dctl+IU[=:;; L 4x(R2d· (69) 
k=l k=l 

On the other hand, roughly speaking, since G is well-connected, for each 
k, 6(R 2k) ~4x(R2d, since there are at least four edges of G leaving any 
component of any Rzk· Equality throughout then should imply the 
existence of the isotopy bringing J: to EK as required. 

The graph H'. Let H' be defined by 

oc 

H' := LJ bd(R2d. (70) 
k=l 

That is, H' is the subgraph of H consisting of those edges e of H for which 
Uµ(F)J and Uµ(F') J differ (by 1 ), where F and F' are the faces of H 
incident with e. So H' contains all of H\G, while an edge e of Hon G is 
in H', if and only if µ(e) is even. H' inherits the orientation from H 
( cf. Fig. 23 ). 

' 0(-2. , ' , ' , ' , ' , 

)~ 
FIGURE 95 
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FIGURE 96 

Consider a vertex v of H'. Let a := w( v ). If v is also a vertex of G, then 
v is incident with two edges of H'. If v E veven then the neighbourhood of 
v in H' is as in Fig. 95. (The interrupted lines in the figure are part of G 
not in H'.) 

If v E vodd then it is as in Fig. 96. If v En[ U] and Cl is even, the 
neighbourhood of v is as in Fig. 97. If v En [ U] and a is odd, it is as in 
Fig. 98. If v En[ W] and a is even, the neighbourhood of vis as in Fig. 99. 
If v En [ W] and a is odd, it is as in Fig. 100. Finally, if v ~ G (that is, v is 
in a face of G), then the neighbourhood is as in Fig. IOI. 

Note that any edge e of H' that is on the boundary of an odd face of G 
is oriented counter-clockwise with resect to that face. (So it is oriented 
clockwise with respect to even faces, except for the unbounded face.) 

Note moreover that H' is "Eulerian"; that is, each vertex of H' has the 
same number of arcs oriented inwards as outwards. So the edge set of 
H' can be decomposed into simple directed circuits. (Simple means: not 
traversing any point more than once.) Also, at each vertex v of H', the 
incoming arcs occur consecutively in the cyclic ordering of arcs incident 
with v. 

CLAIM 12. Let DI, ... , D 1 he a decomposition of the edge set of H' into 
simple directed circuits such that D 1 , ... , D, are oriented clockwise and 
D, + 1 , ••• , D 1 are oriented counter-clockwise. Then: 

s-(t-s)= I x(R2d· (71) 
k~I 

0( I O(Tj 0(1'1 I <X. I I 
I • IV 

E •v E: 
I 

Or I 

• • • I 
()(-2. • 0<-1 oc:-1 I 0(-2. 

FIGURE 97 
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~ :-r: Or 

()(+ I IX 

eve.>'\.. 

I «+1 • C( 

• 

:-r 

FIGURE 98 

O(' 

FIGURE 99 

c<+ I .J., 0( 

~v or 

I oc-1 I ()( 

:i• • 
Ot-1 ' I 

FIGURE 100 

FIGURE 101 

evc.11.. even. 

~ ---~- -- --Q--
od.c:J.. odJ.. od.J.. 

(et) (b) (c) 

FIGURE 102 
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FIGURE 103 

Proof By [2, Lemma 6.3], the numbers - (t-s) is independent of the 
choice of the D; (it is equal to the Whitney degree of H' considered as a 
set of disjoint oriented plane curves). Taking for the D; the boundaries of 
the components of the R 2k we obtain (71 ). (I am grateful to Francois 
Jaeger for pointing out this argument to me; it replaces my original invalid 
argumentation.) I 

For any simple closed curve D in IR 2 we denote 

R(D) :=closed region enclosed by D. (72) 

We show: 

CLAIM 13. Let D be a simple directed circuit in H', oriented clockwise, 
with VG n R(D) = 0. Then D is the circuit in one of the configurations in 
Fig. 102. (In Fig. 102 the interrupted line is part of G not in H'.) 

Proof First observe that D should intersect G. Indeed, if D contains 
n[Q] for some component Q of B(C) for some Cef(J, then D intersects G 
as n(Q] intersects G. If D traverses consecutively parts of n[Q] and n[Q'] 
say, for some components Q of B( C) and Q' of B( C' ), for some C, C' E f(J, 

then it contains a crossing x of Q and Q' near to some vertex v of G, as 
in Fig. 78, 80, or 82. But then v belongs to R(D), as one has Fig. 103 

FIGURE 104 

S82b 58 'l-9 
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(with y, 8 ~ 0). So by the orientation of H', there is no way for D to avoid 
enclosing v. 

So D intersects G. If D would traverse a vertex of H' in n [ U] or n [ W] 
near to any vertex v of G, then D is either as in Fig. 102(b) or R(D) would 
contain v, again because by the orientation of H' there is no way for D to 
avoid enclosing v (cf. Figs. 70, 71, 72, 73, and 74). For instance, at the left 
hand part of Fig. 70 the graph H' is as in Fig. 104. (The edges in G are 
oriented in the way indicated since face F is even.) So D should be of one 
of the types given in Fig. 102. I 

CLAIM 14. Let D be a simple directed circuit in H', oriented clockwise, 
such that VG n R(D) = { v} for some vertex v of G. Then D is a component 
of H', and it is the directed circuit in one of the configurations in Fig. 105. 

Proof Again if D traverses some point in n[ U] or n[ W] near to a 
vertex v' of G, then either it is of type (b) in Fig. 102 (see Figs. 72, 73, and 
74) which is ruled out since VG n R(D)-:P 0, or v' belongs to R(D) (cf. 

\'\ v ,, ', v ,1 

1T(W)6' 11'{W') i )6,• • 
I ' 1T1W 0( ' 

; F ' / F ' 
0'· v.· o',v.•' . . . , . 

, ' , Ci , " , ' 
(a) (b) 

(e) 

' .. 
2' 

:z. ,. 
(fJ 

', 
X Z' 

y z 
'~ ,' 

(i.) 

FIGURE 105 

(c) (d) 

, , 
x 

Cg) 

y 

' ' 

(h.) 

, , 
x 
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Figs. 70, 71, 72, 73, and 74 ), implying v' = v. Hence D cannot traverse any 
other points in n:[ U] and n:[ W] than those near to v. 

So if D intersects one of the edges e incident with v, it intersects e in one 
of the ways given in Fig. 106. 

Let ei. e2 , e3 , e4 be the edges incident with v in clockwise order. First 
suppose that D does not traverse v. Let D; be the part of D connecting e; 

and e; + 1 , for i = 1, 2, 3, 4 (taking indices mod 4 ). By ( 34 ), since each D; 
cannot traverse any edge distinct from ei. e2 , e3 , e4 , it either connects two 
points in n: [ U] or connects two points in n: [ W]. Since at most two 
neighbouring edges among e 1 , e2 , e3 , e4 , say e1 and e2 , can contain points 
in n:[U] near to v, we know that each of D 2 , D 3 , D 4 connects two points 
in n:[ W]. Then there does not exist a point inn:[ U] near to v. For suppose 
e2 (say) contains a point u in n[ U] near to v. Since e3 contains a point in 
n:[ W] near to v, Claim 9 implies that e 3 contains a point in n: [ U] near to 
v. This contradicts our assumption that each point in U near to v projects 
to e1 or e2 • 

So all vertices of H traversed by D belong to n[ W], and hence each 
crossing is of type (b) or (c) of Fig. 106. Therefore, we have Fig. 105(i). 

Second suppose that D traverses v and that v belongs to Veven· Then D 
contains Fig. 107 (see Fig. 95). As w(v)=a, the vertices in n:[U] near to v 
are on e1 and e2 only. As D is oriented clockwise, it does not intersect e 1 

or e2 • Hence D contains both (d) or (e) of Fig. 106, and (f) or (g) of 
Fig. 106. Therefore, D does not traverse any point in n[ U], and hence D 
is a component of H'. Moreover, D is of type (a), (b), (c), or (d) in 
Fig. 105. 

Finally, suppose D traverses v and v belongs to Vodd· Then D contains 
Fig. 108 (see Fig. 96). As w(v)=a, the vertices in n[U] near to v are on e 1 

and e2 only. So D intersects e1 as in configuration (f) or (g) of Fig. 106, 
intersects e2 as in (d) or (e) of Fig. 106, intersects e3 as in (c) of Fig. 106, 
and intersects e4 as in (b) (since in (h) and (i) of Fig. 106 D traverses a 

e e e e e e e e e 

v v v v v v v v v 

{a.) ( b) (c) (J) {e} (f) [~) (J,,) {i) 
FIGURE 106 
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FIGURE 107 

point in n[ U] (see Figs. 72, 73, and 74) ). So both e3 and e4 contain points 
in n[W], implying that there is no point in U near to v, by (35) (since all 
points in U near to v project to e 1 u e2 ). So D does not traverse any point 
in n[U], and hence Dis a component of H'. Moreover, Dis of type (e), 
(f), (g), or (h) in Fig. 105. I 

We call any of the components in Figs. 102 and 105 small components. 
Note that Claim 14 implies: 

If D is a small component with VG n R(D) = { v}, then there 
is no point in U near to v. (73 J 

To see this for Fig. 105(a), consider Fig. 109. Observe that all points in U 
near to v project to eue'. So by (35) there is no point in U near to v. 
Similarly for the other configurations in Fig. 105. 

Also note that each of the configurations (a), (b ), ( c ), ( d) in Fig. 105 
implies that v belongs to Veven• and that each of (e), (f), (g), (h) in Fig. 105 
implies that v belongs to Voctct· Moreover, Fig. 105(a) as seen from Fis as 
in Fig. 110. This can be seen as follows. Seen from F we have Fig. 111. 
(Note that w E wr and w' E W~ by Claim 5.) Now there is no point in 
n[W] between n(w) and v in Fig.105(a), since otherwise the n(w)-v part 
would not be fully contained in H'. So i; 1 should lead to p~ or a point 
above p~ (by Claim 5), and i;2 cannot lead to part /. Moreover, there is no 
point in n[ U] near to v on one of these edges. Hence i; 1 and e2 should lead 
to each other. Similarly, i; 3 and i; 4 should lead to each other, and hence we 
have Fig. 110. 

FIGURE 108 

I 
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FIGURE 109 

Similarly, Fig.105(b) as seen from Fis as in Fig.112. (Note that w 

belongs to w1, as if WE W 1 then by (25) WE W+, contradicting the fact that 
Fig. 68 does not occur.) 

Similarly for Figs. 105( c) and ( d ). 

The graph A'. Consider the set 

A':= (Au U,. e,,)\U { rr Irr segment on K with µ(<J) odd}. (74) 
t'E J-'G 

(As before, e,, denotes the open line segment connecting p;, and p!.) 
Each point in Pu W is incident with two segments on K, one with even 

µ-value and one with odd µ-value. Hence A' is a 2-regular graph embedded 

in IR 3. So each component of Li' is a circuit. 
Note that 

H' = n[L!']. (75) 

The orientation of H' induces an orientation of A', in which each component 

is a directed circuit. It is easy to see that this is obtained when each line 
segment e,, is oriented from p;, to p ;. 

The length function !. For each edge e of H' define the "length" l(e) of 
e by 

l(e) :=le(\ vevenl 

:= len GI 
:=0 

if e s; G, 

if e is contained in an even face of G, 

if e is contained in an odd face of G. 

.,. 

2,,,,_l_~....--

FIGURE 110 

(76) 



120 

For any H" i:;; H' define 

Then: 

ALEXANDER SCHRIJVER 

p~ 
£ • 
~ 

c£, 
- . 

FIGURE 111 

/(H") := 

w' 

/( e ). 
ee EH', t.'£ H'' 

(77) 

CLAIM 15. Let R be a closed region in IR 2 such that the boundary bd(R) 
of R is part of H' in such a way that R is at the right hand side of any edge 
e of H' on bd(R). Then 

/(bd(R)) = 6(R). (78) 

Proof Since for any vertex v of H' of degree 4 the edges incident with 
v are oriented as in Fig. 113, bd( R) consists of pairwise disjoint simple 
directed circuits. 

For any vertex v of Hon G n bd(R), define 9(v) as follows. If VE VG, let 
9(v):=2 if VEVeven and 9(v):=0 if vEVodct· If vf:VG, let 9(v) be the 
number of edges e i:;; bd(R) with v Ee, and e being contained in an even face 
of G. By definition of/, 

/(bd(R))= ,9( v ). (79) 
VE Vf/nGnbd(R) 

Now, on the other hand, define for any v E VH n G n bd(R), ,9'(v) as the 
number of edges e of H contained in G such that v Ee and en R = 0- So 

c5(R) = ,9'( v ). (80) 
1•eVHnGnbd(R) 

FIGURE 112 
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FIGURE 113 

We show that .9(v)=.9'(v) for each VE VHnGn bd(R), implying (78) by 
(79) and (80). 

Let v E VH n G n bd(R) and let a:= w(v). If v E VG and a is even then we 
have Fig.114 (cf. Fig.95). We see that .9'(v)=2=.9(v). 

If v E VG and a is odd then we have Fig. 115 (cf. Fig. 96) and we see that 
.9'(v) =0= .9(v). 

If VEn[U] and a is even, then (up to symmetry) we have Fig. 116 (cf. 
Fig. 97). We see that .9'(v) = 1 = .9(v). 

If v En [ U] and a is odd then (up to symmetry) one of the configurations 
in Fig. 117 applies (cf. Fig. 98). Then .9(v)= 1, 0, 1 and 0 respectively; 
similarly .9'(v) = 1, 0, 1 and 0 respectively. 

If v En[ W] and a is even then one of the configurations in Fig. 118 
applies (cf. Fig.99). We see that .9'(v)=0=.9(v). 

Finally, if v En[ W] and a is odd then one of the configurations in 
Fig. 119 applies (cf. Fig. 100). Now ,9'(v)= 1 =.9(v). I 

We next show: 

CLAIM 16. Each simple directed circuit Din H' with VG n R(D) =f. 0 is 
oriented clockwise, has length l(D) = 4, and satisfies one of the following: 

(i) IVG n R(D)I = 1; 

(ii) I VG\R(D)I = l; 
(iii) VG s;; R(D), and there are two edges e, e' of G on the 

boundary of the unbounded face F0 such that each of e 
and e' leaves R(D) twice. 

(81) 

Moreover, w;dd = 0, YJ = 0, and the configuration in Fig. 120 does not occur. 

' cx-2 / ' , 
' :)~ 

FIGURE 114 
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eve I'\.. 

ocLcl. 
FIGURE 120 

Proof For any oriented curve Q, let xQ be its beginning point and YQ 
be its end point (these points are not part of Q if Q is an open curve). Note 
that for each c Ere contained in n- i [Fo] one has c E rco. Hence there is no 
Z-type curve or segment "seen" from F0 . 

We first show the following (where we use the fact that the unbounded 
face F0 of G is bounded by at least four edges of G): 

SUBCLAIM 16a. There exist vertices v1 and v2 of G on the boundary of 
the unbounded face F0 such that v1 and v2 are not adjacent in G, and such 
that for each i E { 1, 2} and for each component Q of LI' n n - 1 [F0 ], if the 
n(xQ)- n(yQ) part ofbd(F0 ) (in clockwise orientation) contains v;, then one 
of xQ, YQ is near to V;. 

Proof Note that, by the observations on Figs. 70--74, for each 
component Q of Ll'nn-i[F0 ], xQ or YQ is near to the nearest vertex on 
the n(xQ)-n(yQ) part ofbd(F0 ). Also note that Q is a component of B(C) 
for some C E rc0 , as n - 1 [F0] does not contain any component in rci. 

If for each Q the n(xQ)-n(yQ) part of bd(F0 ) contains at most two 
vertices of G, we can take any two nonadjacent vertices v 1, v2 of G on 
bd(F0 ). 

If for at least one such component Q the n(xQ)- n( YQ) part of bd(F0 ) 

contains more than two vertices of G, choose Q maximal in the sense that 
the n(xQ)-n(yQ) part ofbd(F0 ) is as large as possible. Then we choose Vi 

and v2 so that xQ is near to v1 and YQ is near to v2 • 

Now Vi and v2 have the required properties. For suppose that for some 
component Q' of LI' n n- i [F0 ] the n(xQ. )- n( YQ·) part of bd(F0 ) contains 
v1 in such a way that neither xQ' nor YQ· is near to Vi. If n[Q'] does not 
cross n[Q] then the n(xQ.)-n(yQ.) part of bd(F0 ) would be larger than 
the n(xQ)-n(yQ) part of bd(F0 ), contradicting the choice of Q. 

So n[Q'] crosses n[Q]. Hence n[Q'] should cross n[Q] near to v1 or 
near to v2 (by (32)). If n[Q'] crosses n[Q] near to Vi, then YQ' is near to 
Vi. If n[Q'] crosses n[Q] near to v2 , then xQ' should be near to v2 • Hence 
v2 is contained in the n(xQ') - n( y Q') part of bd(F0 ). Since also v i is 
contained in the n(XQ·)-n(yQ.) part of bd(F0 ), n[Q'] should have a 
second crossing with n [ Q]. This crossing should be near to v 1 , and hence 
YQ· is near to v 1 • 
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FIGURE 121 

The proof is similar for the case where the n:(xQ)- n( y Q) part of bd(F0) 

contains v2 • 

Moreover, v1 and v2 are nonadjacent since otherwise we would have 
Fig. 121. Let C e CC with B( C) = Q. As C e 'b'0 , we see Fig. 122 from F0 on 
n- 1 [bd(F0 )]. (The turning points might also be on the p ~ 1 - p~2 part-see 
Figs. 75, 76.) 

By our choice of Q there is no component C' e 'b'0 contained in n- 1 [F0] 

such that bd( C') encloses bd( C) on the cylinder n - 1 [bd(F0 )]. So we can 
apply an isotopy in S3 to C so that the boundary of C encloses (part of) 
I only, as in Fig. 123. (Again, the turning points might be on the p~1 - p;~ 
part.) 

This makes 

w( v) (82) 
'' e VG l"I bd(Fol 

smaller, contradicting the minimality assumption (23)(ii). I 
Let ~ denote the collection of all boundary components D of all R2k that 

are oriented clockwise such that VG n R(D) # 0. Let p' denote the number 
of small components of the types given in Fig. 102. So by Claims 12 and 13, 

oc 

I x(R2k) ~If»\+ p'. (83) 
k=l 

FIGURE 122 
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FIGURE 123 

Let e'1' e;' be the two edges of G incident with Vi on bd(F0 ), and let e~, e~ 
be the two edges of G incident with v2 on bd(F0 ). 

For any simple directed circuit D let again R(D) denote the closed 
region enclosed by D. Moreover, let r i (D) be equal to the number of sets 
among e'I, {vi}, e;' that are contained in R(D). So ri(D)E {O, 1, 2, 3}. 
Similarly, let r2 (D) be equal to the number of sets among e;, { v2 }, e~ that 
are contained in R(D). 

This is used in showing: 

SUBCLAIM 16b. There is no crossing (i.e., vertex of Hof degree 4) in F0 

near to v i or near to v2 • 

Proof Suppose the subclaim is not true, and suppose without loss of 
generality that there exists a crossing in Fa near to vI. This implies 

(#DE9 I ri(D)=3)<(#DE.@ I ri(D)= 1). (84) 

The reason is that the crossings in Fa near to v 1 are locally as in Fig. 124. 
(There are no Z-type curves near Vi, since rr i[F0 ] contains no 
component in r6 1 , as µ(F0 ) = 0.) 

It implies that v i belongs to Veven (by (32) and (33)) and that the curves 

FIGURE 124 
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FIGURE 125 

in ~ are locally as in Fig. 125. Let there be .9 i curves Q in LI' n n - i [F0 ] 

with YQ near to Vi and let there be 92 curves Qin t1' n n -i[F0 ] with xQ 
near to v i ( cf. Fig. 124 ). Then there are min { 9 1 , 9 2 } curves DE~ with 
ri (D) = 3, l.9 1 - .92 1 curves DE~ with r 2 (D) = 2, and min{ .9 1 , .92 } + 1 cur­
ves De~ with ri(D)= 1 (cf. Figs. 125 and 95). Hence we have (84). (Note 
that by the conditions in Subclaim 16a, all D in p) with Yi (D) = 3 occur 
(partly) in Fig. 125.) 

Moreover, 

for no curve DE~ one has VG n R(D) = { vi}, (85) 

since otherwise by Claim 14 and (73) there are no points in U near to v1 , 

and hence there are no crossings near to v i . 
Now we distinguish two cases. 

CASE 1. There exists a crossing in F0 near to v2 • This similarly implies: 

(#DE~ I r 2 (D)=3)<(#Dep) I r2 (D)= 1) (86) 

and v2 belongs to Veven· 

Now for each De~ we have 

/(D)~8-2 I ri(D)-11-2 lr2 (D)- ll. (87) 

To see this, let 15 be a closed curve encircling D and very close to D, in 
such a way that 15 has exactly /(D) = c5(R(D)) crossings with G. Then 
showing (87) is simple case-checking, using the facts that R(D) should 
contain at least one vertex of G, and that hence, by the well-connectedness 
of K, 15 should cross G often enough; that is 

if 0 =I= VG n R(D) =I= VG then /(D) ~ 4; if I VG n R(D)I ~ 2 
and IVG\R(D)I ~ 2 then l(D) ~ 6. (88) 
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[Indeed, to check (87), we use the following observation: 

Let <§ be a 4-edge-connected planar graph embedded in IR 2, 

and let f!J be a simple closed curve in IR 2 not traversing any 
vertex of<§. Let t be the number of edges of<§ incident with 
the unbounded face ~ that are crossed at least once by f!J. 
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Then f!J has at least 2t crossings with <§. ( 89) 

(Proof Decompose f!J into curves f!J1 , •• ., f!Js, where each f16; has both 
ends in ~and has exactly two crossings with the boundary of~· Let A.; 
be the number of edges incident with ~ crossed by f!l; (so 1 :::::.; A;=::;; 2 ), and 
let µ; be the number of crossings of f16; with <§. Then, since <§ is 4-edge­
connected, µ; ~ 2 if A.;= 1 and µ; ~ 4 if A.;= 2. That is, µ; ~ 2A.;. Hence 
µ1+ ··· +µs~2(A.1+ ··· +A.,}~2!.) 

We may assume without loss of generality that r 2 (D) =::;; ri(D). First 
assume r 2 (D) = 0. If ri(D) = 0, then 0 =I VG n R(D) =I VG, implying 
l(D)~4 by (88). If ri(D)= 1, then D crosses e; and e~ and v2 ~R(D); also 
VG n R(D) =I { v1 } (by (85)); so [VG n R(D)[ ~ 2. If [V(G)\R(D)[ ~ 2 then 
l(D) ~ 6 by (88 ). If [V( G)\R(D)[ ~ 1 then VG\R(D) <;;;; { v2 } and hence the 
end points of e'1 and e~ not equal to v1 belong to R(D). Hence D crosses 
each of e~ and e;' at least twice. If D would cross G exactly four times then 
v2 E R(D), contradicting the assumption that r 2(D) = 0. So /(D) ~ 6 follows. 
If r 1 (D)~2, then v2 ~ R(D), v1 e R(D) and hence l(D) ~ 4 by (88). 

Second assume r2 (D)= 1. So D crosses both e; and e2, and hence 
l(D)~4 by (89). This gives (87), except if [r 1(D)-1[ ~ 1. 

If r 1 (D) = 1, then D crosses also both e'1 and e~. So D crosses G at least 
eight times by (89), and hence l(D) ~ 8. 

If r 1 (D)=2, then D crosses one of e't> e~ and both of e;, e;. So D crosses 
G at least six times by (89), and hence /(D) ~ 6. 

Third assume r2 (D) = 2. Then l5 crosses at least one of e;, e2. So 
l(D) ~ 2. Hence we have (87), except if [r 1 (D)- 11~1, that is, if r 1 (D)=2. 
In that case, D crosses at least one of e;, e;. So l5 crosses G at least four 
times by (89), and hence /(D)~4. 

If ri(D)=r 2 (D)=3 then (87) is trivial as /(D)~O.] 
Claim 10, (83), (84), (86), (87), and Claims 15 and 11 imply 

2 IVevenl +I Woddl + IVI + 2 J w;ddl + 211+2p -4p' 

:::::.; 4 C~1 x(R2k))-4p' :::::.;4 IEPI 

< (2 [E0[-2(#DEEP I ri(D)=3)+2(#DEEP I ri(D)= 1)) 

+(2 [E0[-2(#De!0 [ r2 (D)=3)+2(#De!0 [ r2(D)= 1)) 

=I (4-2[ri(D)-1)[)+ I (4-2[r2 (D)-1[) 
Defi1 De9 
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~ D~!J' l(D) ~et l(bd(R2k)))-2p' 

=C~l o(R2k))-2p'=21Vevenl + IWoddl + IVl-2p'. (90) 

Since p' ~ p, this gives a contradiction. 

CASE 2. There is no crossing in F0 near to v2 . So 

(#DE 9 I r 2 ( D) = 3) = 0. (91) 

Now for each DE §J one has 

/(D)~6-2 lri(D)-11. (92) 

To see this, again let f5 be a closed curve encircling D and very close to 
D, in such a way that 15 has exactly l(D) = o(R(D)) crossings with G. 
Then showing (92) is again simple case-checking, using the fact that R(D) 
contains at least one vertex of G and using the well-connectedness of K. 

[If r 1 (D) = 0 then v1 f. R(D), while VG n R(D) f:. 0, and by (88), 
l(D)~4. If ri(D)= 1, then v1 ER(D) and f5 crosses both e'1 and e;'. If 
l(D) = 4 then either VG n R( D) = { v 1 } contradicting ( 85 ), or D would have 
two crossings with e'1 and two crossings with e ;'; but then D should have 
more crossings with Gas r 2 (D) ~ 2. So l(D) ~ 6. 

If ri(D)=2 then v1 ER(D) and f5 crosses at least one of e'1 ,e;'; say it 
crosses e'1 . If /(D) = 2 then f5 would have a second crossing with e'1 and no 
further crossings with G; but this would imply r 2 (D)=3. So l(D)~4. 

If ri(D)=3 then l(D)~2, since r 2 (D)~2.] 
Now by Claim 10, (83), (84), (92), and Claims 15 and 11, 

2 I vevenl +I Woctctl +I VI+ 2 I w;ctctl + 2ri + 2p - 4p' 

~4c~1 x(R 2d)-4p'~4191 
<4 l§Jl-2(#DE.@I r 1 (D)=3)+2(#DE§J I r 1 (D)= 1) 

= D~V' (6-2 lrt(D)-ll)~D~U /(D)~c~ 1 /(bd(R2k)))-2p 1 

= C~1 o(R2d)-2p' = 2 I Vevenl +I woctctl +I VI - 2p'. (93) 

Since p' ~ p, this is a contradiction. I 
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This gives: 

SuBCLAIM 16c. Let D be a simple directed circuit in H', oriented clock­
wise, and not being a small component as given in Fig. 102. Then l(D) ~ 4. 

Proof By Subclaim 16b, r 1 (D)::::;2 and r 2 (D)::::;2. If VG$. R(D), then, 
as R(D) contains at least one vertex by Claim 13, l(D)=o(R(D))~4, by 
the well-connectedness of K. 

If VGr;;:;,R(D), then l ::::;ri(D)::::;2 and 1 ::;:;;r2 (D)::::;;2. So any curve D 
encircling D and close to D crosses at least one of e~, e;' and at least one 
ofe2,ei. So by (89), l(D)~4. I 

Now by Claim 10, (83), Subclaim 16c, and Claims 15 and 11, 

21 Vevenl +I Woddl + IVI +21 w;ddl +21'/ +2p-2p' 

::::;4 (~, x(R 2d)-2p' ::::;41.@I +2p' ::::;c~9 l(D)) + 2p' 

oc, 00 

:::::;; L /(bd(R2k))= L t5(R2k)=21Vevenl+IWoddl+IUI. (94) 
k=I k=l 

Since p' ~ p, it follows that we have equality throughout in (94 ). Hence 
w;dd = 0 and I'/= 0 and p' = p. So Fig. 120 does not occur. 

Moreover, H' has no simple directed circuit D that is oriented counter­
clockwise. Otherwise we could decompose H' into simple directed circuits 
D 1 , ••• , D, where D, = D, and where for some s < t, D 1 , •• ., D s are oriented 
clockwise, and Ds+ 1 , ••• , D, are oriented counter-clockwise. This implies by 
Subclaim 16c and Claim 12, 

CC I 

L /(bd(R2k)) = l(H') = I l(D;) 
k=I i= I 

oc, 

~ 4s- 2p' > 4(s- (t-s))- 2p' = 4 I x(R2d-2p', (95) 
k=I 

contradicting equality in (94 ). 
It similarly follows that /(D) = 4 for each simple directed circuit D not 

forming a small component as given in Fig. 102. Moreover, by the well­
connectedness of K, IVG n R(D)I:::::;; 1 or IVG\R(D)I:::::;; 1. So if VG n 
R(D) ¥= 0 and (81 )(i) and (81 )(ii) do not hold, then VG s;;: R(D). Let e and 
e' be the two edges incident with v1 that are incident with F0 . Suppose both 
e and e' are contained in R(D). Then there are components Q and Q' of 
LI' n n- 1 [F0 ] so that the n(xQ)-n(yQ) part of bd(F0 ) contains e and the 
n(xQ.)-n(yQ.) part of bd(F0 ) contains e'. Subclaim 16a then gives that 
n[Q] and n[Q'] cross near to v1 , contradicting Subclaim 16b. So there is 
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FIGURE 126 

an edge, eI say, incident with v1 and F 0 that is not contained in R(D). 
Similarly, there is an edge, e2 say, incident with v2 and F0 that is not 
contained in R(D). As VG s; R(D), each of e1 and e2 should leave R twice. 
So we have (8l)(iii). I 

So each component R of each R 2k is a closed disk, without holes (the 
boundary of a hole would be oriented counter-clockwise). By Claim 16 we 
have I VG n RI ~ 1 or IVG\RI,,,;; !. 

CLAIM 17. The configurations given in Figs. 105(b)-(i) do not occur. 

Proof As Fig. 120 does not occur, we cannot have Figs. 105(b), (c), 
(d), (f)-(h). Consider a configuration D of type (e) or (i) in Fig. 105, with 
R(D) minimal (inclusionwise). If it is of type (e) then the point x belongs 
to wodd and hence WE w+. So near to v we should have Fig.126 (cf. 
Figs. 70, 71, or 73 ). This would be part of a smaller component, which 
hence should be of type (a) in Fig. 105. However, D itself traverses v. 

If it is of type (i) in Fig. 105, then the points X, y, z, z' belong to wodd 

and hence to w+ (since W ..;-dd = 0 by Claim 16 ). So again, near to v we 
should have Fig. 127 ( cf. Figs. 70, 71, or 73 ). Then both w and w' should 
be part of a smaller component, which hence should be of type (a) in 
Fig. 105. However, it cannot be the case that both w and w' belong to a 
component of type (a) in Fig. 105. I 

Moreover: 

CLAIM 18. W= w:dd and <p=O. The configurations in Figs. 102(a), (c) 
do not occur. 

-"' 1-t l 
FIGURE 127 
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-1-.+----!-- or -l-+,.......--4~:- or -I---+.....-:-
FIGURE 128 

Proof By Claim 16, W;dd = 0. We next show W,;.en = 0. Suppose 
w;.en =f- 0 and let w E w;.en· Let e be the edge of G containing n(w). So, 
by Claim 4, all points in W that project to e, belong to We~en· 

Since by Claim 16 Fig. 120 does not occur and since w;dd = 0, it implies 
that e is as in Fig. 128 and there are no other points in n[ W] on e (there 
might be points in n [ U] on e) ( cf. Figs. 70-74 ). Without loss of generality, 
we may assume that Fig. 129 occurs (we may assume this since we can 
rotate the last configuration in Fig. 128 with respect to a vertical axis and 
obtain the first). Then one, left to n(w) all edges of H' are entering e from 
above, and leaving e from below. Moreover, right to n(w) all edges of H' 
are entering e from below, and leaving e from above, as in Fig. 130 (where 
v' denotes the other end of e ). Let R be the component of Rw<wl with n( w) 
on its boundary. From Fig. 130 we see that e is fully contained in R. So 
I VG n R\;;?; 2 and hence by Claim 16, I VG\RI::::;; 1. 

Now first assume that v belongs to v.,.n, as in Fig. 131. For the face 
values /3' and y' one has f3'>y' (near to n(w)), and hence (near to v) one 
has f3 > y. (Possible points in n[ U] in between do not invalidate the fact 
that left to d the face value below n[K] is larger than that above n[K].) 
Hence IX> fJ and w(v) =IX. Let a, b, c, d be the edges of H' as given in 
Fig. 131. Let R' be the component of Rw!vl with a, v, b on its boundary. 
Note that R has c and don its boundary. So R' £ R. 

Suppose VG n R' =I- { v }. Then by Claim 16, I VG\R'I::::;; 1. If I VG\R'I = 1, 
let { v0 } = VG \R'. Since both e and e' leave R', one should have v0 = v, 
contradicting the fact that v belongs to R'. So VG£ R'. Hence e and e' 
leave R' as in Fig. 132. But in that case R cannot contain R' (cf. Fig. 130). 

So we know VG n R' = { v }. Hence by Claim 14, R' is the shaded region 
in Fig. 133, with w', w" E w+ (since W;dd = 0). We can, by an isotopy in 
S 3, switch the component C in re with B( C) having w' and w" as turning 
points, to the other side of v. That is, Fig. 133 becomes Fig. 134. However, 
now w' belongs to w+ while w E w-, so they can be cancelled as 

582b(581 l-l0 

v I Tr(w) -T 
FIGURE 129 



132 ALEXANDER SCHRIJVER 

( or ~1 t-··± ( t···H 
FIGURE 130 

o4cl e' 
e.ve~ 

~ t K'~(...,) v 
~~ 

ft· 
c( e 

0( 
b 

~ 

eve rt. odd. 

FIGURE 131 

FIGURE 132 

FIGURE 133 



TAIT'S FLYPING CONJECTURE 133 

v w 

FIGURE 134 

in Claim 2. This contradicts the minimality assumption (23 )(iv). (The 
operations described do not change w( v) but reduce I WI.) 

Next assume that v belongs to Voctct· Let a, b, c, d be the edges of H' as 
in Fig. 135. We have ll! > y (by the same argument as above for the case 
v E veven). Hence /3 > b, and therefore w(v) = O!. So there are no points in 
n:[ U] on part r. It follows that a, b, c, d all are on the boundary of R. Since 
e is fully contained in R, we know that v and v' belong to R, and hence 
I VG\RI ~ 1 by Claim 16. 

Let e', e", e"' be the edges of G as indicated in Fig. 135. We show that e" 
is fully contained in R. To see this, we first consider, in Fig. 136, p[, and p~ 
as seen from F (see (25)). By Claim 5, e1 and e2 should lead to each other 
as in Fig. 137. Hence .E does not intersect the vertical segment connecting 
p~ and pt,; that is, iPv + C = 0. So there are no points in U near to v. 

Now v forms a "cut point" in R. That is, we can split R into two regions 
as in Fig. 138. Since b(R) = 4, we know fJ(Ri) + fJ(R 2 ) = 8. As e and e"' 
leave R 1 at least once, we know fJ(Ri) ~ 4. Similarly, as e' and e" leave R2 

at least once, we know fJ(R2 )~4. Hence c:5(RI)=c:5(R2 )=4. 
As e and e"' leave RI and as v1 eR 1 (so e leaves R 1 exactly once), we 

know that VG\R 1 = {v}. As R 1 nR2 =0 and as VrfR 2 , VGnR 2 =0. So 
each of e' and e" leaves R 2 exactly twice. Since there are no points in U 
near to v, it follows that there exist points w', w", w"' e Was in Fig. 139. As 
W ;dd = 0 (Claim 16 ), w"' belongs to W :dd. Hence w" E W :,en. Now e 

odd 
e'" 

eV~rt. 

& br 

e"~ r 1f{W) 
c e 

@ °' cl 
F 

ev~r\.. od.c! 
e' 

FIGURE 135 
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135 

should be like in Figs. 70-72. So Fig. 139(a) does not apply. Moreover, 
since v E V odd, Fig. 139(b) does not apply. So we have a contradiction. 

Concluding, there cannot exist a point w E we-ven; so w- = 0. Now by 
Subclaims lOe and lOd (recalling that Y/ = 0 by Claim 16), 

I w:ddl - I We~enl = 2 I VI+ 2q;, 

I w:ctdl +I we~enl = 2 IVI. 

Hence w;,en = 0 and q; = 0. 

(96) 

It follows that Figs. 102( a), ( c) do not occur, since they involve points in 

weven· I 
Since rjJ = 0, this implies that Figs. 78 and 80 do not occur. In fact, 

Fig. 82 does not occur either, since: 

CLAIM 19. U= 0. 
Proof Suppose U =I- 0. By Claim 18 this implies that (..=I- 0 for some 

vertex v. If v E V0 ctct consider Fig. 140, where ix= w(v) and u, u' EU, such 
that n(u) is the point in n[U] one nearest to v and n(u') is the point in 

n[ U] on e' nearest to v. Let R be the component of R~ _ 1 containing v (on 
its boundary). Since n( u) and n( u') are on the boundary of R, each of e and 
e' leaves R at least once. Moreover, e and e' do not both belong to the 

:/ 

e :Y e' 

FIGURE 141 
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boundary of the unbounded face F0 . Now there is no vertex v' such that 
VG\R = { v' }, since there are two edges incident with v that leave Rat least 
once, implying v' = v, contradicting the fact that v belongs to R. So by 
Claim 16, VGnR= {v}, that is (by Claim 17), bd(R) is of type (a) in 
Fig. 105-a contradiction since v E v odd. 

If v E veven consider Fig. 141, where (JC= w(v) and u, u' EU, such that :n:(u) 
is the point in :n:[U] one nearest to v and n(u') is the point in :n:[U] on 
e' nearest to v. Let R be the component of R,,. _ 2 containing v. Since :n:(u) 
and :n:(u') are on the boundary of R, each of e and e' leaves Rat least once. 
Moreover, e and e' do not both belong to the boundary of the unbounded 
face F0 (since there are no Z-type curves seen from the unbounded face F0 , 

as :n:- 1[F0 ] does not contain any component in ~\). So by Claim 16, 
VG n R = { v }, that is (by Claim 17), bd(R) is of type (a) in Fig. 105-a 
contradiction with (73) since there are points in n[ U] near to v. I 

As a consequence we have that each vertex of H' has indegree one and 
outdegree one. That is: 

Each component of H' is a directed circuit. (97) 

CLAIM 20. Each vertex v E Veven is in a component of type (a) in 
Fig. 105. 

Proof Let v E Veven and let a := w(v) as in Fig. 142. Let R be the 
component of R~ containing v (on its boundary). Then each of e and e' 
leaves Rat least once. If VG n R = { v} then bd(R) is of type (a) in Fig. 105 
(Claims 14 and 17). If VG\R = { v' }, then v' = v, since e and e' are incident 
with v' and G is well-connected, contradicting the fact that v belongs to R. 
So by Claim 16 we may assume that VG s;; R, and that each of e and e' 
leaves R exactly twice. Moreover, e and e' both are on the boundary of the 
unbounded face F0 of G. 

Now R can only be left by edges incident with a point v' E Veven traversed 
by bd(R) and by edges containing a point w E W traversed by bd(R). (If 
bd(R) contains a point v' E vodd then we have Fig. 143, where the shaded 
region is contained in R-so no edge is leaving R at v'.) 

Since e and e' leave R, e and e' should be on the boundary of F0 and e 

FIGURE 142 
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FIGURE 143 
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FIGURE 152 

FIGURE 153 

FIGURE 154 

FIGURE 155 
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and e' should leave R exactly twice. So bd(R) does not contain any other 
vertex in V even than V, and it should contain a point n( IV) on e and a point 
n( w') on e' (with w, w' E W), and a curve I in F 0 connecting n( IV) and n( w') 
as in Fig. 144. Seen from F0 we have Fig. 145 (by Claim 5). (Note that on 
e and e' there are no points in W near to v: if n(w') would be a point on 
e near to v, with w' E W, then we would have Fig. 146, assuming without 
loss of generality that w' is the nearest such point to v (since Weven = 0); 
this implies that we have the given values for µ.) Applying an isotopy we 
first obtain Fig. 147, and next Fig. 148 (after a shift as in Claim 5). This, 
however, decreases 

cv(v), (98) 
l'E VGnbd(Foi 

contradicting the minimality assumption (23 )(ii). I 

CLAIM 21. vodd = 0. 

Proof Let t1 E Vodd· Consider the component D of H' containing v. This 
component consists of a number of edges e of H' each of one of the types 
(99)-(102 ): 

e runs from v' to v" for some v', v" E V odd as in Fig. 149; (99) 

e runs from n(IV) to n(w') for some w, w' En[ W] as in 
Fig. 150 (note that Weven= 0); (100) 

e runs from v' to n( w) for some v' E V0 ctct and w E n [ W] as in 
Fig. 151; (101) 

e runs from n( w) to v' for some w En[ W] and v' E V0 dd as in 
Fig. 152. ( 102 l 

For any xE IR 3 let Jc(x) denote the number of points in I.: strictly above 
x. Then for any edge of type (99 ), ).( p ;, .. ) = ).( p ;,, ), since seen from F we 
have Fig. 153 (by Claim 5 ). For any edge of type ( 100 ), ),( w') = ).( w ), since 
Jc(x) is invariant on e. For any edge of type (101), ).(w)=).(p{,.), since seen 
from F we have Fig.154. For any edge of type (102), ).(p;,.)=A.(w)+l, 
since seen from F we have Fig. 155. Now D traverses at least one point in 
n[W] (since if it would consist only of edges of type (99) then D follows 
the boundary of an odd face counter-clockwise, contradicting Claim 16). So 
adding up all changes of ).(x) over all edges of H' traversed by D would 
give a positive number--a contradiction. I 

It follows that V = Veven and that each VE V occurs in a component of 
type (a) in Fig. 105. As I WI= 21 VI (Subclaim lOd), this implies that 
Fig. 102(b) does not occur. So all components of D are of type (a) in 
Fig. 105. Hence there exists an isotopy of 1Rl 3 bringing .E to .EK· I 
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5. THEOREM B 

We finally show: 

THEOREM B. Let K and K' be links with well-connected alternating 
diagrams, such that the unbounded faces of' n[K] and n[K'] are even. {l 
there is an isotopy of S 3 bringing I: K to I: K'> then the diagrams of K and K' 
are equivalent. 

Proof Let <P be an isotopy of S 3 bringing EK to I: K'. Let 
ijt(x):=<P(l,x) for all xES 3. So i/t[EK]=Er:·· 

Again, let HK be the planar graph obtained by putting a vertex in each 
odd face of n[K], joining any two such vertices by an edge if the corre­
sponding odd faces have a crossing in common. So for each vertex v of 
rr[K] there is an edge, denoted by £,, of HK· (Recall that e, denotes the 
edge on EK connecting p J and p J.) 

The graph HK' is derived similarly from K'. Now c;;. denotes the edge of 
HK. corresponding to vertex v of n[K']. Let e;. denote the edge in I: K' 
corresponding to vertex v of n[K']. 

We may assume that any two even faces of n[K] have at most one 
vertex in common. (For suppose that each of n[K], n[K'] has two even 
faces with at least two vertices in common. Then HK contains two edges 
forming a two-edge cut set. By the 3-vertex connectedness of HK it follows 
that HK is a digon or a triangle. It similarly follows that H x· is a digon or 
a triangle. Then Ex and EK' being isotopic directly implies that Kand K' 
are equivalent.) 

For each even face F of n [K], we fix a simple closed curve CF on EK as 
follows. Let Fi, .. ., F, be the odd faces incident with F, and let Vi, ... , v, be 
the vertices of n [K] incident with F. Then CF is a closed curve on I: K 

traversing the faces D F,, .. ., D F, of EK and crossing each of the edges 
e,.,, .. ., e,., exactly once, and not traversing any other face of I: K or crossing 
any other edge of Ex. (Recall that D F = n - 1 [ F] n EK for each odd face F 
ofrr[K].) 

Since any two even faces of n[K] have at most one vertex in common, 
we can take the curves CF in such a way that, for any two even faces F 1, F 2 

ofn[K], CF, and Cri have at most one crossing. In fact CF, and CF) have 
exactly one crossing, if and only if F\ and F2 intersect, viz. in a vertex v 
of n[K]. (That is, if and only if F 1 and F2 are contained in adjacent faces 
of HK·) We may assume that this crossing occurs on e,,. 

For any even face F of n[K], let BF denote the circuit in HK bounding 
the face of HK containing F. 

Now for each even face F of n[K], i/t [ Cp] is a closed curve on EK'· We 
may assume that each edge e;, in I: K' is crossed only a finite number of 
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times by l/J[Cp]. For each even face F of n[K] and each edge e= e~ of HK' 
let 

x(F, e) :=number of times l/J[ C ,...] crosses e~. (103) 

Define for each even face F of n [ K]: 

BF-:= {e E EH K' I x(F, e) is odd}. (104) 

Since l/J[Cp] is a closed curve, it crosses bd(DF') an even number of times 
for each odd face F' of n[K'], and hence B~. is a cycle (=edge-disjoint 
union of circuits) in HK'. 

We show: 

CLAIM 22. For each edge e of HK' there exist even faces F1 :f. F2 of n[K] 
such that e E B£.1 n B£.2• 

Proof Consider the homology space over '11. 2 of EK· It is generated by 
the curves CF• where F ranges over the even faces of n [K]. To see this, let 
C be any closed curve on EK· Let A be the set of edges e = ev of HK with 
the property that C crosses ev an odd number of times. Then each vertex 
of HK is incident with an even number of edges in A. So A is the symmetric 
difference (=mod 2 sum) of the boundaries of a collection ff' of faces of 
HK· Let § be the collection of even faces of n [K] that are contained in 
the faces in §'. Then C is homologous over l. 2 to LFe ff CF· To prove this, 
we may assume that C and the CF have only a finite number of crossings. 
Moreover, by slightly shifting we may assume that C and the CF do not 
intersect bd(E K). Now Cu U Fe.F CF crosses each ev an even number of 
times. Hence we can color, for each odd face F' of n[K], the components 
of DF'\(Cu U Fe.31' CF) red and blue so that adjacent components have 
different colors and such that bd(D F') n bd(I K) is colored red. Doing 
this for each Dr we obtain a coloring of the corn ponents of EK\ 
(Cu U Fe? CF) such that Cu U Fe .:F CF separates red and blue. So C and 
U Fe F CF are homologous over 7L 2 . 

One similarly shows that LF CF is nullhomologous over 7l.. 2 where F 
ranges over all even faces of n[K]. 

Now choose an edge e of HK'• say e = e~, where v is a vertex of n[K']. 
Then LF x(F, e) is even, since LF CF is nullhomologous on EK• and hence 
LF 1/1( C p) is nullhomologous on l/J(E K) =EK' (sums ranging over even 
faces F of n[K] ). So it suffices to show that there exists one even face F of 
n[K] such that e e B£.. 

Let F' be one of the two even faces of n[K'] incident with vertex v of 
n[K']. Then CF' crosses e~ exactly once. Now l/J 1 [CF'] is a closed curve 
on EK• and hence it is homologous to LFe .'!'" CF for some collection § of 
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even faces of n[K]. Hence CF' is homologous to l/t[LFe.oF CF]. Hence 
there exists an FE~ such that l/t [CF] crosses e;. an odd number of times. 
So e belongs to Bp. I 

Next: 

CLAIM 23. For each even face F of n[K] one has IBFI = IBFI· Moreover, 
each edge of H x· is contained in exactly two of the cycles B~ .. 

Proof For any simple closed curve C' on EK' and any e=e;. on EK. 
define 

y(C', e) :=[(number of times C' crosses e in one direction) 

- (number of times C' crosses e in the other direction)] 2• ( 105) 

(So here we choose, temporarily, a "left hand side" and a "right hand side" 
of e. Clearly, the definition is independent of this choice.) 

Then 

r( C', EK')= Ly( C', e;,), ( 106) 

where v ranges over all vertices of n[K']. We shall show ( 106) when C' is 
orientation-preserving (the extension to the general case is immediate). 
Consider a crossing of part ex (say) of C' with e~. Let ii be close and parallel 
to tX. Then ii makes a positive crossing with tX as in Fig. 156. Consider also 
two crossings of parts tX and f3 (say) of C' with e;, in the same direction. So 
part of EK' looks like Fig. 157. (In Fig. 157 we have displayed only the part 
of Ex· "in between" tX and /J.) Let ii and P be parallel and close to ex and 
[3, respectively. Then ii and fJ make a positive crossing, and ex and P make 
a positive crossing. Similarly, if ex and f3 cross e;. in opposite directions we 
obtain two negative crossings. 

FIGURE 156 



144 ALEXANDER SCHRIJVER 

FIGURE 157 

Now let ), be the number of times C' crosses e;. in one direction, and let 
µ be the number of times C' crosses e;. in the other direction. Then the 
number of positive crossings counted in the contribution of v to r( C', I: d 
is equal to 

( 107) 

while the number of negative crossings is 2A.µ. So the contribution of v to 
r(C',I:d is equal to A. 2 +µ 2 -2Aµ=(A.-µ)2. This shows (106). 

Moreover, by definitions (103) and (105), for each even face F of n[K] 
and each vertex v of n[K'], x(F, s;,) is odd if and only if y(i/J[CF], e~) is 
odd. In particular, ifs~ E B~, then y( I/I [CF], e;,) ~ 1. Hence for each even face 
F of n[K], 

(where again v ranges over vertices of n[K'] ). Moreover, since by Claim 22 
each edge e of HK' is contained in at least two cycles of the form B~< 

(109) 
F F 

where F ranges over all even faces of n[K]. 
Combining (108) and (109) gives the claim. I 
Next we show: 

CLAIM 24. Let F 1 and F2 be two even faces of n[K]. Then IB~-1 n B~·2 I 

is odd, if and only if F 1 and F2 are in adjacent faces of HK· 



TAIT'S FLYPING CONJECTURE 145 

Proof First assume that F, and F2 are not in adjacent faces of HK· So 
by assumption, C Fi and C Fi are disjoint. Then also !/! [ C 1.1 ] and l/J [CF,] are 
disjoint. We may assume that the projections n [ !/![ C 1-J] and n [!/![CF,]] 
are closed curves in IR 2 such that they only cross at vertices of n[K']: in 
such a way that near a vertex v of n[K'] there are 

( 110) 

crossings of n:[l/J[CF1]] with n:[l/J[CF2]]. 

Since the total number of crossings of n:[l/J[CF1]] with n:[l/J[CFJJ is 
even, we know that 

( 111 ) 

is even. Since ( 111 ) has the same parity as I B~1 n B~·2 I, we know that 
IB~·1 n B~2 I is even. 

If F, and F 2 are in adjacent faces, one similarly shows that I B~1 n B~2 I 
is odd. I 

In fact we have: 

CLAIM 25. For any two even faces F 1 and F2 of n[K], I B~.1 n B~·2 I = 1 if 
F1 and F2 are contained in adjacent faces of HK• and IB~1 n B~2 1=0 
otherwise. 

Proof By Claims 23 and 24 and by the well-connectedness of K, 

2v(K) =number of pairs (F1 , F2 ) of two even faces of n[K] 

contained in adjacent faces of HK 

< (F1. F2E'1 "'F2 IB~.\ (\ B~·21 = ~ (F1~F1 IB~.\ (\ B~·i I) 
=.L IB~·1 I =I IBF1 I =2v(K). (112) 

F1 F1 

So the inequality is attained with equality, and the claim follows. I 
We can now define a function 

.9: EHK->EHK' ( 113) 

as follows. For e E EH K• let F 1 and F2 be the two even faces of n[K] 
contained in the faces of HK incident with e. Let 

( 114) 

Then define .9(e) := e'. By Claim 23, this function is one-to-one, and hence 
onto (since JEHKI = JEHK·I). 



146 ALEXANDER SCHRIJVER 

Moreover, for each even face F of n[K], 9[BF] = B~-, since 

.9[BF] = U 9[BFnBr] = U (B~-nB~,)=B~. (115) 
F';"F F'#F 

So for each cycle Bin HK the set .9[B] is a cycle in HK' (since Bis a binary 
sum of circuits BF, and hence 9[B] is a binary sum of cycles B~). 

Now both HK and HK' are 3-vertex-connected planar graphs (by the 
well-connectedness of Kand K'), with IVH Kl= b(K) = b(K') = IVHK'I and 
IEHKI = v(K) = v(K')= IEHK·I. Hence, by Whitney's theorem [14], HK 
and HK' are the same plane graph, up to rerouting edges through the 
unbounded face, and up to turning the graph upside down. This implies 
that the diagrams of K and K' can be obtained from each other by the 
operations ( 1 ). That is, Kand K' have equivalent diagrams. I 
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