Tait's Flyping Conjecture for Well-Connected Links

Alexander Schrijver
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Received March 3, 1991

Abstract

We call a diagram of a link well-connected if it is connected, has no 2-edge cuts, and the only 4 -edge cuts are those made by a crossing. We prove Tait's flyping conjecture for well-connected diagrams, i.e., any two well-connected alternating diagrams represent equivalent ($=$ ambient itotopic) links, if and only if these diagrams are the same up to trivial operations. © 1993 Academic Press, Inc.

1. Introduction

A knot is a subset of \mathbb{R}^{3} homeomorphic to the unit circle. A link is a disjoint union of a finite number of knots (cf. [1]).

We assume knots and links to be tame. Moreover, for the purpose of this paper we may assume that for each link K considered, the projection $\pi[K]$ of K to \mathbb{R}^{2} is a 4-regular planar graph, with a finite set of vertices, edges, and faces. Here π denotes the projection from \mathbb{R}^{3} onto \mathbb{R}^{2} with $\pi\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}, x_{2}\right)$. Throughout, by projecting we mean projecting by π.

We can associate with a link K the diagram of K that arises by projecting K to \mathbb{R}^{2}, indicating at each crossing which of the two curve segments goes over the other as in Fig. 1.

In this paper, by the diagram of a link we mean the diagram obtained under projecting by π. The diagram is called alternating if, when following each component of the link in its diagram, we go alternatingly over and under, like in Fig. 2.

Two links K and K^{\prime} are equivalent if there exists an isotopy of \mathbb{R}^{3} bringing K to K^{\prime}. (An isotopy of a topological space X is a continuous function $\Phi:[0,1] \times X \rightarrow X$ such that $\Phi(0, u)=u$ for each $u \in X$, while for each fixed $t \in[0,1]$ the function $\Phi(t, \cdot)$ is a homeomorphism of X. It brings Y to Y^{\prime} if $\Phi(1, Y)=Y^{\prime}$.)

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Two link diagrams are called equivalent if one arises from the other by a finite sequence of the following operations:
(i) reflecting the diagram in \mathbb{R}^{2}, e.g., with respect to the x_{1} axis, and interchanging over and under;
(ii) rerouting one of the edges of the diagram through the unbounded face, as in Fig. 3.
(Operation (i) corresponds to rotating the link (in \mathbb{R}^{3}), around the x_{1}-axis-this corresponds to an isotopy. The box in Fig. 3 denotes the rest of the diagram.)

Remark 1. It has been shown by Reidemeister [7] that if two diagrams represent equivalent links, then these diagrams can be obtained from each other by a finite sequence of the operations given in Fig. 4. These operations are called the Reidemeister moves.

Clearly, if two links have equivalent diagrams, they are equivalent. The converse need not hold in general. However, as we show in this paper, if the diagrams are well-connected and alternating the converse does hold. We call the diagram $\pi[K]$ of a link K well-connected if (as a graph) $\pi[K]$ is connected, has no 2 -edge cut sets, and the only 4 -edge cut sets are those determined by one vertex of $\pi[K]$ (that is, the four edges incident with a vertex ($=$ crossing) of $\pi[K]$).

Theorem. Let K and K^{\prime} be links with well-connected alternating diagrams. If K and K^{\prime} are equivalent, then their diagrams are equivalent.

This is a special case of the Tait flying conjecture [8], which does not require well-connectedness but the weaker reducedness instead (a diagram is reduced if the graph is connected and has no loops and no cutpoints), while the operations (1) should be extended by flyping-cf. Fig. 5 (it is also a flype if over and under in the two crossings given are interchanged). ${ }^{1}$

Note that flypes are not possible for well-connected diagrams. (Tait: "The deformation process is, in fact, simply one of flyping, an excellent word, very inadequately represented by the nearest equivalent English phrase turning outside in." [8]; "When we flype a glove (as in taking it off when very wet, or as we skin a hare), we perform an operation which changes its character from a right-hand glove to a left" [9].)

Remark 2. By an idea of Tait, the diagram $\pi[K]$ of any link K gives a planar graph H_{K} as follows. Color the faces of $\pi[K]$ black and white

[^0]such that adjacent faces have different colors, and such that the unbounded face is colored white. Put a vertex in each black face, and for each crossing, make an edge connecting the vertices in the two (possibly identical) black faces incident with the crossing (in such a way that the edge crosses the crossing).

Now a link K is well-connected if and only if the graph H_{K} is 3 -vertexconnected (i.e., has no vertex cut of less than three vertices and has no parallel edges (except if it has only two vertices connected by at most three parallel edges)).

2. Proof of the Theorem

We will associate with any link K a compact bordered surface Σ_{K} in \mathbb{R}^{3}, with $\operatorname{bd}\left(\Sigma_{K}\right)=K$. (bd denotes boundary.) A pictorial impression of Σ_{K} is given in Fig. 6. Here any two black faces are connected at a crossing by a twisted band as in the Möbius strip (Fig. 7) (or the twist the other way around if over and under are interchanged).

More precisely, Σ_{K} is defined as follows. For any link K, let V_{K} denote the set of vertices of $\pi[K]$, and let

$$
\begin{equation*}
v(K):=\left|V_{K}\right| \tag{2}
\end{equation*}
$$

For each vertex v of the graph $\pi[K]$, let p_{v}^{\dagger} and p_{v}^{\downarrow} be the two points in $K \cap \pi^{-1}(v)$, where p_{v}^{\dagger} is above p_{v}^{\downarrow}. (Here and below, above and under refer to larger and smaller x_{3} coordinate.)

Moreover, let e_{v} be the open line segment in $\pi^{-1}(v)$ connecting p_{v}^{\dagger} and p_{v}^{\downarrow}. Define

$$
\begin{equation*}
T:=K \cup \bigcup_{v \in V_{K}} e_{v} \tag{3}
\end{equation*}
$$

Figure 6

Figure 7
So T forms a 3-regular graph embedded in \mathbb{R}^{3}, with $2 v(K)$ vertices and $3 v(K)$ edges.

Let K be a link with alternating diagram $\pi[K]$. Call a face F of $\pi[K]$ even if at each vertex v incident with F one has a crossing as in Fig. 8. (So if F is bounded then when following the boundary of F in clockwise orientation, we follow the edges from up to down.) The other faces are called odd.

Note that of any two adjacent faces, one is even and the other is odd. So if the unbounded face is even, then the white faces are even, and the black faces are odd. If the unbounded face is odd, then the white faces are odd, and the black faces are even.

Note moreover that any link diagram can be transformed into one in which the unbounded face is even, by (possibly) rerouting through the unbounded face (operation (1)(ii)). So the condition that the unbounded face be even, is not a restriction.

Let K be a link with connected alternating diagram, such that the unbounded face of $\pi[K]$ is even. Let \mathscr{B} denote the collection of odd faces. Consider an odd face F. The set $\pi^{-1}[\operatorname{bd}(F)] \cap T$ is a simple closed curve, consisting of parts of K and of the line segments e_{v}, for those vertices v of $\pi[K]$ that are incident with F. So it is the boundary of some open disk D_{F} such that π maps D_{F} one-to-one onto F. Fix for each odd face F one such open disk D_{F}. Then we define:

$$
\begin{equation*}
\Sigma_{K}:=T \cup \bigcup_{F \in: B} D_{F} . \tag{4}
\end{equation*}
$$

So Σ_{K} indeed is a compact bordered surface with boundary K.
Our proof is based on the following two theorems, which might be interesting in their own right:

Figure 8

Theorem A. Let K and K^{\prime} be links with well-connected alternating diagrams, such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even. If K and K^{\prime} are equivalent, then there is an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{K^{\prime}}$.
(S^{3} is the 3-dimensional sphere, considered as one-point compactification of \mathbb{R}^{3}.)

Theorem B. Let K and K^{\prime} be links with well-connected alternating diagrams, such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even. If there is an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{K^{\prime}}$, then the diagrams of K and K^{\prime} are equivalent.

Theorems A and B clearly directly imply the theorem. Although Theorem A above holds in general, to avoid several technicalities, in this paper we prove Theorem A only under the condition that
the unbounded face of $\pi[K]$ is bounded by at least four edges of $\pi[K]$.

This is enough to derive the theorem, since we may assume that either $\pi[K]$ or $\pi\left[K^{\prime}\right]$ has at least one face that is bounded by at least four edges. (If all faces of $\pi[K]$ and of $\pi\left[K^{\prime}\right]$ are bounded by at most three edges, then, by the well-connectedness of K and $K^{\prime}, \pi[K]$ and $\pi\left[K^{\prime}\right]$ have either at most three vertices or both are the octahedron, and the theorem is easy to check under these assumptions.) Then by applying operations (1) and possibly mirroring K and K^{\prime} in the $x_{1}-x_{2}$ plane we can obtain condition (5). (Mirroring in the $x_{1}-x_{2}$ plane by itself is not an isotopy, but it maintains equivalence of K and K^{\prime}.)

Remark 3. In fact a more general statement than Theorem A holds:
Let K and K^{\prime} be links with reduced alternating diagrams such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even. If K and K^{\prime} are equivalent, then there is an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{\tilde{K}^{\prime}}$, where \tilde{K}^{\prime} is a link the diagram of which can be obtained from that of K^{\prime} by a series of flypings.

Remark 4. The following can be proved by methods similar to those used in this paper to show Theorem B:

Let K and K^{\prime} be links with reduced alternating diagrams, such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even. If there is an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{K^{\prime}}$, then the cycle spaces of H_{K} and $H_{K^{\prime}}$ are isomorphic.

Here the cycle space of a graph is the collection of its cycles. A cycle is an edge-disjoint union of circuits.
Statements (6) and (7) imply that if K and K^{\prime} are equivalent links with reduced alternating diagrams such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even, then the cycle spaces of H_{K} and $H_{K^{\prime}}$ are isomorphic. By a theorem of Whitney [14], (7) directly implies Theorem B.

3. Preliminaries on Links and Surfaces

We give some preliminaries on links and surfaces (see [4, Sects. I-IV] in which the information on links given below can be found).

Kauffman [3], Murasugi [5] and Thistlethwaite [10] (cf. Turaev [13]) showed that if K and K^{\prime} are equivalent links with reduced alternating diagrams, then $v(K)=v\left(K^{\prime}\right)$. In fact they showed that any reduced alternating diagram of a link K attains the minimum number of crossings among all diagrams of links equivalent to K.

A second invariant is obtained as follows. Give each component of K some orientation. This way we obtain an oriented link. Then there are two types of crossings, positive and negative-see Fig. 9. The writhe $w(K)$ of K is the number of positive crossings minus the number of negative crossings. This number is not invariant under equivalence of links. However, Murasugi [6] and Thistlethwaite [11] showed that if K and K^{\prime} are equivalent links with reduced alternating diagrams, then $w(K)=w\left(K^{\prime}\right)$. Similarly, Murasugi [6] and Thistlethwaite [12] showed that the number $b(K)$ of odd faces is an invariant for reduced alternating diagrams of equivalent links.

Let K_{1} and K_{2} be two disjoint oriented links. Consider the diagram made by $K_{1} \cup K_{2}$. Define

$$
\begin{align*}
\operatorname{lk}\left(K_{1}, K_{2}\right):= & \frac{1}{2}\left(\left(\# \text { positive } K_{1}-K_{2} \text { crossings }\right)\right. \tag{8}\\
& \left.-\left(\# \text { negative } K_{1}-K_{2} \text { crossings }\right)\right)
\end{align*}
$$

(A $K_{1}-K_{2}$ crossing is a crossing of K_{1} with K_{2}. \# means "number of." Here no condition is put on which of K_{1} and K_{2} is above the other at the crossing.) This number is invariant under isotopy of S^{3} : if ($K_{1}^{\prime}, K_{2}^{\prime}$)

Figure 9
is brought to (K_{1}, K_{2}) by some isotopy then $\operatorname{lk}\left(K_{1}^{\prime}, K_{2}^{\prime}\right)=\operatorname{lk}\left(K_{1}, K_{2}\right)$ (assuming that K_{1}^{\prime} and K_{2}^{\prime} are oriented as induced through the isotopy by the orientations of K_{1} and K_{2}). This invariance of $\operatorname{lk}(\cdot, \cdot)$ follows directly by considering the Reidemeister moves.

Let K be an oriented link and let Σ be a disjoint union of a finite number of compact bordered surfaces embedded in \mathbb{R}^{3} and containing K. We define a number $\tau(K, \Sigma)$ as follows.

If each component of K is an orientation-preserving curve on Σ, we take for each component κ of K a curve $\tilde{\kappa}$ parallel on Σ to κ. The union of these $\tilde{\kappa}$ forms a link \widetilde{K}. Then $\tau(K, \Sigma):=2 \operatorname{lk}(K, \widetilde{K})$, where we orient K and \widetilde{K} in the same direction.

If at least one component of K is orientation-reversing, we consider a link J homotopic on Σ to the set of closed curves that follow the components of K twice. So each component of J is orientation-preserving. We define $\tau(K, \Sigma):=\frac{1}{4} \tau(J, \Sigma)$.

Clearly, if K and K^{\prime} are homotopic on Σ, then $\tau(K, \Sigma)=\tau\left(K^{\prime}, \Sigma\right)$. (This follows from the fact that there exists an isotopy fixing Σ bringing K to K^{\prime}. Hence if each component of K is orientation-preserving, then there exists an isotopy fixing Σ bringing (K, \widetilde{K}) to ($K^{\prime}, \widetilde{K}^{\prime}$), where \widetilde{K} and \widetilde{K}^{\prime} are the shifted K and K^{\prime}, respectively. So $\operatorname{lk}(K, \widetilde{K})=1 \mathrm{k}\left(K^{\prime}, \widetilde{K}^{\prime}\right)$. Similarly for J if some component of K is orientation-reversing.)

More generally, if some isotopy of S^{3} brings (K, Σ) to $\left(K^{\prime}, \Sigma^{\prime}\right)$, then $\tau(K, \Sigma)=\tau\left(K^{\prime}, \Sigma^{\prime}\right)$.

Direct calculation shows that for any oriented link K with alternating diagram for which the unbounded face of $\pi[K]$ is even one has

$$
\begin{equation*}
\tau\left(K, \Sigma_{K}\right)=2(v(K)+w(K))=4(\text { \# positive crossings of } K) . \tag{9}
\end{equation*}
$$

Indeed, observe that K is orientation-preserving, since it is a boundary component of Σ_{K}. Consider a positive crossing of K. Let $K^{\prime}, K^{\prime \prime}$ and $\widetilde{K}^{\prime}, \widetilde{K}^{\prime \prime}$

Figure 10

Figure 11
be the parts of K and \widetilde{K} as in Fig. 10. Then K^{\prime} and \tilde{K}^{\prime} make a positive crossing, K^{\prime} and $\widetilde{K}^{\prime \prime}$ make a positive crossing, $K^{\prime \prime}$ and \widetilde{K}^{\prime} make a positive crossing, and $K^{\prime \prime}$ and $\widetilde{K}^{\prime \prime}$ make a positive crossing. So a positive crossing contributes 4 to $\tau\left(K, \Sigma_{K}\right)$.

Consider next a negative crossing of K (Fig. 11). Again K^{\prime} and \tilde{K}^{\prime} make a positive crossing and $K^{\prime \prime}$ and $\widetilde{K}^{\prime \prime}$ make a positive crossing. On the other hand, $K^{\prime \prime}$ and \widetilde{K}^{\prime} make a negative crossing and also K^{\prime} and $\widetilde{K}^{\prime \prime}$ make a negative crossing. Hence a negative crossing contributes 0 to $\tau\left(K, \Sigma_{K}\right)$.

Finally, as is well-known, the Euler characteristic $\chi\left(\Sigma_{K}\right)$ of a surface Σ_{K} is equal to: number of faces, minus number of edges, plus number of vertices of any graph embedded on the surface (with all faces being an open disk). So

$$
\begin{equation*}
\chi\left(\Sigma_{K}\right)=b(K)-v(K), \tag{10}
\end{equation*}
$$

where $b(K)$ denotes the number of odd faces of the diagram of K. (This follows from the facts that T has $2 v(K)$ vertices and $3 v(K)$ edges, and that $\Sigma_{K} \backslash T$ consists of $b(K)$ open disks.)

4. Theorem A

In this section we consider:
Theorem A. Let K and K^{\prime} be links with well-connected alternating diagrams such that the unbounded faces of $\pi[K]$ and of $\pi\left[K^{\prime}\right]$ are even. If K and K^{\prime} are equivalent, then there is an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{K^{\prime}}$.

We show Theorem A under the condition that the unbounded face of $\pi[K]$ is bounded by at least four edges of $\pi[K]$.

Proof. It suffices to show:
Lemma. Let K be a link with well-connected alternating diagram such that the unbounded face of $\pi[K]$ is even. Let Σ be the disjoint union of compact bordered surfaces satisfying:
(i) $\operatorname{bd}(\Sigma)=K$,
(ii) $\chi(\Sigma) \geqslant b(K)-v(K)$,
(iii) $\tau(K, \Sigma)=2(v(K)+w(K))$.

Then there exists an isotopy of S^{3} bringing Σ to Σ_{K}.
("Disjoint union of compact bordered surfaces" implies that each component of Σ has a nonempty border (being a nonempty disjoint union of closed curves). Observe that condition (11)(iii) is independent of the orientations chosen for K (since $\tau(K, \Sigma)-2 w(K)$ represents the total twist of annular neighbourhoods on Σ of the components of K). The conclusion in the lemma implies that Σ is connected and that equality holds in (11)(ii).)

We prove the lemma under the condition that the unbounded face of $\pi[K]$ is bounded by at least four edges.

Remark 5. The lemma also holds if this last condition is not satisfied. In fact, the lemma can be extended to links with reduced, not necessarily well-connected diagrams. In that case the conclusion is that there exists an isotopy of S^{3} bringing Σ to $\Sigma_{\tilde{K}}$, where \tilde{K} is some link the diagram of which is obtained from that of K by a series of flypings.

To derive Theorem A from the Lemma, let K and K^{\prime} be equivalent links with well-connected alternating diagrams such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even, and such that the unbounded face of $\pi[K]$ is bounded by at least four edges.

Let Φ be an isotopy of S^{3} bringing K^{\prime} to K. Let $\psi(x):=\Phi(1, x)$ for all $x \in S^{3}$. So $K=\psi\left[K^{\prime}\right]$.

Applying the lemma to $\Sigma:=\psi\left[\Sigma_{K^{\prime}}\right]$ gives Theorem A (since

$$
\begin{align*}
\tau\left(K, \psi\left[\Sigma_{K^{\prime}}\right]\right) & =\tau\left(\psi\left[K^{\prime}\right], \psi\left[\Sigma_{K^{\prime}}\right]\right)=\tau\left(K^{\prime}, \Sigma_{K^{\prime}}\right) \\
& =2\left(v\left(K^{\prime}\right)+w\left(K^{\prime}\right)\right)=2(v(K)+w(K)) \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\chi\left(\psi\left[\Sigma_{K^{\prime}}\right]\right)=\chi\left(\Sigma_{K^{\prime}}\right)=b\left(K^{\prime}\right)-v\left(K^{\prime}\right)=b(K)-v(K)\right) . \tag{13}
\end{equation*}
$$

Proof of the Lemma. Let

$$
\begin{align*}
G & :=\pi[K], \\
V & :=V_{K}, \tag{14}\\
P & :=\left\{p_{v}^{\uparrow} \mid v \in V\right\} \cup\left\{p_{v}^{\downarrow} \mid v \in V\right\} .
\end{align*}
$$

Throughout we identify an embedded graph with its image. We consider edges as open curves, and faces as open regions.

In proving the lemma, we make the assumption that Σ is tame and in general position with respect to the link K and the projection function π. In particular we assume that Σ has a simplicial decomposition into a finite number of vertices, edges, and faces, in such a way that each edge and each face projects one-to-one to \mathbb{R}^{2}. So the number

$$
\begin{equation*}
\omega(x):=\left|\Sigma \cap \pi^{-1}(x)\right| \tag{15}
\end{equation*}
$$

is finite for each $x \in \mathbb{R}^{2}$.
Moreover, there exists a planar graph H in \mathbb{R}^{2}, with a finite number of vertices, edges, and faces, such that ω is constant on each edge and on each face of H. We may assume that ω takes the value 0 in the unbounded face of H. (So Σ does not contain the point in $S^{3} \backslash \mathbb{R}^{3}$. This is no restriction as we can easily shift Σ slightly.)

The simplicial decomposition of Σ implies that there exists a finite set W of points on K that do not have a neighbourhood in Σ that projects one-toone to \mathbb{R}^{2}. We may assume that the neighbourhood of any point in W is

Figure 12

Figure 13
like one in Fig. 12. (In this and following figures, the bold lines indicate parts of K or of $\pi[K]$. The wriggled lines give the cuts through Σ bounding the neighbourhood.)
As an illustration, one could represent a twisted band as in Fig. 7 as follows. Take a slip of paper as in Fig. 13 and fold it as in Fig. 14. The two sides of the slip form a crossing at x, and locally the surface is isotopic to the part in Fig. 7. The points w_{1} and w_{2} are in W; the neighbourhood of w_{1} is of type (a) in Fig. 12 and that of w_{2} is of type (c) in Fig. 12. Doing this for each crossing we obtain a surface isotopic to Σ_{K}.

We may assume that $P \cap W=\varnothing$. Moreover, we may assume that the projection of any vertex of the simplicial decomposition of Σ is not contained in the projection of any edge of this decomposition.
Define

$$
\begin{equation*}
\Gamma:=\Sigma \cap \pi^{-1}[G] \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\Delta:= & \left\{x \in \sum \mid x \text { has no neighbourhood on } \Sigma\right. \text { that is an open disk } \\
& \text { and that projects one-to-one to } \left.\mathbb{R}^{2}\right\} . \tag{17}
\end{align*}
$$

By the tameness and general position assumption Γ and Δ are graphs (embedded in \mathbb{R}^{3}), with a finite number of vertices and edges.

The link K is contained both in Γ and in Δ. The graph Δ consists of K together with all "fold" edges of Σ. The set W is the set of vertices of Δ of degree 3 , all other vertices of Δ having degree 2 . Note that

$$
\begin{equation*}
H=\pi[\Delta] . \tag{18}
\end{equation*}
$$

Figure 14

Figure 15
(It is not difficult to see that these assumptions can be satisfied. In fact, if we take $\Sigma=\psi\left[\Sigma_{K^{\prime}}\right]$ as in the beginning of this section, these assumptions are easily fulfilled, as the isotopy can be described by Reidemeister moves.)

We introduce some further notation and terminology. Let W^{\dagger} denote the set of points of type (a) or (b) in Fig. 12, and let W^{\downarrow} denote the set of points of type (c) or (d) in Fig. 12. Let W^{+}denote the set of points of type (a) or (c) in Fig. 12, and let W^{-}denote the set of points of type (b) or (d) in Fig. 12. This notation is motivated by the fact that
a link \widetilde{K} on Σ parallel and close to K, makes a positive crossing with K near any point $w \in W^{+}$, and a negative crossing with K near any point $w \in W^{-}$.

For instance, in (a) of Fig. 12, a positive $K-\widetilde{K}$ crossing can be seen (Fig. 15).

Let U be the set of points in $\pi^{-1}[G]$ that are on fold edges of Δ. That is,

$$
\begin{equation*}
U:=\Delta \cap \pi^{-1}[G] \backslash K . \tag{20}
\end{equation*}
$$

So U is the set of points u that have in $\Sigma \cap \pi^{-1}[G]$ a neighbourhood as in Fig. 16. Moreover, define (for any X)

$$
\begin{align*}
V X & :=\text { set of vertices of } X, \\
E X & :=\text { set of edges of } X, \\
F X & :=\text { set of faces of } X, \tag{21}\\
\mathscr{C} & :=\text { set of components of } \Sigma \backslash \pi^{-1}[G], \\
F_{0} & :=\text { unbounded face of } G .
\end{align*}
$$

Call a component of $K \backslash(P \cup W)$ (i.e., an edge of Γ on K) a segment.

Figure 16

By extension, define for any $x \in \mathbb{R}^{3}: \omega(x):=\omega(\pi(x))$. Call a point x in \mathbb{R}^{2} or \mathbb{R}^{3} even or odd if $\omega(x)$ is even or odd. For any set $X, X_{\text {even }}$ denotes the set of even points in X, and $X_{\text {odd }}$ denotes the set of odd points in X.

For any nonempty subset X of \mathbb{R}^{2} or \mathbb{R}^{3} let

$$
\begin{equation*}
\mu(X):=\min \{\omega(x) \mid x \in X\} . \tag{22}
\end{equation*}
$$

Minimality of Σ. Suppose Σ is a counterexample to the lemma. We may assume that we have chosen Σ in such a way that:
(i) $\chi(\Sigma)$ is as large as possible;
(ii) $\sum_{v \in V G \cap \operatorname{bd}\left(F_{0}\right)} \omega(v)$ is as small as possible;
(iii) $\sum_{v \in V G} \omega(v)$ is as small as possible;
(iv) $|W|$ is as small as possible;
(v) $\sum_{\sigma \text { segment }} \mu(\sigma)$ is as small as possible;
(vi) $|U|$ is as small as possible.
(In this order: (ii) should hold under condition (i), and so on.)
Σ is determined by Γ. The surface Σ is determined by the graph Γ (up to inessential deformations). To see this, note that by our general position assumption, the boundary of any component $C \in \mathscr{C}$ is a disjoint union of simple closed curves. In fact it is only one closed curve:

Claim 1. Each component $C \in \mathscr{C}$ is an open disk.
Proof. Consider a face F of G. For any component $C \in \mathscr{C}$ contained in $\pi^{-1}[F]$, the boundary $\operatorname{bd}(C)$ of C is a union of pairwise disjoint simple closed curves on $\operatorname{bd}\left(\pi^{-1}[F]\right)$.

Moreover, C is orientable, since we can extend C to a closed surface

Figure 17

Figure 18
in \mathbb{R}^{3} by adding disjoint closed disks to the boundary components of C (outside a finite section of $\pi^{-1}[F]$).
Suppose $\pi^{-1}[F]$ contains a component in \mathscr{C} that is not an open disk. Then we can choose a component $C \in \mathscr{C}$ contained in $\pi^{-1}[F]$ such that C is not an open disk and such that for one of its boundary components γ, one of the components of $\pi^{-1}[\operatorname{bd}(F)] \backslash \gamma$ is minimal (inclusion-wise). (Minimal taken over all C that are not open disks, over all boundary components γ and over the two components of $\pi^{-1}[\operatorname{bd}(F)] \backslash \gamma$.)

By this minimality assumption, we know that there exists an open disk C_{2} in $\pi^{-1}[F]$ with boundary γ, and disjoint from Σ. Near to C_{2} we can do surgery on C so as to obtain a bounded surface C_{1} in $\pi^{-1}[F]$ with boundary $\operatorname{bd}(C) \backslash \gamma$, and disjoint from $(\Sigma \backslash C) \cup C_{2}$ (cf. Fig. 17). Thus

$$
\begin{equation*}
\chi\left(C_{1}\right)+\chi\left(C_{2}\right)=\chi(C)+2 \tag{24}
\end{equation*}
$$

Let Σ^{\prime} be the manifold obtained from Σ by replacing C by C_{1} and C_{2}. So $\chi\left(\Sigma^{\prime}\right)=\chi(\Sigma)+2$.

Let $\Sigma^{\prime \prime}$ be the union of those components of Σ^{\prime} that have a nonempty border (i.e., are not closed). So $\operatorname{bd}\left(\Sigma^{\prime \prime}\right)=K$. Note that $\Sigma^{\prime} \backslash \Sigma^{\prime \prime}$ has at most one component, because each component of Σ has a nonempty border. If $\chi\left(\Sigma^{\prime \prime}\right)>\chi(\Sigma)$, we would obtain a counterexample with larger Euler characteristic, contradicting our assumption (23)(i). (It is a counterexample, since clearly $\tau\left(K, \Sigma^{\prime \prime}\right)=\tau(K, \Sigma)$ and since $\chi\left(\Sigma^{\prime \prime}\right)>\chi(\Sigma) \geqslant b(K)-v(K)=\chi\left(\Sigma_{K}\right)$.)
So $\chi\left(\Sigma^{\prime \prime}\right) \leqslant \chi(\Sigma)$. Hence $\chi\left(\Sigma^{\prime} \backslash \Sigma^{\prime \prime}\right) \geqslant 2$, and hence $\Sigma^{\prime} \backslash \Sigma^{\prime \prime}$ is a 2 -sphere S. Then K is either enclosed by S or is contained in the exterior of S. (Indeed, $\pi[K]$ attains the minimum number of crossings among all links equivalent

(a)

(b)

Figure 19
to K (cf. Section 3). Hence there cannot exist a 2-sphere separating two components of K.)

By (possibly) applying an isotopy of S^{3} we may assume that K is contained in the exterior of S.

It follows that there is an isotopy bringing $\left(S \backslash\left(C_{1} \cup C_{2}\right)\right) \cup C$ to a bordered surface contained in $\pi^{-1}[F]$, fixing $\Sigma \backslash\left(\left(S \backslash\left(C_{1} \cup C_{2}\right)\right) \cup C\right)$. Thereby we decrease $|U|$ or $\omega(v)$ for at least one $v \in V$, and we do not increase $\omega(v)$ for any $v \in V G$, or $|W|$, or $\mu(\sigma)$ for any segment σ. This contradicts the minimality assumption (23).

It follows that, up to isotopy, we can reconstruct Σ from Γ, because up to isotopy there is a unique way to fill disjoint closed curves on a cylinder by disjoint disks inside the cylinder. (This follows inductively from the homotopic triviality of the solid cylinder.) Note that at edges e of Γ not on K, the surface Σ is attached at both sides of $\pi^{-1}[\pi[e]]$. At each segment σ on $K(=$ edge of Γ on $K), \Sigma$ is attached at only one side. We can determine this side, as it is at the "odd face side" if $\mu(\sigma)$ is odd, and at the "even face side" if $\mu(\sigma)$ is even. $(\mu(\sigma)$ is determined by Γ.)

The graphs G and H. Note that $G=\pi[K]$ is a subgraph of H, and if $x \notin H$, that $\omega(x)$ is odd if x belongs to some odd face of $\pi[K]$, and $\omega(x)$ is even if x belongs to some even face of $\pi[K]$.

Note moreover that if e is an edge of H, and F and F^{\prime} are the two faces of H incident with e, then $\left|\mu(F)-\mu\left(F^{\prime}\right)\right|=1$ if e is part of G, and $\left|\mu(F)-\mu\left(F^{\prime}\right)\right|=2$ otherwise.
H has three types of vertices: vertices that are also vertices of G, vertices that are on an edge of G, and vertices that are in a face of G. Consider a vertex v of H, and let $\alpha:=\omega(v)$.

If v is also a vertex of G, it has degree 4 both in G and in H. Its neighbourhood is like that in Fig. 18. (In Figs. 18-23, the numbers in the faces of H give their μ-values.)

If v is on an edge of G, it has degree 3 or 4. If it has degree 3 , it is the projection $\pi(w)$ of some point w in W, and (see Fig. 12) its neighbourhood is as in Fig. 19.

If v has degree 4 , it is the projection $\pi(u)$ of some point u in U, and its neighbourhood is as in Fig. 20.

Figure 20

Figure 21
If v is in a face of G, it has degree 2 or 4 in H. If it has degree 4 , its neighbourhood is as in Fig. 21.

Sometimes, we will indicate by a little arrow crossing any edge e of H which of the two faces incident with e has highest μ-value as in Fig. 22.
Moreover, we orient each edge e of H so that the face of H with highest μ-value is at the right hand side of e, cf. Fig. 23.

The set W. For any $w \in W$, let ε_{w} be the (unique) edge of H incident with $\pi(w)$ but not a part of G. Note that
w belongs to W^{+}if either $w \in W^{\dagger}$ and ε_{w} is oriented towards $\pi(w)$, or $w \in W^{\downarrow}$ and ε_{w} is oriented away from $\pi(w)$; similarly, w belongs to W^{-}if either $w \in W^{\dagger}$ and ε_{w} is oriented away from $\pi(w)$, or $w \in W^{\downarrow}$ and ε_{w} is oriented towards $\pi(w)$
(cf. Fig. 12). We show:
Claim 2. Let w and w^{\prime} be two points in W connected by a segment σ. Then one of w and w^{\prime} belongs to W^{\dagger}, the other to W^{\downarrow}.

Proof. Suppose to the contrary that both w and w^{\prime} belong to W^{\dagger}, say. Thus we would have configurations (a) and (b) of Fig. 12 consecutively. (They can be pasted together in four ways.) For instance, we would obtain Fig. 24. This configuration can be replaced by Fig. 25. Note that Figs. 24 and 25 have a similar boundary (the wriggled curves and the part of the knot). So the rest of Σ can be attached to either of these figures. Moreover, locally Fig. 24 can be brought to Fig. 25. (One way of seeing this is that both Fig. 24 and Fig. 25 form an open disk with boundary the "same"

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28
closed curve (being the union of the wriggled curve and the given part of the link).) Let e be the edge of G containing $\pi[\sigma]$.

In $\pi^{-1}[e]$, replacing Fig. 24 by Fig. 25 means replacing Fig. 26 by Fig. 27.

We thus do not change $\omega(v)$ for any $v \in V G$, but we do decrease $|W|$, contradicting the minimality assumption (23).

Similar arguments hold for the three other ways of pasting (a) and (b) of Fig. 12 together.

Moreover:
Claim 3. Let w and w^{\prime} be two points in W connected by a segment. Then one of $\varepsilon_{w}, \varepsilon_{w^{\prime}}$ is oriented towards $\pi(w)$ or $\pi\left(w^{\prime}\right)$, the other one away from $\pi(w)$ or $\pi\left(w^{\prime}\right)$.

Proof. Suppose Fig. 28 would occur. Then $\mu\left(F_{3}\right)=\mu\left(F_{2}\right)+2=$ $\mu\left(F_{1}\right)+4$. However, $\mu\left(F_{4}\right)$ differs by at most one from both $\mu\left(F_{1}\right)$ and $\mu\left(F_{3}\right)$, a contradiction.

Similarly the configurations in Fig. 29 lead to a contradiction.
As a direct corollary we have:
Claim 4. For each edge e of G, either all points $w \in W$ with $\pi(w) \in e$ belong to W^{+}, or all belong to W^{-}.

Proof. Directly from Claims 2 and 3 (cf. (25)).

Figure 29

Figure 30

The set U. Consider an edge e of G, connecting vertices v and v^{\prime} of G. Assume without loss of generality that e is a straight line segment in \mathbb{R}^{2}. Consider the intersection $J:=\Sigma \cap \pi^{-1}[\bar{e}]$.

The set J forms a graph with vertices of degree 1 on the boundary of $\pi^{-1}[\bar{e}]$ and vertices of degree 3 in each point in $W \cap \pi^{-1}[\bar{e}]$. Moreover, one of $p_{v}^{\dagger}, p_{v}^{\downarrow}$ and one of $p_{v^{\prime}}^{\dagger}, p_{v^{\prime}}^{\downarrow}$ might be an isolated vertex of J. All other vertices of J have degree 2 .

By the minimality assumption (23), we may assume that each component I of $J \backslash K$ is a straight line segment, or the union of two straight line segments "above each other," making an angle at a point u in U, as in Fig. 30. In the latter case, the straight line segment connecting the end points q and q^{\prime} of I contains a point $p \in P$, which is an isolated point of J. Moreover, above or under I there is no point in W (i.e., $\pi[I] \cap$ $\pi[W]=\varnothing)$. So there is a segment σ of K such that $\pi[I] \subset \pi[\sigma]$ and such that σ is incident with at least one point in P.

The neighbourhood of $\pi^{-1}[v]$ for vertices v of G. Consider a vertex v of G and its neighbourhood, as in Fig. 31. Here $F_{1}, F_{2}, F_{3}, F_{4}$ denote the faces of G incident with v. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ be the segments incident with p_{v}^{\dagger} and p_{i}^{t} so that $\pi\left[\sigma_{i}\right]$ is incident with F_{i} and $F_{i+1}(i=1, \ldots, 4$, taking indices $\bmod 4)$.

Figure 31

Figure 32
For each $i=1, \ldots, 4$, choose some subinterval J_{i} of $\pi\left[\sigma_{i}\right] \cup\{v\} \cup$ $\pi\left[\sigma_{i-1}\right]$ containing all points in $\pi[U] \cap\left(\pi\left[\sigma_{i}\right] \cup \pi\left[\sigma_{i-1}\right]\right)$.

First consider the case where $\alpha:=\omega(v)$ is odd. Then the diagram is locally as in Fig. 32. Consider now $\pi^{-1}\left[J_{3}\right]$ as "seen" from F_{3}. It is either as in Fig. 33 or as in Fig. 34.
The numbers $\beta_{v}^{\dagger}, \beta_{v}^{\downarrow}, \varphi_{v}^{\dagger}, \varphi_{v}^{\downarrow}, \zeta_{v}, \eta_{v}$ are the numbers of occurrences of the given type of curve.

We set $\eta_{v}:=0$ if Fig. 33 applies, and $\zeta_{v}:=0$ if Fig. 34 applies. Define

$$
\begin{equation*}
\varphi_{v}:=\varphi_{v}^{\dagger}+\varphi_{v}^{\downarrow}, \quad \varphi:=\sum_{v \in V} \varphi_{v}, \quad \zeta:=\sum_{v \in V} \zeta_{v}, \quad \eta:=\sum_{v \in V} \eta_{v} \tag{26}
\end{equation*}
$$

Figure 33

Note that

$$
\begin{equation*}
|U|=\varphi+2 \zeta . \tag{27}
\end{equation*}
$$

$\pi^{-1}\left[J_{2}\right]$ seen from F_{2} is as in Fig. 35. A symmetric picture applies to $\pi^{-1}\left[J_{4}\right]$ seen from F_{4}.

Finally, $\pi^{-1}\left[J_{1}\right]$ seen from F_{1} is as in Fig. 36.
Symmetric pictures and notation apply in case $\omega(v)$ is even.
Segments connecting P and W. Consider a segment σ incident at one end with a point p_{v}^{\uparrow} and at the other end with a point w in W. Let e be the edge of G containing $\pi[\sigma]$. Let I be the component of $\left(\pi^{-1}[e] \cap \Sigma\right) \backslash K$ incident with w. Then we have:

Figure 35

Figure 36

Claim 5. Locally in $\pi^{-1}[e]$, the configuration is like one of those in Fig. 37.

Proof. Indeed, the alternative would be that it is one of the configurations in Fig. 38. In both of these two cases there is an isotopy (moving w along K), reducing $\omega(v)$ (and not changing any $\omega\left(v^{\prime}\right)$ for any $v^{\prime} \neq v$), contradicting the minimality assumptions (23)(ii) and (iii).
Similar statements hold for segments connecting p_{v}^{\downarrow} and a point in W.
The boundaries of components in \mathscr{C}. Consider a component $C \in \mathscr{C}$. Let $\pi[C]$ be contained in face F of G. Then either $\operatorname{bd}(C)$ is a homotopically trivial circuit on $\pi^{-1}[\operatorname{bd}(F)]$, or not. Let \mathscr{C}_{0} be the collection of components of the first kind, and let \mathscr{C}_{1} be the collection of components of the second kind. Note that if F is the unbounded face F_{0} of G, then all components $C \in \mathscr{C}$ contained in $\pi^{-1}[F]$ belong to \mathscr{C}_{0} (since $\Sigma \subseteq \mathbb{R}^{3}$).
In order to study \mathscr{C}, consider a segment σ. Let e and e^{\prime} be two parts of edges of Γ above σ, in such a way that e and e^{\prime} have the same projection as σ as in Fig. 39. (Here e might be incident with one of the end points of σ). Let e and e^{\prime} be on the boundaries of components C and C^{\prime} in \mathscr{C}, respectively. Then:

Claim 6. C and C^{\prime} are different.
Proof. Suppose $C=C^{\prime}$. Then we may assume that there is no other edge part of Γ in between e and e^{\prime} with the same projection as σ. Otherwise there would be two such edges $e^{\prime \prime}$ and $e^{\prime \prime \prime}$ in between being part of the boundary of the same $C^{\prime \prime}$ in \mathscr{C}. (This follows from the fact that if l is a line segment in $\pi^{-1}[\pi[\sigma]]$ connecting e and e^{\prime}, then l is contained in some

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43
circuit in $l \cup \mathrm{bd}(C)$ that is homotopically trivial in $\pi^{-1}[\operatorname{bd}(F)]$, where F is the face of G containing $\pi[C]$. Hence for every component $C^{\prime \prime}, \operatorname{bd}\left(C^{\prime \prime}\right)$ crosses l an even number of times.)

By replacing e, e^{\prime} by $e^{\prime \prime}, e^{\prime \prime \prime}$ and repeating the argument, we obtain two "neighbouring" e, e^{\prime}.
Now modify Γ by replacing the configuration in Fig. 39 by that in Fig. 40. In \mathbb{R}^{3} this amounts to an isotopy with the effect as in Fig. 41. This way we reduce $\mu(\sigma)$ for at least one segment σ, and not changing any other $\mu(\sigma)$ or any $\omega(v)$ or $|W|$. This contradicts the minimality assumption (23)(v).

It follows that for any $C \in \mathscr{C}$, with $\pi[C]$ contained in face F of G, and for any $x \in \operatorname{bd}(F), \operatorname{bd}(C)$ has at most three intersections with $\pi^{-1}(x)$.

For any $C \in \mathscr{C}$, let $B(C)$ denote the set of all points in C for which no neighbourhood in C projects one-to-one to \mathbb{R}^{2}.
So

$$
\begin{equation*}
\Delta=K \cup \bigcup_{C \in \mathscr{C}} B(C), \tag{28}
\end{equation*}
$$

and hence

$$
\begin{equation*}
H=\pi[\Delta]=G \cup \bigcup_{C \in \mathcal{C}} \pi[B(C)] . \tag{29}
\end{equation*}
$$

Let $C \in \mathscr{C}$ and let F be the face of G containing $\pi[C]$. We call a point x of $\operatorname{bd}(C)$ a turning point of $\operatorname{bd}(C)$ if on $\pi^{-1}[\operatorname{bd}(F)]$ the neighbourhood of x in $\operatorname{bd}(C)$ is as in Fig. 42. Thus each turning point belongs to $W \cup U$.
If $C \in \mathscr{C}_{0}$, then Claim 6 implies that $\operatorname{bd}(C)$ has exactly two turning points, and $\pi[\operatorname{bd}(C)] \neq \mathrm{bd}(F)$. We may assume that $\left|\pi^{-1}(x) \cap C\right| \leqslant 2$ for all $x \in F$, and that $B(C)$ is a curve connecting the two turning points on $\operatorname{bd}(C)$. Moreover, we may assume that $C=D^{\prime} \cup B(C) \cup D^{\prime \prime}$ for two open disks D^{\prime} and $D^{\prime \prime}$ such that both D^{\prime} and $D^{\prime \prime}$ project one-to-one to \mathbb{R}^{2}.

Figure 44

Figure 45
If $C \in \mathscr{C}_{1}$, then at any $x \in \operatorname{bd}(F)$ one has $\left|\pi^{-1}(x) \cap \operatorname{bd}(C)\right|=1$ or 3 , except if $\pi^{-1}(x)$ contains a turning point of bd (C). Call a curve of type ζ in Fig. 33 a Z-type curve. Then by Claim 6 , if $\left|\pi^{-1}(x) \cap \mathrm{bd}(C)\right|=3$, the middle element of $\pi^{-1}(x) \cap b d(C)$ is either part of a Z-type curve or is on K. So $\mathrm{bd}(C)$ can have turning points only at Z-type curves or at segments σ on K that are incident with two points in W and that are locally as in Fig. 43, which we call Z-type segments.
We may assume that $\left|\pi^{-1}(x) \cap C\right| \leqslant 3$ for all $x \in F$. In fact, we may assume that the set $\left\{x \in F\left|\left|\pi^{-1}(x) \cap C\right|=3\right\}\right.$ forms a collection of pairwise disjoint open regions, each corresponding to one Z-type curve or Z-type segment. This follows from the fact that up to isotopy C is fully determined by $\operatorname{bd}(C)$. Since there exists an open disk \widetilde{C} with $\operatorname{bd}(\widetilde{C})=\operatorname{bd}(C)$ for which the set $\left\{x \in F\left|\left|\pi^{-1}(x) \cap \widetilde{C}\right|=3\right\}\right.$ forms a collection of pairwise disjoint open regions, we may assume that C itself has this property. So "fold edges" going across from one Z-type curve or segment to another can be removed.
The set $B(C)$ forms a disjoint union of curves, each of them connecting two turning points on some Z-type curve or segment on the boundary of C. We may assume that $B(C)$ projects one-to-one to \mathbb{R}^{2} (the curves do not touch each other), as in Fig. 44.

The graph H along an edge of G. Consider an edge e of G, let it go from v to v^{\prime} as in Fig. 45. Following e from v to v^{\prime}, we first meet some (or none) points in $\pi[U]$, each having degree 4 in H. Next we meet some (or none) points in $\pi[W]$, each having degree 3 in H. Finally we meet again some (or none) points in $\pi[U]$, each of degree 4 in H (cf. the observations concerning Fig. 30).

(a)

(b)

Figure 46

Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

We first show:
Claim 7. The configurations in Fig. 46 do not occur on any edge e of G. Similarly for those configurations which arise from exchanging up and down and left and right in this figure.

Proof. By Claim 2, Fig. 46(a) gives Fig. 47 in $\pi^{-1}[e]$ (up to exchanging up and down). Curve ε_{3} comes from the fact that ε_{3}^{\prime} and $\varepsilon_{3}^{\prime \prime}$ in Fig. 48 should lead to each other (by Claim 6).

Then the boundary of some component $C \in \mathscr{C}$ contains $\varepsilon_{1}, \ldots, \varepsilon_{5}$ (at one side of $\pi^{-1}[e]$ or the other). So $\operatorname{bd}(C)$ contains both ε_{1} and ε_{5}. This contradicts Claim 6.

Similarly, Fig. 46(b) gives Fig. 49 (up to exchanging up and down), again contradicting Claim 6.

Partition the set $W \cap \pi^{-1}[e]$ into classes $W_{1}, W_{2}, \ldots, W_{k}$ in such a way that
(i) k is even;
(ii) $\pi\left[W_{1}\right], \ldots, \pi\left[W_{k}\right]$ occur consecutively along e, as in Fig. 50;
(iii) $W_{i} \neq \varnothing$ for $i=2, \ldots, k-1$;
(iv) the arrow crossing any edge ε_{w} with $w \in W_{i}$ goes from right to left if i is odd, and from left to right if i is even.
(Again, $\varepsilon_{w^{\prime}}$ denotes the edge of H incident with $\pi(w)$ not being part of G.) This partition is trivially unique.
As Fig. 46(a) does not occur, by Claim 3 we know that if i is even and $i \leqslant k-2$ then $\left|W_{i}\right| \leqslant 2$. Similarly, if i is odd and $i \geqslant 3$ then $\left|W_{i}\right| \leqslant 2$. So $1 \leqslant\left|W_{i}\right| \leqslant 2$ for $i=2, \ldots, k-1$.

Figure 55

Figure 56
As Fig. 46(b) does not occur, we know that if i is even, $i \leqslant k-2$ and $W_{i+2} \neq \varnothing$ then $\left|W_{i}\right| \leqslant\left|W_{i+1}\right|$. Similarly, if i is odd, $i \geqslant 3$ and $W_{i-2} \neq \varnothing$ then $\left|W_{i}\right| \leqslant\left|W_{i-1}\right|$. Hence $\left|W_{i}\right|=\left|W_{i+1}\right|$ for i even, $4 \leqslant i \leqslant k-4$; moreover, $\left|W_{2}\right|=\left|W_{3}\right|$ if $W_{1} \neq \varnothing$, and $\left|W_{k-2}\right|=\left|W_{k-1}\right|$ if $W_{k} \neq \varnothing$. So there are the following possibilities:
(i) $\left|W_{i}\right|=\left|W_{i+1}\right| \in\{1,2\}$ for each even i with $2 \leqslant i \leqslant k-2$;
(ii) $k \geqslant 4, \quad W_{1}=\varnothing,\left|W_{2}\right|=1,\left|W_{3}\right|=2,\left|W_{i}\right|=\left|W_{i+1}\right| \in$ $\{1,2\}$ for each even i with $4 \leqslant i \leqslant k-2$;
(iii) $k \geqslant 4,\left|W_{i}\right|=\left|W_{i+1}\right| \in\{1,2\}$ for each even i with $2 \leqslant i \leqslant k-4,\left|W_{k-2}\right|=2,\left|W_{k-1}\right|=1, W_{k}=\varnothing ;$
(iv) $k \geqslant 6, \quad W_{1}=\varnothing,\left|W_{2}\right|=1,\left|W_{3}\right|=2, \quad\left|W_{i}\right|=\left|W_{i+1}\right| \in$
(iv) $\begin{aligned} & k \geqslant 6, W_{1}=\varnothing,\left|W_{2}\right|=1,\left|W_{3}\right|=2,\left|W_{i}\right|=\left|W_{i+1}\right| \in \\ & \\ & \{1,2\} \text { for each even } i \text { with } 4 \leqslant i \leqslant k-4,\left|W_{k-2}\right|=2,\end{aligned}$ $\mid W_{k-1}=1, W_{k}=\varnothing$.

If we have two neighbouring edges ε_{w} and $\varepsilon_{w^{\prime}}$ with arrows pointing towards each other as in Fig. 51 (up to exchanging up and down and left and right in this figure), then they are in fact one and the same edge as in Fig. 52. This follows from the fact that they are projections of some component of $B(C)$ for some $C \in \mathscr{C}_{1}$, as the segment on K in between is a Z-type segment.

If $\left|W_{i}\right|=\left|W_{i+1}\right|=2$ with $2 \leqslant i \leqslant k-2$ and i even, then we have Fig. 53 (up to exchanging up and down in this figure). In that case they are part of Fig. 54, since in $\pi^{-1}[e]$ we have Fig. 55 (up to exchanging up and down), and hence we have Fig. 56.

We now consider what we see when following edge e from v to v^{\prime} (cf. Fig. 45). First assume that alternative (31)(i) applies. We first meet a number $t \geqslant 0$ of points in $\pi[U]$, each having degree 4 in H as in Fig. 57. We say that these points of $\pi[U]$ (and their liftings in U) are near to v.

Figure 57

Next we meet a series of points in $\pi[W]$ of degree 3 . First we meet the points in $\pi\left[W_{1}\right]$ (possibly none) as in Fig. 58. Again we say that these points of $\pi[W]$ (and their lifting in W) are near to v.

Next we meet a series of configurations given in Fig. 59 made by $W_{2} \cup W_{3}, W_{4} \cup W_{5}, \ldots, W_{k-2} \cup W_{k-1}$, in some amount and in some order. (In fact, Claim 3 gives conditions under which these configurations can succeed each other.)

After that we have points in $\pi\left[W_{k}\right]$ (possibly none) as in Fig. 60. These points (and their liftings) are called near to v^{\prime}.

Finally, we meet again a number of points of degree 4 in $\pi[U]\left(t^{\prime} \geqslant 0\right.$ say) as in Fig. 61. These points (and their liftings) are called near to v^{\prime}.

Next assume that alternative (31)(ii) applies. Then again we first meet a number of points in $\pi[U]$ each having degree 4 in H as in Fig. 57. Again we call these points and their lifting near to v.

Next we meet a configuration made by $W_{2} \cup W_{3}$ as in Fig. 62. We say that these three points, and their liftings, are near to v .

After that we meet a series of points as in Figs. 59, 60, and 61. Again we call the points in Figs. 60 and 61 and their liftings near to v^{\prime}.

If alternative (31)(iii) applies we have a symmetric situation. Finally, if (31)(iv) applies, we obtain a sequence beginning as for (31)(ii) and ending as for (31)(iii).

We analyze a little further. Suppose that w belongs to W^{+}whenever $\pi(w)$ is on e (cf. Claim 4). Let alternative (31)(i) apply. If $W_{1} \neq \varnothing$ then by Claim 5 the first vertex w in W_{1} should belong to W^{\dagger}. Hence it is as shown in Fig. 12(a), and therefore it should be as in Fig. 63. Similarly, if $W_{k} \neq \varnothing$ and w^{\prime} is the last point in W_{k} it should be in W^{\downarrow} and hence of type Fig. 12(c). So it is as in Fig. 64. Hence using Claim 3 if $\left|W_{1}\right|$ is even and nonzero then $\left|W_{k}\right|$ is even, and we have Fig. 65 where the interrupted parts are optional. Similarly, if $\left|W_{1}\right|$ is odd then $\left|W_{k}\right|$ is odd or zero, and we have Fig. 66.

Next let alternative (31)(ii) apply. Then we start like in Fig. 67. This follows from the fact that if we would have alternatively Fig. 68, then seen

Figure 59

Figure 60

Figure 61

Figure 62

$$
-\frac{4}{\pi(w)}
$$

Figure 63

Figure 64

Figure 65

Figure 66

Figure 67

Figure 68

Figure 69
from F we have Fig. 69 (since w belongs to W^{+}(using (25))): Then the boundary of some component $C \in \mathscr{C}$ contains $\varepsilon_{1}, \ldots, \varepsilon_{5}$. So $\operatorname{bd}(C)$ contains both ε_{1} and ε_{5}, contradicting Claim 6.

Similarly for the alternatives (31)(iii) and (iv).
Summarizing, we have the following five types of edges e with $w \in W^{+}$ when $\pi(w) \in e$: Fig. 70 with γ and δ even; Fig. 71 with γ odd or 0 , and δ odd or 0 ; Fig. 72 with δ even; Fig. 73 with γ even; and Fig. 74.
If w belongs to W^{-}whenever $\pi(w) \in e$ we should reflect these figures with respect to e.

Note:
Claim 8. All points in U near to a vertex v of G project to at most two edges of G incident with v.
Proof. This follows directly from Figs. 33-36.
The graph H in the faces of G. Let F be a face of G. Let C and C^{\prime} be two components in \mathscr{C} contained in $\pi^{-1}[F]$. Consider a component Q of $B(C)$ and a component Q^{\prime} of $B\left(C^{\prime}\right)$. So Q and Q^{\prime} are curves. Suppose that the projections $\pi[Q]$ and $\pi\left[Q^{\prime}\right]$ cross. Then $C \neq C^{\prime}$ (by our analysis after Claim 6). If $C \in \mathscr{C}_{0}$ and F is even, then one turning point x of $\mathrm{bd}(C)$ is as one in Fig. 75 and the other turning point y is as in Fig. 76. So for each $z \in \pi[\operatorname{bd}(C)]$ the closed vertical line segment connecting the (at most two) points in $\pi^{-1}(z) \cap \operatorname{bd}(C)$ intersects K, except near the two turning points of $\mathrm{bd}(\mathrm{C})$.

Figure 70

Figure 71

Figure 72

Figure 73

Figure 74

Figure 75

Figure 76

Figure 77

Suppose that also C^{\prime} belongs to \mathscr{C}_{0}. As $\pi[Q]$ and $\pi\left[Q^{\prime}\right]$ cross we know $\pi[\operatorname{bd}(C)] \nsubseteq \pi\left[\operatorname{bd}\left(C^{\prime}\right)\right] \nsubseteq \pi[\operatorname{bd}(C)], \pi[\operatorname{bd}(C)] \cap \pi\left[\operatorname{bd}\left(C^{\prime}\right)\right] \neq \varnothing$ and $\pi[\operatorname{bd}(C)] \cup \pi\left[\operatorname{bd}\left(C^{\prime}\right)\right] \neq \mathrm{bd}(F)$. So $\operatorname{bd}(C)$ and $\mathrm{bd}\left(C^{\prime}\right)$ do not enclose each other. Hence $\mathrm{bd}(C)$ and $\mathrm{bd}\left(C^{\prime}\right)$ should have turning points in U near to some vertex v as in Fig. 77. In \mathbb{R}^{2} this gives Fig. 78. Suppose next that C^{\prime} belongs to \mathscr{C}_{1}. Then by the observation on Fig. 44 we know that Q^{\prime} must be a curve coming from a Z-type curve, say near vertex v of G. Then $\pi^{-1}(v)$ as seen from F is as in Fig. 79. In \mathbb{R}^{2} this gives Fig. 80. Finally, assume that both C and C^{\prime} belong to \mathscr{C}_{1}. Then again by the observation on Fig. 44 we know that both Q and Q^{\prime} come from a Z-type curve, say near vertex v of G. Then $\pi^{-1}(v)$ as seen from F is as in Fig. 81. In \mathbb{R}^{2} this gives Fig. 82.

Symmetric situations arise if F is odd. Therefore, we always have:
If $\pi[B(C)]$ and $\pi\left[B\left(C^{\prime}\right)\right]$ have a crossing in F, then there exist points, $u, u^{\prime} \in U$ such that $u \in \operatorname{bd}(C)$ and $u^{\prime} \in \operatorname{bd}\left(C^{\prime}\right)$, such that u and u^{\prime} are near to the same vertex v of G, and such that $\pi(u)$ and $\pi\left(u^{\prime}\right)$ are on different edges of G (incident with v).

We say that such a crossing is near to v. So:
Each vertex of H of degree 4 in some face of G is a crossing near to some vertex v of G; it can occur in only one of the four faces of G incident with v (viz. the one with smallest μ-value near to v).

Figure 78

Figure 79

Figure 80

Figure 81

Figure 82

Figure 83

We also note:
Claim 9. Let e and e^{\prime} be two edges of G incident with a vertex v of G, such that e and e^{\prime} are neighbouring in the cyclic order of edges incident with v. Let $w \in W$ and $u \in U$ be near to v such that w projects to e and u projects to e^{\prime}. Then u is on a Z-type curve, and all points in U near to v project to e or e^{\prime}.

Proof. We may assume that $\pi(w)$ is the point in $\pi[W] \cap e$ that is closest to v, and that $\pi(u)$ is the point in $\pi[U]$ on e^{\prime} that is closest to v. (Note that if $u \in U$ is closer to v than $u^{\prime} \in U$, and if u is on a Z-type curve, then also u^{\prime} is a Z-type curve. See, e.g., Fig. 83. So if the closest point in U near to v along a given edge is on a Z-type curve, then all points in U near to v along this edge are on a Z-type curve.)

If the arrow crossing ε_{w} points towards v then by Claim 5 we have Fig. 84 (up to exchanging up and down and left and right in this figure). Then u should be in a Z-type curve, since ε_{1} and ε_{2} cannot lead to each other by Claim 5. The second point in U on this Z-type curve should be in $\pi^{-1}[e]$.

If the arrow crossing ε_{w} points away from v we have Fig. 85 (up to exchanging up and down and left and right in this figure), as we start like in Fig. 67.

In case (a), ε_{1} and ε_{2} should lead to each other (as there are no points

Figure 84

Figure 85

Figure 86

Figure 87

Figure 88
in $\pi[U]$ on e closer to v than $\pi(u))$. Then u should be on a Z-type curve, since otherwise we would have Fig. 86, contradicting Claim 6 (as ε_{3} and ε_{4} are on the boundary of the same component in \mathscr{C}). So u is on a Z-type curve, and the second point in U on this curve is in $\pi^{-1}[e]$.

In case (b), if ε_{1} and ε_{2} lead to each other we would have Fig. 87, again leading to a contradiction to Claim 6. So ε_{1} and ε_{2} do not lead to each other, and hence we have Fig. 88. So u is on a Z-type curve, and the second point in U on this curve is in $\pi^{-1}[e]$.
As consequence one has:
Let e and e^{\prime} be two edges of G incident with a vertex v of G, such that e and e^{\prime} are neighbouring in the cyclic order of edges incident with v. Let $w \in W$ and $u \in U$ be near to v such that w projects to e and u projects to e^{\prime}. Let F be the face of G incident with v, e and e^{\prime}. Then there is no directed path in H from $\pi(w)$ to $\pi(u)$ or from $\pi(u)$ to $\pi(w)$ that is contained in F.

This follows from the fact that by Claim $9, u$ should be on a Z-type curve and hence in F we have Fig. 89 (up to symmetry). So H cannot have a directed path as described.
Another consequence of Claim 9 is:
Let e and e^{\prime} be two edges of G incident with a vertex v of G, such that e and e^{\prime} are neighbouring in the cyclic order of edges incident with v and such that both e and e^{\prime} contain points in $\pi[W]$ near to v. Then each point in U near to v projects to $e \cup e^{\prime}$.

For suppose to the contrary that there exists a point u near to v that projects to edge $e^{\prime \prime}$ incident with v, with $e^{\prime \prime} \notin\left\{e, e^{\prime}\right\}$. Let $e^{\prime \prime}$ be neighbouring

Figure 89
e^{\prime}, say, in the cyclic order of edges incident with v. By Claim $9, u$ is on a Z-type curve, and all points in U near to v project to $e^{\prime} \cup e^{\prime \prime}$. Hence e^{\prime} contains a point, u^{\prime} say, in $\pi[U]$ near to v. Applying Claim 9 again, there exists a point in U near to v projecting to e. This contradicts the fact that all points in U near to v project to at most two edges of G incident with v.

A lower bound for $\sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)$. Define for any k,

$$
\begin{equation*}
R_{k}:=\text { closure of }\left\{x \in \mathbb{R}^{2} \mid \omega(x) \geqslant k\right\} . \tag{36}
\end{equation*}
$$

So $R_{k}=\varnothing$ if k is large enough.
Let ρ be the number of Z-type segments (Fig. 43). We show that the Euler characteristic $\chi\left(R_{2 k}\right)$ of the sets $R_{2 k}$ satisfy:

CLAim 10. $4 \sum_{k=1}^{\infty} \chi\left(R_{2 k}\right) \geqslant 2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|+2\left|W_{\text {odd }}^{-}\right|+$ $2 \eta+2 \rho$.

Proof. We first prove:
Subclaim 10a. $\left.\quad \sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)=\frac{1}{2}\left|\mathscr{G}_{1}\right|-\frac{1}{2} b(K)-\sum_{v \in V G} L(\omega(v)-1) / 2\right\rfloor$ $+\frac{1}{2}\left|W_{\text {odd }}\right|+\frac{1}{2}|U|$. Here $\left.L\right\rfloor$ denotes lower integer part.

Proof. We first show that for each face F of G,

$$
\begin{equation*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k} \cap F\right)=\left\lfloor\frac{1}{2} \kappa_{F}\right\rfloor, \tag{37}
\end{equation*}
$$

where κ_{F} denotes the number of components in \mathscr{C}_{1} contained in $\pi^{-1}[F]$. Note that κ_{F} is odd, if and only if F is odd.

For any $\mathscr{D} \subseteq\left\{C \in \mathscr{C} \mid C \subseteq \pi^{-1}[F]\right\}$ and $x \in \mathbb{R}^{2}$ let $\omega^{\prime \prime}(x):=\mid \pi^{-1}(x) \cap$ $\bigcup_{D \in \mathscr{C}} D \mid$ and $R_{k}^{2}:=F \cap$ closure of $\left\{x \in \mathbb{R}^{2} \mid \omega^{\mathscr{}}(x) \geqslant k\right\}$. We show by induction on $|\mathscr{D}|$ that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{S}}\right)=\left\lfloor\frac{1}{2}\left|\mathscr{D} \cap \mathscr{C}_{1}\right|\right\rfloor . \tag{38}
\end{equation*}
$$

The case $\mathscr{D}=\left\{C \in \mathscr{C} \mid C \subseteq \pi^{-1}[F]\right\}$ is (37).
For $\mathscr{D}=\varnothing$, (38) is trivial since $R_{2 k}^{\varnothing}=\varnothing$ for all $k \geqslant 1$. Next let $C \in \mathscr{C} \backslash \mathscr{D}$ with $C \subseteq \pi^{-1}[F]$. Let $\mathscr{D}^{\prime}:=\mathscr{D} \cup\{C\}$. If C belongs to \mathscr{C}_{0} then $\chi(\pi[C])=0$ (since C is the union of two disks above each other and since $\pi[B(C)]$ contributes -1 to $\chi(\pi[C])$). Moreover, for each $k \geqslant 1$ one has $R_{2 k}^{G^{\prime}}=$ $R_{2 k}^{\mathscr{S}} \cup\left(R_{2 k-2}^{\mathscr{S}} \cap \pi[C]\right)$. Hence

$$
\begin{align*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{S}}\right) & =\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{S}} \cup\left(R_{2 k-2}^{\mathscr{S}} \cap \pi[C]\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\chi\left(R_{2 k}^{\mathscr{S}}\right)+\chi\left(R_{2 k-2}^{\mathscr{g}} \cap \pi[C]\right)-\chi\left(R_{2 k}^{\mathscr{S}} \cap \pi[C]\right)\right) \\
& =\chi\left(R_{0}^{\mathscr{S}} \cap \pi[C]\right)+\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{s}}\right)=\chi(\pi[C])+\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{g}}\right) \\
& =\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{S}}\right)=\left\lfloor\frac{1}{2}\left|\mathscr{D} \cap \mathscr{C}_{1}\right|\right\rfloor=\left\lfloor\frac{1}{2}\left|\mathscr{D}^{\prime} \cap \mathscr{C}_{1}\right|\right\rfloor . \tag{39}
\end{align*}
$$

Here we use the fact that $R_{2 k}^{\prime \prime} \subseteq R_{2 k-2}^{\prime}$ and that $\chi(A)+\chi(B)=\chi(A \cap B)+$ $\chi(A \cup B)$ for all A, B.

If C belongs to \mathscr{C}_{1} let

$$
\begin{equation*}
R_{C}:=\left\{x \in F| | \pi^{-1}(x) \cap C \mid \geqslant 2\right\} . \tag{40}
\end{equation*}
$$

Using the observations following Claim 6 one sees that $\chi\left(R_{C}\right)=0$. If $\left|\mathscr{D} \cap \mathscr{C}_{1}\right|$ is even then for each $k \geqslant 1$ one has $R_{2 k}^{\mathscr{S}}=R_{2 k}^{\mathscr{S}} \cup\left(R_{2 k-2}^{\mathscr{S}} \cap R_{C}\right)$ and then $\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\mathscr{S}^{\prime}}\right)=\left\lfloor\frac{1}{2}\left|\mathscr{D}^{\prime} \cap \mathscr{C}_{1}\right|\right\rfloor$ follows similarly as in (39).
If $\left|\mathscr{D} \cap \mathscr{C}_{1}\right|$ is odd then for each $k \geqslant 2$ one has $R_{2 k}^{\mathscr{S}^{\prime}}=R_{2 k-2}^{\mathscr{S}_{2}} \cup$ $\left(R_{2 k-4}^{G /} \cap R_{C}\right)$ while $R_{2}^{\ell_{2}^{\prime \prime}}=F$. Hence

$$
\begin{align*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\prime \prime}\right) & =\chi(F)+\sum_{k=2}^{\infty} \chi\left(R_{2 k-2}^{\prime} \cup\left(R_{2 k-4}^{\prime} \cap R_{C}\right)\right) \\
& =1+\sum_{k=1}^{\infty} \chi\left(R_{2 k}^{\prime} \cup\left(R_{2 k-2}^{\prime} \cap R_{C}\right)\right)=1+\left\lfloor\left.\frac{1}{2} \mathscr{D} \cap \mathscr{C}_{1} \right\rvert\,\right\rfloor \\
& =\left\lfloor\frac{1}{2}\left|\mathscr{D}^{\prime} \cap \mathscr{C}_{1}\right|\right\rfloor . \tag{41}
\end{align*}
$$

(Here the third equality follows similarly as in (39).) This shows (38) inductively.

Adding up (37) over all faces F of G gives

$$
\begin{equation*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k} \backslash G\right)=\sum_{F \in F G}\left\lfloor\frac{1}{2} \kappa_{F}\right\rfloor=\frac{1}{2}\left|\mathscr{C}_{1}\right|-\frac{1}{2} b(K) . \tag{42}
\end{equation*}
$$

We next consider $\sum_{k=1}^{\infty} \chi\left(R_{2 k} \cap G\right)$. For any vertex v of H, let $\tilde{\mu}(v)$ be the largest integer k such that v belongs to R_{k}. So $\tilde{\mu}(v)$ is equal to the maximum value of $\mu(F)$, where F ranges over all faces of H incident with v.

Note that, for each edge e of H with $e \subset G, \mu(e)$ (defined as the minimum
value of $\omega(x)$ over $x \in e)$ is equal to the largest integer k such that e is contained in R_{k}. Hence

$$
\begin{equation*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k} \cap G\right)=\sum_{v \in V H, v \in G}\left\lfloor\frac{\tilde{\mu}(v)}{2}\right\rfloor-\sum_{e \in E H, e \subset G}\left\lfloor\frac{\mu(e)}{2}\right\rfloor . \tag{43}
\end{equation*}
$$

Consider a vertex v of H. If v is also a vertex of G, then $\tilde{\mu}(v)=\omega(v)$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the edges of H incident with v. We can choose indices so that $\mu\left(e_{1}\right)=\mu\left(e_{2}\right)=\omega(v)$ and $\mu\left(e_{3}\right)=\mu\left(e_{4}\right)=\omega(v)-1$ (cf. Fig. 18). Hence

$$
\begin{equation*}
\left\lfloor\frac{\tilde{\mu}(v)}{2}\right\rfloor-\frac{1}{2} \sum_{i=1}^{4}\left\lfloor\frac{\mu\left(e_{i}\right)}{2}\right\rfloor=-\left\lfloor\frac{\omega(v)-1}{2}\right\rfloor . \tag{44}
\end{equation*}
$$

If $v=\pi(u)$ for some $u \in U$, let e_{1} and e_{2} be the two edges of H incident with v that are contained in G. We can choose indice so that $\mu\left(e_{1}\right)=\tilde{\mu}(v)$ and $\mu\left(e_{2}\right)=\tilde{\mu}(v)-2$ (cf. Fig. 20). Hence

$$
\begin{equation*}
\left\lfloor\frac{\tilde{\mu}(v)}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{\mu\left(e_{1}\right)}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{\mu\left(e_{2}\right)}{2}\right\rfloor=\frac{1}{2} . \tag{45}
\end{equation*}
$$

If $v=\pi(w)$ for some $w \in W$, then $\tilde{\mu}(v)=\omega(v)+1$. Let e_{1} and e_{2} be the two edges of H incident with v that are contained in G. We can choose indices so that $\mu\left(e_{1}\right)=\tilde{\mu}(v)$ and $\mu\left(e_{2}\right)=\tilde{\mu}(v)-1$ (cf. Fig. 19). Hence

$$
\begin{equation*}
\left\lfloor\frac{\tilde{\mu}(v)}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{\mu\left(e_{1}\right)}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{\mu\left(e_{2}\right)}{2}\right\rfloor=\frac{1}{2} \tag{46}
\end{equation*}
$$

if $\tilde{\mu}(v)$ is even, i.e., if $w \in W_{\text {odd }}$. Similarly,

$$
\begin{equation*}
\left\lfloor\frac{\tilde{\mu}(v)}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{\mu\left(e_{1}\right)}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{\mu\left(e_{2}\right)}{2}\right\rfloor=0 \tag{47}
\end{equation*}
$$

if $\tilde{\mu}(v)$ is odd, i.e., if $w \in W_{\text {even }}$.
Adding up (44) over all $v \in V G$, (45) over all $u \in U$, (46) over all $w \in W_{\text {odd }}$, and (47) over all $w \in W_{\text {even }}$, gives by (43),

$$
\begin{equation*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k} \cap G\right)=-\sum_{v \in V G}\left[\frac{\omega(v)-1}{2}\right]+\frac{1}{2}\left|W_{\text {odd }}\right|+\frac{1}{2}|U| . \tag{48}
\end{equation*}
$$

Combined with (42), this gives the claimed equality.
Multiplying by 4 gives

$$
\begin{align*}
4 \sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)= & 2\left|\mathscr{C}_{1}\right|-2 b(K)-4 \sum_{v \in V G}\left\lfloor\frac{\omega(v)-1}{2}\right\rfloor \\
& +2\left|W_{\text {odd }}\right|+2|U| . \tag{49}
\end{align*}
$$

Rewriting the right hand side gives (since $\sum_{v \in V G}\lfloor(\omega(v)-1) / 2\rfloor=$ $\left.\sum_{v \in V G} \frac{1}{2}(\omega(v)-1)-\frac{1}{2}\left|V_{\text {even }}\right|\right)$

$$
\begin{align*}
& 2\left(|\mathscr{C}|-\frac{1}{2}|W|-\sum_{v \in V G}(\omega(v)-1)\right) \\
& \quad-2 b(K)-2\left|\mathscr{C}_{0}\right|+2\left|V_{\text {even }}\right|+|W|+2\left|W_{\text {odd }}\right|+2|U| \tag{50}
\end{align*}
$$

The first term here contains the Euler characteristic of Σ as it can be expressed as follows.

Subclaim 10b. $\quad \chi(\Sigma)=|\mathscr{C}|-\frac{1}{2}|W|-\sum_{v \in V G}(\omega(v)-1)$.
Proof. Since each component in \mathscr{C} is an open disk, one has

$$
\begin{equation*}
\chi\left(\Sigma \backslash \pi^{-1}[G]\right)=|\mathscr{C}| \tag{51}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\chi\left(\Sigma \cap \pi^{-1}[G]\right)=\chi(\Gamma)=-\frac{1}{2}|W|-\sum_{v \in V G}(\omega(v)-1) \tag{52}
\end{equation*}
$$

This follows from the fact that all vertices of Γ in $W \cup P$ have degree 3 , and all vertices of Γ in $\pi^{-1}[V] \backslash P$ have degree 4 . All other vertices of Γ have degree 2. Hence

$$
\begin{align*}
\chi(\Gamma) & =|V \Gamma|-|E \Gamma| \\
& =|W \cup P|-\frac{3}{2}|W \cup P|+\sum_{v \in V G}(\omega(v)-2)-\frac{4}{2} \sum_{v \in V G}(\omega(v)-2) \\
& =-\frac{1}{2}|W|-\sum_{v \in V G}(\omega(v)-1) \tag{52}
\end{align*}
$$

since $\left|\pi^{-1}(v) \backslash P\right|=\omega(v)-2$ for each vertex v of G and since $|P|=2|V G|$.
Combining (51) and (52) gives the claimed equality.
So (50) is equal to

$$
\begin{equation*}
2 \chi(\Sigma)-2 b(K)-2\left|\mathscr{C}_{0}\right|+2\left|V_{\text {even }}\right|+|W|+2\left|W_{\text {odd }}\right|+2|U| \tag{54}
\end{equation*}
$$

As $\chi(\Sigma) \geqslant b(K)-v(K)=b(K)-|V|$ by assumption (ii) in the lemma, this is at least

$$
\begin{equation*}
-2|V|-2\left|\mathscr{C}_{0}\right|+2\left|V_{\text {even }}\right|+|W|+2\left|W_{\text {odd }}\right|+2|U| \tag{55}
\end{equation*}
$$

Now $\left|\mathscr{C}_{0}\right|$ satisfies the following equation (recall that ρ is the number of Z-type segments (Fig. 43) and that ζ is the number of Z-type curves in Fig. 33):

Subclaim 10c. $\quad\left|\mathscr{C}_{0}\right|=\frac{1}{2}|W|+|U|-\rho-\zeta$.
Proof. For any C in \mathscr{C}_{0}, the boundary $\operatorname{bd}(C)$ of C should have exactly two turning points. Such a turning point should occur at a point in W or U.

In fact, each point w serves as turning point for exactly one component in \mathscr{C}. For let $w \in W^{\dagger}$, say as in Fig. 90 . Then there is one component C, say, in \mathscr{C} that is incident with τ and σ, and one component C^{\prime}, say, in \mathscr{C} that is incident with τ and $\sigma^{\prime} . C$ and C^{\prime} are at different sides of τ.

Now w can serve as turning point only for C. In fact, w is a turning point for some C in \mathscr{C}_{0} if and only if w is not contained in some Z-type segment. So exactly $|W|-2 \rho$ points in W serve as turning points for components in \mathscr{C}_{0}.

Any point u in U is turning point for at least one component in \mathscr{C}_{0} (viz. in the face F_{2} or F_{4} as in Fig. 35). In fact, u is turning point of two components in \mathscr{C}_{0}, if and only if u is not on a Z-type curve.

Since there are ζZ-type curves, and each of them contains two points in U, it follows that the points in U make $2|U|-2 \zeta$ turning points for components in \mathscr{C}_{0}.

So

$$
\begin{equation*}
2\left|\mathscr{C}_{0}\right|=|W|-2 \rho+2|U|-2 \zeta \tag{56}
\end{equation*}
$$

and the claimed equality follows.
Therefore, (55) is equal to

$$
\begin{align*}
& -2|V|-|W|-2|U|+2 \rho+2 \zeta+2\left|V_{\text {even }}\right|+|W|+2\left|W_{\text {odd }}\right|+2|U| \\
& \quad=-2|V|+2 \rho+2 \zeta+2\left|V_{\text {even }}\right|+2\left|W_{\text {odd }}\right| . \tag{57}
\end{align*}
$$

Rewriting gives

$$
\begin{align*}
-2|V| & +\left|W_{\text {odd }}\right|+2\left|W_{\text {odd }}^{-}\right|+\frac{1}{2}\left(\left|W^{+}\right|-\left|W^{-}\right|\right) \\
& +\frac{1}{2}\left(\left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{-}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{+}\right|\right) \\
& +2 \rho+2 \zeta+2\left|V_{\text {even }}\right| \tag{58}
\end{align*}
$$

(since

$$
\begin{align*}
\left|W_{\text {odd }}\right|= & \left|W_{\text {odd }}^{-}\right|+\left|W_{\text {odd }}^{+}\right|=2\left|W_{\text {odd }}^{-}\right|+\frac{1}{2}\left(2\left|W_{\text {odd }}^{+}\right|-2\left|W_{\text {odd }}^{-}\right|\right) \\
= & 2\left|W_{\text {odd }}^{-}\right|+\frac{1}{2}\left(\left(\left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{+}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{-}\right|\right)\right. \\
& \left.+\left(\left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{-}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{+}\right|\right)\right) \\
= & 2\left|W_{\text {odd }}^{-}\right|+\frac{1}{2}\left(\left|W^{+}\right|-\left|W^{-}\right|\right) \\
& \left.+\frac{1}{2}\left(\left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{-}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{+}\right|\right)\right) . \tag{59}
\end{align*}
$$

That this rewriting is helpful is seen by the following two subclaims.

Figure 90

Subclaim 10d. $\left|W^{+}\right|-\left|W^{-}\right|=2 v(K)$.
Proof. One directly derives from (19)

$$
\begin{equation*}
\tau(K, \Sigma)=\left|W^{+}\right|-\left|W^{-}\right|+2 w(K) . \tag{60}
\end{equation*}
$$

Since $\tau(K, \Sigma)=2(v(K)+w(K))$ by assumption (iii) in the lemma, we have the required equality.

Subclaim 10e. $\quad\left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{-}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{+}\right|=2 v(K)+2 \varphi+4 \eta$.
Proof. Consider a component e of $K \backslash P$. Let it connect p_{v}^{\downarrow} and $p_{v^{\prime}}^{\dagger}$ as in Fig. 91. In this figure, $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ denote the μ-values in the corresponding faces of H incident with v and v^{\prime}. Note that α and α^{\prime} are even.
Define $\xi(e, v):=1$ if $\beta=\alpha+1$ and $\xi(e, v):=0$ if $\beta=\alpha-1$. Similarly, define $\xi\left(e, v^{\prime}\right):=1$ if $\beta^{\prime}=\alpha^{\prime}+1$ and $\xi\left(e, v^{\prime}\right):=0$ if $\beta^{\prime}=\alpha^{\prime}-1$. (So $\xi(e, v)$ indicates at which side of p_{v}^{\dagger} the surface Σ is attached. Similarly for $\xi\left(e, v^{\prime}\right)$.)

Let $v^{\dagger}(e)$ denote the number of points in U that are above e (they necessarily are near to v) and let $v^{\downarrow}(e)$ denote the number of points in U that are under e (necessarily near to v^{\prime}). Let $v(e):=v^{\dagger}(e)+v^{\downarrow}(e)$.

For any $x \in \mathbb{R}^{3}$, let $\kappa(x)$ denote the number of points in Σ strictly under x, minus the number of points in Σ strictly above x.

We show

$$
\begin{align*}
\kappa\left(p_{v^{\prime}}^{\dagger}\right)-\kappa\left(p_{v}^{\downarrow}\right)= & \xi(e, v)+\xi\left(e, v^{\prime}\right)+2 v(e)+\left|W_{\text {odd }}^{+} \cap e\right| \\
& +\left|W_{\text {even }}^{-} \cap e\right|-\left|W_{\text {odd }}^{-} \cap e\right|-\left|W_{\text {even }}^{+} \cap e\right| . \tag{61}
\end{align*}
$$

Indeed, when traversing e from p_{v}^{\downarrow} to $p_{v^{\prime}}^{\dagger}$, near p_{v}^{\downarrow} the number of levels above deleted is $\xi(e, v)+2 v^{\dagger}(e)$, while near $p_{v^{\prime}}^{\uparrow}$, the number of levels under added is $\xi\left(e, v^{\prime}\right)+2 v^{\downarrow}(e)$.

Figure 91

Moreover, traversing any point w in $W_{\text {odd }}^{+}$, if $w \in W^{\dagger}$, then one level above is deleted (cf. Figs. 12(a) and 19(a), where α is odd), and if $w \in W^{\downarrow}$, then one level under is added (cf. Figs. 12(c) and 19(b) where α is odd).

Similarly, traversing any point w in $W_{\text {odd }}^{-}$, if $w \in W^{\dagger}$, then one level above is added (cf. Figs. 12(b) and 19(b), where α is odd), and if $w \in W^{\downarrow}$, then one level under is deleted (cf. Figs. 12(d) and 19(a), where α is odd).

Symmetric statements hold for $w \in W_{\text {even }}^{-}$and $w \in W_{\text {even }}^{+}$. This shows (61).
Now, for any $v \in V G$, if e and e^{\prime} are the two components of $K \backslash P$ incident with p_{v}^{\downarrow}, then $\xi(e, v)+\xi\left(e^{\prime}, v\right)=1$. Similarly for p_{v}^{\dagger}.

Hence, adding up (61) over all components e of $K \backslash P$ we obtain

$$
\begin{align*}
& 2\left(\sum_{v \in V G} \kappa\left(p_{v}^{\dagger}\right)-\sum_{v \in V G} \kappa\left(p_{v}^{\downarrow}\right)\right) \\
& \quad=2 v(K)+2|U|+\left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{-}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{+}\right| \tag{62}
\end{align*}
$$

Now from Figs. 33 and 34 we see that for any $v \in V G$,
and $\quad \kappa\left(p_{v}^{\dagger}\right)=\left(\beta_{v}^{\downarrow}+\zeta_{v}+\varphi_{v}^{\downarrow}+1+\varphi_{v}^{\downarrow}+\zeta_{v}+\eta_{v}+\varphi_{v}^{\dagger}\right)-\left(\varphi_{v}^{\dagger}+\zeta_{v}+\beta_{v}^{\dagger}\right)$

Hence

$$
\begin{equation*}
\kappa\left(p_{v}^{\dagger}\right)-\kappa\left(p_{v}^{\downarrow}\right)=2 \varphi_{v}+2 \zeta_{v}+2 \eta_{v}+2 \tag{64}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{-}\right|-\left|W_{\text {odd }}^{-}\right|-\left|W_{\text {even }}^{+}\right| \\
& \quad=4 \varphi+4 \zeta+4 \eta+4 v(K)-2 v(K)-2|U|=2 v(K)+2 \varphi+4 \eta \tag{65}
\end{align*}
$$

since $|U|=\varphi+2 \zeta$ by (27).
Subclaims 10 d and 10 e imply that (58) is equal to

$$
\begin{gather*}
-2|V|+\left|W_{\text {odd }}\right|+2\left|W_{\text {odd }}^{-}\right|+|V|+|V| \\
+\varphi+2 \eta+2 \rho+2 \zeta+2\left|V_{\text {even }}\right|, \tag{66}
\end{gather*}
$$

which equals

$$
\begin{equation*}
\left|W_{\text {odd }}\right|+2\left|W_{\text {odd }}^{-}\right|+\varphi+2 \eta+2 \rho+2 \zeta+2\left|V_{\text {even }}\right| \tag{67}
\end{equation*}
$$

By (27) this is equal to the right hand side in Claim 10.
An equality for $\sum_{k=1}^{\infty} \delta\left(R_{2 k}\right)$. For any subset R of \mathbb{R}^{2} that is the closure of the union of some faces of H, let $\delta(R)$ denote the number of times edges of G "leave" R. To be precise, for any edge e of G, we say that e leaves R

Figure 92
at v if $v \in \operatorname{bd}(R)$ and $v \in \overline{e \backslash R}$. Let $\delta(R, e)$ denote the number of times that e leaves R (that is, the number of v such that e leaves R at v), and define

$$
\begin{equation*}
\delta(R):=\sum_{e \in E G} \delta(R, e) . \tag{68}
\end{equation*}
$$

So if one makes a set of closed curves in $\mathbb{R}^{2} \backslash R$ close to the boundary components of R, then these curves will have $\delta(R)$ crossings with G.

Claim 11. $\quad \sum_{k=1}^{\infty} \delta\left(R_{2 k}\right)=2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|$.
Proof. Consider a vertex v of H. Let $\alpha:=\omega(v)$. First let $v \in V G$. Consider the neighbourhood of v as in Fig. 92. If α is even, then $v \in \operatorname{bd}\left(R_{2 k}\right) \Leftrightarrow 2 k=\alpha$, and only e_{1} and e_{2} leave R_{α} at v. If α is odd, then $v \in \operatorname{bd}\left(R_{2 k}\right) \Leftrightarrow 2 k=\alpha-1$, and no edge of G leaves $R_{\alpha-1}$ at v.

Next let $v \in \pi[U]$. Consider the neighbourhood of v as in Fig. 93. If α is even, then $v \in \operatorname{bd}\left(R_{2 k}\right) \Leftrightarrow 2 k=\alpha$, and edge e leaves R_{α} at v. If α is odd, then $\mathrm{v} \in \mathrm{bd}\left(R_{2 k}\right) \Leftrightarrow 2 k=\alpha \pm 1$, and edge e leaves $R_{\alpha+1}$ at v, but e does not leave $R_{\alpha-1}$ at v.
Finally, let $v \in \pi[W]$. Consider the neighbourhood of v as in Fig. 94. If α is even, then $v \in \operatorname{bd}\left(R_{2 k}\right) \Leftrightarrow 2 k=\alpha$, and no edge of G leaves R_{α} at v. If α is odd, then $v \in \operatorname{bd}\left(R_{2 k}\right) \Leftrightarrow 2 k=\alpha+1$, and edge e leaves $R_{\alpha+1}$ at v.

Figure 93

Figure 94

Adding up over all vertices v of H on G we obtain the claim.
The remainder of the proof makes the following intuitive argument precise. By Claims 10 and 11,

$$
\begin{equation*}
\sum_{k=1}^{\infty} \delta\left(R_{2 k}\right)=2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U| \leqslant \sum_{k=1}^{\infty} 4 \chi\left(R_{2 k}\right) . \tag{69}
\end{equation*}
$$

On the other hand, roughly speaking, since G is well-connected, for each k, $\delta\left(R_{2 k}\right) \geqslant 4 \chi\left(R_{2 k}\right)$, since there are at least four edges of G leaving any component of any $R_{2 k}$. Equality throughout then should imply the existence of the isotopy bringing Σ to Σ_{K} as required.

The graph H^{\prime}. Let H^{\prime} be defined by

$$
\begin{equation*}
H^{\prime}:=\bigcup_{k=1}^{\infty} \operatorname{bd}\left(R_{2 k}\right) . \tag{70}
\end{equation*}
$$

That is, H^{\prime} is the subgraph of H consisting of those edges e of H for which $\left\lfloor\frac{1}{2} \mu(F)\right\rfloor$ and $\left\lfloor\frac{1}{2} \mu\left(F^{\prime}\right)\right\rfloor$ differ (by 1), where F and F^{\prime} are the faces of H incident with e. So H^{\prime} contains all of $H \backslash G$, while an edge e of H on G is in H^{\prime}, if and only if $\mu(e)$ is even. H^{\prime} inherits the orientation from H (cf. Fig. 23).

Figure 95

Figure 96
Consider a vertex v of H^{\prime}. Let $\alpha:=\omega(v)$. If v is also a vertex of G, then v is incident with two edges of H^{\prime}. If $v \in V_{\text {even }}$ then the neighbourhood of v in H^{\prime} is as in Fig. 95. (The interrupted lines in the figure are part of G not in H^{\prime}.)

If $v \in V_{\text {odd }}$ then it is as in Fig. 96. If $v \in \pi[U]$ and α is even, the neighbourhood of v is as in Fig. 97. If $v \in \pi[U]$ and α is odd, it is as in Fig. 98. If $v \in \pi[W]$ and α is even, the neighbourhood of v is as in Fig. 99. If $v \in \pi[W]$ and α is odd, it is as in Fig. 100. Finally, if $v \notin G$ (that is, v is in a face of G), then the neighbourhood is as in Fig. 101.

Note that any edge e of H^{\prime} that is on the boundary of an odd face of G is oriented counter-clockwise with resect to that face. (So it is oriented clockwise with respect to even faces, except for the unbounded face.)
Note moreover that H^{\prime} is "Eulerian"; that is, each vertex of H^{\prime} has the same number of arcs oriented inwards as outwards. So the edge set of H^{\prime} can be decomposed into simple directed circuits. (Simple means: not traversing any point more than once.) Also, at each vertex v of H^{\prime}, the incoming arcs occur consecutively in the cyclic ordering of arcs incident with v.

Claim 12. Let D_{1}, \ldots, D_{t} be a decomposition of the edge set of H^{\prime} into simple directed circuits such that D_{1}, \ldots, D_{s} are oriented clockwise and D_{s+1}, \ldots, D_{t} are oriented counter-clockwise. Then:

$$
\begin{equation*}
s-(t-s)=\sum_{k=1}^{\infty} \chi\left(R_{2 k}\right) . \tag{71}
\end{equation*}
$$

Figure 97

Figure 98

Figure 99

Figure 100

Figure 101

Figure 102

Figure 103

Proof. By [2, Lemma 6.3], the number $s-(t-s)$ is independent of the choice of the D_{i} (it is equal to the Whitney degree of H^{\prime} considered as a set of disjoint oriented plane curves). Taking for the D_{i} the boundaries of the components of the $R_{2 k}$ we obtain (71). (I am grateful to François Jaeger for pointing out this argument to me; it replaces my original invalid argumentation.)

For any simple closed curve D in \mathbb{R}^{2} we denote

$$
\begin{equation*}
R(D):=\text { closed region enclosed by } D . \tag{72}
\end{equation*}
$$

We show:
Claim 13. Let D be a simple directed circuit in H^{\prime}, oriented clockwise, with $V G \cap R(D)=\varnothing$. Then D is the circuit in one of the configurations in Fig. 102. (In Fig. 102 the interrupted line is part of G not in H^{\prime}.)

Proof. First observe that D should intersect G. Indeed, if D contains $\pi[Q]$ for some component Q of $B(C)$ for some $C \in \mathscr{C}$, then D intersects G as $\pi[Q]$ intersects G. If D traverses consecutively parts of $\pi[Q]$ and $\pi\left[Q^{\prime}\right]$ say, for some components Q of $B(C)$ and Q^{\prime} of $B\left(C^{\prime}\right)$, for some $C, C^{\prime} \in \mathscr{C}$, then it contains a crossing x of Q and Q^{\prime} near to some vertex v of G, as in Fig. 78, 80, or 82 . But then v belongs to $R(D)$, as one has Fig. 103

Figure 104
(with $\gamma, \delta \geqslant 0$). So by the orientation of H^{\prime}, there is no way for D to avoid enclosing v.

So D intersects G. If D would traverse a vertex of H^{\prime} in $\pi[U]$ or $\pi[W]$ near to any vertex v of G, then D is either as in Fig. 102(b) or $R(D)$ would contain v, again because by the orientation of H^{\prime} there is no way for D to avoid enclosing v (cf. Figs. 70, 71, 72, 73, and 74). For instance, at the left hand part of Fig. 70 the graph H^{\prime} is as in Fig. 104. (The edges in G are oriented in the way indicated since face F is even.) So D should be of one of the types given in Fig. 102.

Claim 14. Let D be a simple directed circuit in H^{\prime}, oriented clockwise, such that $V G \cap R(D)=\{v\}$ for some vertex v of G. Then D is a component of H^{\prime}, and it is the directed circuit in one of the configurations in Fig. 105.

Proof. Again if D traverses some point in $\pi[U]$ or $\pi[W]$ near to a vertex v^{\prime} of G, then either it is of type (b) in Fig. 102 (see Figs. 72, 73, and 74) which is ruled out since $V G \cap R(D) \neq \varnothing$, or v^{\prime} belongs to $R(D)$ (cf.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figs. 70, 71, 72, 73, and 74), implying $v^{\prime}=v$. Hence D cannot traverse any other points in $\pi[U]$ and $\pi[W]$ than those near to v.

So if D intersects one of the edges e incident with v, it intersects e in one of the ways given in Fig. 106.

Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the edges incident with v in clockwise order. First suppose that D does not traverse v. Let D_{i} be the part of D connecting e_{i} and e_{i+1}, for $i=1,2,3,4$ (taking indices $\bmod 4$). By (34), since each D_{i} cannot traverse any edge distinct from $e_{1}, e_{2}, e_{3}, e_{4}$, it either connects two points in $\pi[U]$ or connects two points in $\pi[W]$. Since at most two neighbouring edges among $e_{1}, e_{2}, e_{3}, e_{4}$, say e_{1} and e_{2}, can contain points in $\pi[U]$ near to v, we know that each of D_{2}, D_{3}, D_{4} connects two points in $\pi[W]$. Then there does not exist a point in $\pi[U]$ near to v. For suppose e_{2} (say) contains a point u in $\pi[U]$ near to v. Since e_{3} contains a point in $\pi[W]$ near to v, Claim 9 implies that e_{3} contains a point in $\pi[U]$ near to v. This contradicts our assumption that each point in U near to v projects to e_{1} or e_{2}.

So all vertices of H traversed by D belong to $\pi[W]$, and hence each crossing is of type (b) or (c) of Fig. 106. Therefore, we have Fig. 105(i).

Second suppose that D traverses v and that v belongs to $V_{\text {even }}$. Then D contains Fig. 107 (see Fig. 95). As $\omega(v)=\alpha$, the vertices in $\pi[U]$ near to v are on e_{1} and e_{2} only. As D is oriented clockwise, it does not intersect e_{1} or e_{2}. Hence D contains both (d) or (e) of Fig. 106, and (f) or (g) of Fig. 106. Therefore, D does not traverse any point in $\pi[U]$, and hence D is a component of H^{\prime}. Moreover, D is of type (a), (b), (c), or (d) in Fig. 105.

Finally, suppose D traverses v and v belongs to $V_{\text {odd }}$. Then D contains Fig. 108 (see Fig. 96). As $\omega(v)=\alpha$, the vertices in $\pi[U]$ near to v are on e_{1} and e_{2} only. So D intersects e_{1} as in configuration (f) or (g) of Fig. 106, intersects e_{2} as in (d) or (e) of Fig. 106, intersects e_{3} as in (c) of Fig. 106, and intersects e_{4} as in (b) (since in (h) and (i) of Fig. 106 D traverses a

Figure 106

Figure 107
point in $\pi[U]$ (see Figs. 72, 73, and 74)). So both e_{3} and e_{4} contain points in $\pi[W]$, implying that there is no point in U near to v, by (35) (since all points in U near to v project to $e_{1} \cup e_{2}$). So D does not traverse any point in $\pi[U]$, and hence D is a component of H^{\prime}. Moreover, D is of type (e), (f), (g), or (h) in Fig. 105.

We call any of the components in Figs. 102 and 105 small components. Note that Claim 14 implies:

If D is a small component with $V G \cap R(D)=\{v\}$, then there is no point in U near to v.

To see this for Fig. 105(a), consider Fig. 109. Observe that all points in U near to v project to $e \cup e^{\prime}$. So by (35) there is no point in U near to v. Similarly for the other configurations in Fig. 105.
Also note that each of the configurations (a), (b), (c), (d) in Fig. 105 implies that v belongs to $V_{\text {even }}$, and that each of (e), (f), (g), (h) in Fig. 105 implies that v belongs to $V_{\text {odd }}$. Moreover, Fig. 105(a) as seen from F is as in Fig. 110. This can be seen as follows. Seen from F we have Fig. 111. (Note that $w \in W^{\dagger}$ and $w^{\prime} \in W^{\downarrow}$ by Claim 5.) Now there is no point in $\pi[W]$ between $\pi(w)$ and v in Fig. 105(a), since otherwise the $\pi(w)-v$ part would not be fully contained in H^{\prime}. So ε_{1} should lead to p_{v}^{\dagger} or a point above p_{v}^{\dagger} (by Claim 5), and ε_{2} cannot lead to part l. Moreover, there is no point in $\pi[U]$ near to v on one of these edges. Hence ε_{1} and ε_{2} should lead to each other. Similarly, ε_{3} and ε_{4} should lead to each other, and hence we have Fig. 110.

Figure 108

Figure 109
Similarly, Fig. 105(b) as seen from F is as in Fig. 112. (Note that w belongs to w^{\downarrow}, as if $w \in W^{\dagger}$ then by (25) $w \in W^{+}$, contradicting the fact that Fig. 68 does not occur.)

Similarly for Figs. 105(c) and (d).
The graph Δ^{\prime}. Consider the set

$$
\begin{equation*}
\Delta^{\prime}:=\left(\Delta \cup \bigcup_{v \in V G} e_{v}\right) \bigcup \bigcup\{\sigma \mid \sigma \text { segment on } K \text { with } \mu(\sigma) \text { odd }\} . \tag{74}
\end{equation*}
$$

(As before, e_{v} denotes the open line segment connecting p_{v}^{\downarrow} and p_{v}^{\dagger}.)
Each point in $P \cup W$ is incident with two segments on K, one with even μ-value and one with odd μ-value. Hence Δ^{\prime} is a 2 -regular graph embedded in \mathbb{R}^{3}. So each component of Δ^{\prime} is a circuit.

Note that

$$
\begin{equation*}
H^{\prime}=\pi\left[\Delta^{\prime}\right] \tag{75}
\end{equation*}
$$

The orientation of H^{\prime} induces an orientation of Δ^{\prime}, in which each component is a directed circuit. It is easy to see that this is obtained when each line segment e_{v} is oriented from p_{v}^{\downarrow} to p_{v}^{\dagger}.

The length function l. For each edge e of H^{\prime} define the "length" $l(e)$ of e by

$$
\begin{align*}
l(e) & :=\left|\bar{e} \cap V_{\text {even }}\right| & & \text { if } e \subseteq G \\
& :=|\bar{e} \cap G| & & \text { if } e \text { is contained in an even face of } G \tag{76}\\
& :=0 & & \text { if } e \text { is contained in an odd face of } G .
\end{align*}
$$

Figure 110

Figure 111
For any $H^{\prime \prime} \subseteq H^{\prime}$ define

$$
\begin{equation*}
l\left(H^{\prime \prime}\right):=\sum_{e \in E H^{\prime}, e \subseteq H^{\prime \prime}} l(e) . \tag{77}
\end{equation*}
$$

Then:
Claim 15. Let R be a closed region in \mathbb{R}^{2} such that the boundary $\operatorname{bd}(R)$ of R is part of H^{\prime} in such a way that R is at the right hand side of any edge e of H^{\prime} on $\operatorname{bd}(R)$. Then

$$
\begin{equation*}
l(\operatorname{bd}(R))=\delta(R) \tag{78}
\end{equation*}
$$

Proof. Since for any vertex v of H^{\prime} of degree 4 the edges incident with v are oriented as in Fig. 113, bd (R) consists of pairwise disjoint simple directed circuits.

For any vertex v of H on $G \cap \mathrm{bd}(R)$, define $\vartheta(v)$ as follows. If $v \in V G$, let $\vartheta(v):=2$ if $v \in V_{\text {even }}$ and $\vartheta(v):=0$ if $v \in V_{\text {odd. }}$. If $v \notin V G$, let $\vartheta(v)$ be the number of edges $e \subseteq \operatorname{bd}(R)$ with $v \in \bar{e}$, and e being contained in an even face of G. By definition of l,

$$
\begin{equation*}
l(\mathrm{bd}(R))=\sum_{v \in V H \cap G \cap \mathrm{bd}(R)} \vartheta(v) . \tag{79}
\end{equation*}
$$

Now, on the other hand, define for any $v \in V H \cap G \cap \operatorname{bd}(R), \vartheta^{\prime}(v)$ as the number of edges e of H contained in G such that $v \in \bar{e}$ and $e \cap R=\varnothing$. So

$$
\begin{equation*}
\delta(R)=\sum_{v \in V H \cap G \cap \mathrm{bd}(R)} \vartheta^{\prime}(v) . \tag{80}
\end{equation*}
$$

Figure 112

Figure 113
We show that $\vartheta(v)=\vartheta^{\prime}(v)$ for each $v \in V H \cap G \cap \mathrm{bd}(R)$, implying (78) by (79) and (80).

Let $v \in V H \cap G \cap \operatorname{bd}(R)$ and let $\alpha:=\omega(v)$. If $v \in V G$ and α is even then we have Fig. 114 (cf. Fig. 95). We see that $\vartheta^{\prime}(v)=2=\vartheta(v)$.

If $v \in V G$ and α is odd then we have Fig. 115 (cf. Fig. 96) and we see that $\vartheta^{\prime}(v)=0=\vartheta(v)$.

If $v \in \pi[U]$ and α is even, then (up to symmetry) we have Fig. 116 (cf. Fig. 97). We see that $\vartheta^{\prime}(v)=1=\vartheta(v)$.

If $v \in \pi[U]$ and α is odd then (up to symmetry) one of the configurations in Fig. 117 applies (cf. Fig. 98). Then $\vartheta(v)=1,0,1$ and 0 respectively; similarly $\vartheta^{\prime}(v)=1,0,1$ and 0 respectively.

If $v \in \pi[W]$ and α is even then one of the configurations in Fig. 118 applies (cf. Fig. 99). We see that $\vartheta^{\prime}(v)=0=\vartheta(v)$.
Finally, if $v \in \pi[W]$ and α is odd then one of the configurations in Fig. 119 applies (cf. Fig. 100). Now $\vartheta^{\prime}(v)=1=\vartheta(v)$.

We next show:
Claim 16. Each simple directed circuit D in H^{\prime} with $V G \cap R(D) \neq \varnothing$ is oriented clockwise, has length $l(D)=4$, and satisfies one of the following:
(i) $|V G \cap R(D)|=1$;
(ii) $|V G \backslash R(D)|=1$;
(iii) $V G \subseteq R(D)$, and there are two edges e, e^{\prime} of G on the boundary of the unbounded face F_{0} such that each of e and e^{\prime} leaves $R(D)$ twice.

Moreover, $W_{\text {odd }}^{-}=\varnothing, \eta=0$, and the configuration in Fig. 120 does not occur.

Figure 114

Figure 115

Figure 116

or

or

Figure 117

Figure 118

Figure 119

58

Figure 120
Proof. For any oriented curve Q, let x_{Q} be its beginning point and y_{Q} be its end point (these points are not part of Q if Q is an open curve). Note that for each $C \in \mathscr{C}$ contained in $\pi^{-1}\left[F_{0}\right]$ one has $C \in \mathscr{C}_{0}$. Hence there is no Z-type curve or segment "seen" from F_{0}.

We first show the following (where we use the fact that the unbounded face F_{0} of G is bounded by at least four edges of G):

Subclaim 16a. There exist vertices v_{1} and v_{2} of G on the boundary of the unbounded face F_{0} such that v_{1} and v_{2} are not adjacent in G, and such that for each $i \in\{1,2\}$ and for each component Q of $\Delta^{\prime} \cap \pi^{-1}\left[F_{0}\right]$, if the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ (in clockwise orientation) contains v_{i}, then one of x_{Q}, y_{Q} is near to v_{i}.

Proof. Note that, by the observations on Figs. 70-74, for each component Q of $\Delta^{\prime} \cap \pi^{-1}\left[F_{0}\right], x_{Q}$ or y_{Q} is near to the nearest vertex on the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$. Also note that Q is a component of $B(C)$ for some $C \in \mathscr{C}_{0}$, as $\pi^{-1}\left[F_{0}\right]$ does not contain any component in \mathscr{C}_{1}.

If for each Q the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ contains at most two vertices of G, we can take any two nonadjacent vertices v_{1}, v_{2} of G on $\operatorname{bd}\left(F_{0}\right)$.

If for at least one such component Q the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ contains more than two vertices of G, choose Q maximal in the sense that the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ is as large as possible. Then we choose v_{1} and v_{2} so that x_{Q} is near to v_{1} and y_{Q} is near to v_{2}.

Now v_{1} and v_{2} have the required properties. For suppose that for some component Q^{\prime} of $\Delta^{\prime} \cap \pi^{-1}\left[F_{0}\right]$ the $\pi\left(x_{Q^{\prime}}\right)-\pi\left(y_{Q^{\prime}}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ contains v_{1} in such a way that neither $x_{Q^{\prime}}$ nor $y_{Q^{\prime}}$ is near to v_{1}. If $\pi\left[Q^{\prime}\right]$ does not cross $\pi[Q]$ then the $\pi\left(x_{Q^{\prime}}\right)-\pi\left(y_{Q^{\prime}}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ would be larger than the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$, contradicting the choice of Q.

So $\pi\left[Q^{\prime}\right]$ crosses $\pi[Q]$. Hence $\pi\left[Q^{\prime}\right]$ should cross $\pi[Q]$ near to v_{1} or near to v_{2} (by (32)). If $\pi\left[Q^{\prime}\right]$ crosses $\pi[Q]$ near to v_{1}, then $y_{Q^{\prime}}$ is near to v_{1}. If $\pi\left[Q^{\prime}\right]$ crosses $\pi[Q]$ near to v_{2}, then $x_{Q^{\prime}}$ should be near to v_{2}. Hence v_{2} is contained in the $\pi\left(x_{Q^{\prime}}\right)-\pi\left(y_{Q^{\prime}}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$. Since also v_{1} is contained in the $\pi\left(x_{Q^{\prime}}\right)-\pi\left(y_{Q^{\prime}}\right)$ part of $\operatorname{bd}\left(F_{0}\right), \pi\left[Q^{\prime}\right]$ should have a second crossing with $\pi[Q]$. This crossing should be near to v_{1}, and hence $y_{Q^{\prime}}$ is near to v_{1}.

Figure 121
The proof is similar for the case where the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ contains v_{2}.

Moreover, v_{1} and v_{2} are nonadjacent since otherwise we would have Fig. 121. Let $C \in \mathscr{C}$ with $B(C)=Q$. As $C \in \mathscr{C}_{0}$, we see Fig. 122 from F_{0} on $\pi^{-1}\left[\operatorname{bd}\left(F_{0}\right)\right]$. (The turning points might also be on the $p_{v_{1}}^{\dagger}-p_{v_{2}}^{\downarrow}$ part-see Figs. 75, 76.)

By our choice of Q there is no component $C^{\prime} \in \mathscr{C}_{0}$ contained in $\pi^{-1}\left[F_{0}\right]$ such that $\operatorname{bd}\left(C^{\prime}\right)$ encloses $\operatorname{bd}(C)$ on the cylinder $\pi^{-1}\left[\operatorname{bd}\left(F_{0}\right)\right]$. So we can apply an isotopy in S^{3} to C so that the boundary of C encloses (part of) l only, as in Fig. 123. (Again, the turning points might be on the $p_{v_{1}}^{\dagger}-p_{v}^{1}$ part.)

This makes

$$
\begin{equation*}
\sum_{v \in V G \cap \mathrm{bd}\left(F_{0}\right)} \omega(v) \tag{82}
\end{equation*}
$$

smaller, contradicting the minimality assumption (23)(ii).
Let \mathscr{D} denote the collection of all boundary components D of all $R_{2 k}$ that are oriented clockwise such that $V G \cap R(D) \neq \varnothing$. Let ρ^{\prime} denote the number of small components of the types given in Fig. 102. So by Claims 12 and 13,

$$
\begin{equation*}
\sum_{k=1}^{\infty} \chi\left(R_{2 k}\right) \leqslant|\mathscr{D}|+\rho^{\prime} \tag{83}
\end{equation*}
$$

Figure 122

Figure 123

Let $e_{1}^{\prime}, e_{1}^{\prime \prime}$ be the two edges of G incident with v_{1} on $\operatorname{bd}\left(F_{0}\right)$, and let $e_{2}^{\prime}, e_{2}^{\prime \prime}$ be the two edges of G incident with v_{2} on $\operatorname{bd}\left(F_{0}\right)$.

For any simple directed circuit D let again $R(D)$ denote the closed region enclosed by D. Moreover, let $r_{1}(D)$ be equal to the number of sets among $e_{1}^{\prime},\left\{v_{1}\right\}, e_{1}^{\prime \prime}$ that are contained in $R(D)$. So $r_{1}(D) \in\{0,1,2,3\}$. Similarly, let $r_{2}(D)$ be equal to the number of sets among $e_{2}^{\prime},\left\{v_{2}\right\}, e_{2}^{\prime \prime}$ that are contained in $R(D)$.

This is used in showing:

Subclaim 16b. There is no crossing (i.e., vertex of H of degree 4) in F_{0} near to v_{1} or near to v_{2}.

Proof. Suppose the subclaim is not true, and suppose without loss of generality that there exists a crossing in F_{0} near to v_{1}. This implies

$$
\begin{equation*}
\left(\# D \in \mathscr{D} \mid r_{1}(D)=3\right)<\left(\# D \in \mathscr{D} \mid r_{1}(D)=1\right) . \tag{84}
\end{equation*}
$$

The reason is that the crossings in F_{0} near to v_{1} are locally as in Fig. 124. (There are no Z-type curves near v_{1}, since $\pi^{-1}\left[F_{0}\right]$ contains no component in \mathscr{C}_{1}, as $\mu\left(F_{0}\right)=0$.)

It implies that v_{1} belongs to $V_{\text {even }}$ (by (32) and (33)) and that the curves

Figure 124

Figure 125
in \mathscr{D} are locally as in Fig. 125. Let there be ϑ_{1} curves Q in $\Delta^{\prime} \cap \pi^{-1}\left[F_{0}\right]$ with y_{Q} near to v_{1} and let there be ϑ_{2} curves Q in $\Delta^{\prime} \cap \pi^{-1}\left[F_{0}\right]$ with x_{Q} near to v_{1} (cf. Fig. 124). Then there are $\min \left\{\vartheta_{1}, \vartheta_{2}\right\}$ curves $D \in \mathscr{D}$ with $r_{1}(D)=3,\left|\vartheta_{1}-\vartheta_{2}\right|$ curves $D \in \mathscr{D}$ with $r_{2}(D)=2$, and $\min \left\{\vartheta_{1}, \vartheta_{2}\right\}+1$ curves $D \in \mathscr{D}$ with $r_{1}(D)=1$ (cf. Figs. 125 and 95). Hence we have (84). (Note that by the conditions in Subclaim 16a, all D in \mathscr{D} with $r_{1}(D)=3$ occur (partly) in Fig. 125.)

Moreover,

$$
\begin{equation*}
\text { for no curve } D \in \mathscr{D} \text { one has } V G \cap R(D)=\left\{v_{1}\right\}, \tag{85}
\end{equation*}
$$

since otherwise by Claim 14 and (73) there are no points in U near to v_{1}, and hence there are no crossings near to v_{1}.

Now we distinguish two cases.
CASE 1. There exists a crossing in F_{0} near to v_{2}. This similarly implies:

$$
\begin{equation*}
\left(\# D \in \mathscr{D} \mid r_{2}(D)=3\right)<\left(\# D \in \mathscr{D} \mid r_{2}(D)=1\right) \tag{86}
\end{equation*}
$$

and v_{2} belongs to $V_{\text {even }}$.
Now for each $D \in \mathscr{D}$ we have

$$
\begin{equation*}
l(D) \geqslant 8-2\left|r_{1}(D)-1\right|-2\left|r_{2}(D)-1\right| . \tag{87}
\end{equation*}
$$

To see this, let \widetilde{D} be a closed curve encircling D and very close to D, in such a way that \tilde{D} has exactly $l(D)=\delta(R(D))$ crossings with G. Then showing (87) is simple case-checking, using the facts that $R(D)$ should contain at least one vertex of G, and that hence, by the well-connectedness of K, \tilde{D} should cross G often enough; that is

$$
\begin{align*}
& \text { if } \varnothing \neq V G \cap R(D) \neq V G \text { then } l(D) \geqslant 4 \text {; if }|V G \cap R(D)| \geqslant 2 \\
& \text { and }|V G \backslash R(D)| \geqslant 2 \text { then } l(D) \geqslant 6 \text {. } \tag{88}
\end{align*}
$$

[Indeed, to check (87), we use the following observation:
Let \mathscr{G} be a 4-edge-connected planar graph embedded in \mathbb{R}^{2}, and let \mathscr{B} be a simple closed curve in \mathbb{R}^{2} not traversing any vertex of \mathscr{G}. Let t be the number of edges of \mathscr{G} incident with the unbounded face \mathscr{F}_{0} that are crossed at least once by \mathscr{B}. Then \mathscr{B} has at least $2 t$ crossings with \mathscr{G}.
(Proof. Decompose \mathscr{B} into curves $\mathscr{B}_{1}, \ldots, \mathscr{B}_{s}$, where each \mathscr{B}_{i} has both ends in \mathscr{F}_{0} and has exactly two crossings with the boundary of \mathscr{F}_{0}. Let λ_{i} be the number of edges incident with \mathscr{F}_{0} crossed by \mathscr{B}_{i} (so $1 \leqslant \lambda_{i} \leqslant 2$), and let μ_{i} be the number of crossings of \mathscr{B}_{i} with \mathscr{G}. Then, since \mathscr{G} is 4-edgeconnected, $\mu_{i} \geqslant 2$ if $\lambda_{i}=1$ and $\mu_{i} \geqslant 4$ if $\lambda_{i}=2$. That is, $\mu_{i} \geqslant 2 \lambda_{i}$. Hence $\left.\mu_{1}+\cdots+\mu_{s} \geqslant 2\left(\lambda_{1}+\cdots+\lambda_{s}\right) \geqslant 2 t.\right)$

We may assume without loss of generality that $r_{2}(D) \leqslant r_{1}(D)$. First assume $r_{2}(D)=0$. If $r_{1}(D)=0$, then $\varnothing \neq V G \cap R(D) \neq V G$, implying $l(D) \geqslant 4$ by (88). If $r_{1}(D)=1$, then \widetilde{D} crosses e_{1}^{\prime} and $e_{1}^{\prime \prime}$ and $v_{2} \notin R(D)$; also $V G \cap R(D) \neq\left\{v_{1}\right\}$ (by (85)); so $|V G \cap R(D)| \geqslant 2$. If $|V(G) \backslash R(D)| \geqslant 2$ then $l(D) \geqslant 6$ by (88). If $|V(G) \backslash R(D)| \leqslant 1$ then $V G \backslash R(D) \subseteq\left\{v_{2}\right\}$ and hence the end points of e_{1}^{\prime} and $e_{1}^{\prime \prime}$ not equal to v_{1} belong to $R(D)$. Hence \widetilde{D} crosses each of e_{1}^{\prime} and $e_{1}^{\prime \prime}$ at least twice. If \widetilde{D} would cross G exactly four times then $v_{2} \in R(D)$, contradicting the assumption that $r_{2}(D)=0$. So $l(D) \geqslant 6$ follows. If $r_{1}(D) \geqslant 2$, then $v_{2} \notin R(D), v_{1} \in R(D)$ and hence $l(D) \geqslant 4$ by (88).

Second assume $r_{2}(D)=1$. So \widetilde{D} crosses both e_{2}^{\prime} and $e_{2}^{\prime \prime}$, and hence $l(D) \geqslant 4$ by (89). This gives (87), except if $\left|r_{1}(D)-1\right| \leqslant 1$.

If $r_{1}(D)=1$, then \tilde{D} crosses also both e_{1}^{\prime} and $e_{1}^{\prime \prime}$. So \widetilde{D} crosses G at least eight times by (89), and hence $l(D) \geqslant 8$.
If $r_{1}(D)=2$, then D crosses one of $e_{1}^{\prime}, e_{1}^{\prime \prime}$ and both of $e_{2}^{\prime}, e_{2}^{\prime \prime}$. So \widetilde{D} crosses G at least six times by (89), and hence $l(D) \geqslant 6$.

Third assume $r_{2}(D)=2$. Then \widetilde{D} crosses at least one of $e_{2}^{\prime}, e_{2}^{\prime \prime}$. So $l(D) \geqslant 2$. Hence we have (87), except if $\left|r_{1}(D)-1\right| \leqslant 1$, that is, if $r_{1}(D)=2$. In that case, \tilde{D} crosses at least one of $e_{1}^{\prime}, e_{1}^{\prime \prime}$. So \tilde{D} crosses G at least four times by (89), and hence $l(D) \geqslant 4$.
If $r_{1}(D)=r_{2}(D)=3$ then (87) is trivial as $l(D) \geqslant 0$.]
Claim 10, (83), (84), (86), (87), and Claims 15 and 11 imply

$$
\begin{aligned}
& 2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|+2\left|W_{\text {odd }}^{-}\right|+2 \eta+2 \rho-4 \rho^{\prime} \\
& \leqslant
\end{aligned} \begin{aligned}
& 4\left(\sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)\right)-4 \rho^{\prime} \leqslant 4|\mathscr{D}| \\
& \quad<\left(2|\mathscr{D}|-2\left(\# D \in \mathscr{D} \mid r_{1}(D)=3\right)+2\left(\# D \in \mathscr{D} \mid r_{1}(D)=1\right)\right) \\
& \quad+\left(2|\mathscr{D}|-2\left(\# D \in \mathscr{D} \mid r_{2}(D)=3\right)+2\left(\# D \in \mathscr{D} \mid r_{2}(D)=1\right)\right) \\
& \left.\quad=\sum_{D \in \mathscr{D}}\left(4-2 \mid r_{1}(D)-1\right) \mid\right)+\sum_{D \in \mathscr{D}}\left(4-2\left|r_{2}(D)-1\right|\right)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{D \in \mathscr{O}}\left(8-2\left|r_{1}(D)-1\right|-2\left|r_{2}(D)-1\right|\right) \\
& \leqslant \sum_{D \in \mathscr{G}} l(D) \leqslant\left(\sum_{k=1}^{\infty} l\left(\operatorname{bd}\left(R_{2 k}\right)\right)\right)-2 \rho^{\prime} \\
& =\left(\sum_{k=1}^{\infty} \delta\left(R_{2 k}\right)\right)-2 \rho^{\prime}=2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|-2 \rho^{\prime} . \tag{90}
\end{align*}
$$

Since $\rho^{\prime} \leqslant \rho$, this gives a contradiction.
Case 2. There is no crossing in F_{0} near to v_{2}. So

$$
\begin{equation*}
\left(\# D \in \mathscr{D} \mid r_{2}(D)=3\right)=0 . \tag{91}
\end{equation*}
$$

Now for each $D \in \mathscr{D}$ one has

$$
\begin{equation*}
l(D) \geqslant 6-2\left|r_{1}(D)-1\right| . \tag{92}
\end{equation*}
$$

To see this, again let \tilde{D} be a closed curve encircling D and very close to D, in such a way that \tilde{D} has exactly $l(D)=\delta(R(D))$ crossings with G. Then showing (92) is again simple case-checking, using the fact that $R(D)$ contains at least one vertex of G and using the well-connectedness of K.
[If $r_{1}(D)=0$ then $v_{1} \notin R(D)$, while $V G \cap R(D) \neq \varnothing$, and by (88), $l(D) \geqslant 4$. If $r_{1}(D)=1$, then $v_{1} \in R(D)$ and \tilde{D} crosses both e_{1}^{\prime} and $e_{1}^{\prime \prime}$. If $l(D)=4$ then either $V G \cap R(D)=\left\{v_{1}\right\}$ contradicting (85), or \tilde{D} would have two crossings with e_{1}^{\prime} and two crossings with $e_{1}^{\prime \prime}$; but then \tilde{D} should have more crossings with G as $r_{2}(D) \leqslant 2$. So $l(D) \geqslant 6$.
If $r_{1}(D)=2$ then $v_{1} \in R(D)$ and \tilde{D} crosses at least one of $e_{1}^{\prime}, e_{1}^{\prime \prime}$; say it crosses e_{1}^{\prime}. If $l(D)=2$ then \tilde{D} would have a second crossing with e_{1}^{\prime} and no further crossings with G; but this would imply $r_{2}(D)=3$. So $l(D) \geqslant 4$.

If $r_{1}(D)=3$ then $l(D) \geqslant 2$, since $r_{2}(D) \leqslant 2$.]
Now by Claim 10, (83), (84), (92), and Claims 15 and 11,

$$
\begin{align*}
& 2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|+2\left|W_{\text {odd }}^{-}\right|+2 \eta+2 \rho-4 \rho^{\prime} \\
& \quad \leqslant 4\left(\sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)\right)-4 \rho^{\prime} \leqslant 4|\mathscr{D}| \\
& \quad<4|\mathscr{D}|-2\left(\# D \in \mathscr{D} \mid r_{1}(D)=3\right)+2\left(\# D \in \mathscr{D} \mid r_{1}(D)=1\right) \\
& \quad=\sum_{D \in \mathscr{D}}\left(6-2\left|r_{1}(D)-1\right|\right) \leqslant \sum_{D \in \mathscr{S}} l(D) \leqslant\left(\sum_{k=1}^{\infty} l\left(\operatorname{bd}\left(R_{2 k}\right)\right)\right)-2 \rho^{\prime} \\
& \quad=\left(\sum_{k=1}^{\infty} \delta\left(R_{2 k}\right)\right)-2 \rho^{\prime}=2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|-2 \rho^{\prime} . \tag{93}
\end{align*}
$$

Since $\rho^{\prime} \leqslant \rho$, this is a contradiction.

This gives:
Subclaim 16c. Let D be a simple directed circuit in H^{\prime}, oriented clockwise, and not being a small component as given in Fig. 102. Then $l(D) \geqslant 4$.

Proof. By Subclaim 16b, $r_{1}(D) \leqslant 2$ and $r_{2}(D) \leqslant 2$. If $V G \nsubseteq R(D)$, then, as $R(D)$ contains at least one vertex by Claim 13, l(D) $=\delta(R(D)) \geqslant 4$, by the well-connectedness of K.

If $V G \subseteq R(D)$, then $1 \leqslant r_{1}(D) \leqslant 2$ and $1 \leqslant r_{2}(D) \leqslant 2$. So any curve \tilde{D} encircling D and close to D crosses at least one of $e_{1}^{\prime}, e_{1}^{\prime \prime}$ and at least one of $e_{2}^{\prime}, e_{2}^{\prime \prime}$. So by (89), $l(D) \geqslant 4$.

Now by Claim 10, (83), Subclaim 16c, and Claims 15 and 11,

$$
\begin{align*}
& 2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U|+2\left|W_{\text {odd }}^{-}\right|+2 \eta+2 \rho-2 \rho^{\prime} \\
& \quad \leqslant 4\left(\sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)\right)-2 \rho^{\prime} \leqslant 4|\mathscr{D}|+2 \rho^{\prime} \leqslant\left(\sum_{D \in \mathscr{A}} l(D)\right)+2 \rho^{\prime} \\
& \quad \leqslant \sum_{k=1}^{\infty} l\left(\operatorname{bd}\left(R_{2 k}\right)\right)=\sum_{k=1}^{\infty} \delta\left(R_{2 k}\right)=2\left|V_{\text {even }}\right|+\left|W_{\text {odd }}\right|+|U| . \tag{94}
\end{align*}
$$

Since $\rho^{\prime} \leqslant \rho$, it follows that we have equality throughout in (94). Hence $W_{\text {odd }}^{-}=\varnothing$ and $\eta=0$ and $\rho^{\prime}=\rho$. So Fig. 120 does not occur.

Moreover, H^{\prime} has no simple directed circuit D that is oriented counterclockwise. Otherwise we could decompose H^{\prime} into simple directed circuits D_{1}, \ldots, D_{t} where $D_{t}=D$, and where for some $s<t, D_{1}, \ldots, D_{s}$ are oriented clockwise, and D_{s+1}, \ldots, D_{t} are oriented counter-clockwise. This implies by Subclaim 16c and Claim 12,

$$
\begin{align*}
\sum_{k=1}^{\infty} l\left(\operatorname{bd}\left(R_{2 k}\right)\right) & =l\left(H^{\prime}\right)=\sum_{i=1}^{t} l\left(D_{i}\right) \\
& \geqslant 4 s-2 \rho^{\prime}>4(s-(t-s))-2 \rho^{\prime}=4 \sum_{k=1}^{\infty} \chi\left(R_{2 k}\right)-2 \rho^{\prime}, \tag{95}
\end{align*}
$$

contradicting equality in (94).
It similarly follows that $l(D)=4$ for each simple directed circuit D not forming a small component as given in Fig. 102. Moreover, by the wellconnectedness of $K,|V G \cap R(D)| \leqslant 1$ or $|V G \backslash R(D)| \leqslant 1$. So if $V G \cap$ $R(D) \neq \varnothing$ and (81)(i) and (81)(ii) do not hold, then $V G \subseteq R(D)$. Let e and e^{\prime} be the two edges incident with v_{1} that are incident with F_{0}. Suppose both e and e^{\prime} are contained in $R(D)$. Then there are components Q and Q^{\prime} of $\Delta^{\prime} \cap \pi^{-1}\left[F_{0}\right]$ so that the $\pi\left(x_{Q}\right)-\pi\left(y_{Q}\right)$ part of $\operatorname{bd}\left(F_{0}\right)$ contains e and the $\pi\left(x_{Q^{\prime}}\right)-\pi\left(y_{Q^{\prime}}\right)$ part of $\mathrm{bd}\left(F_{0}\right)$ contains e^{\prime}. Subclaim 16a then gives that $\pi[Q]$ and $\pi\left[Q^{\prime}\right]$ cross near to v_{1}, contradicting Subclaim 16b. So there is

Figure 126
an edge, e_{1} say, incident with v_{1} and F_{0} that is not contained in $R(D)$. Similarly, there is an edge, e_{2} say, incident with v_{2} and F_{0} that is not contained in $R(D)$. As $V G \subseteq R(D)$, each of e_{1} and e_{2} should leave R twice. So we have (81)(iii).

So each component R of each $R_{2 k}$ is a closed disk, without holes (the boundary of a hole would be oriented counter-clockwise). By Claim 16 we have $|V G \cap R| \leqslant 1$ or $|V G \backslash R| \leqslant 1$.

Claim 17. The configurations given in Figs. 105(b)-(i) do not occur.
Proof. As Fig. 120 does not occur, we cannot have Figs. 105(b), (c), (d), (f)-(h). Consider a configuration D of type (e) or (i) in Fig. 105, with $R(D)$ minimal (inclusionwise). If it is of type (e) then the point x belongs to $W_{\text {odd }}$ and hence $w \in W^{+}$. So near to v we should have Fig. 126 (cf. Figs. 70, 71, or 73). This would be part of a smaller component, which hence should be of type (a) in Fig. 105. However, D itself traverses v.

If it is of type (i) in Fig. 105, then the points x, y, z, z^{\prime} belong to $W_{\text {odd }}$ and hence to W^{+}(since $W_{\text {odd }}^{-}=\varnothing$ by Claim 16). So again, near to v we should have Fig. 127 (cf. Figs. 70, 71, or 73). Then both w and w^{\prime} should be part of a smaller component, which hence should be of type (a) in Fig. 105. However, it cannot be the case that both w and w^{\prime} belong to a component of type (a) in Fig. 105.

Moreover:
Claim 18. $W=W_{\text {odd }}^{+}$and $\varphi=0$. The configurations in Figs. 102(a), (c) do not occur.

Figure 127

Figure 128

Proof. By Claim 16, $W_{\text {odd }}^{-}=\varnothing$. We next show $W_{\text {even }}^{-}=\varnothing$. Suppose $W_{\text {even }}^{-} \neq \varnothing$ and let $w \in W_{\text {even }}^{-}$. Let e be the edge of G containing $\pi\left(w^{\prime}\right)$. So, by Claim 4, all points in W that project to e, belong to $W_{\text {even }}^{-}$.

Since by Claim 16 Fig. 120 does not occur and since $W_{\text {odd }}^{-}=\varnothing$, it implies that e is as in Fig. 128 and there are no other points in $\pi[W]$ on e (there might be points in $\pi[U]$ on e) (cf. Figs. 70-74). Without loss of generality, we may assume that Fig. 129 occurs (we may assume this since we can rotate the last configuration in Fig. 128 with respect to a vertical axis and obtain the first). Then on e, left to $\pi(w)$ all edges of H^{\prime} are entering e from above, and leaving e from below. Moreover, right to $\pi(w)$ all edges of H^{\prime} are entering e from below, and leaving e from above, as in Fig. 130 (where v^{\prime} denotes the other end of e). Let R be the component of $R_{\omega(w)}$ with $\pi(w)$ on its boundary. From Fig. 130 we see that e is fully contained in R. So $|V G \cap R| \geqslant 2$ and hence by Claim $16,|V G \backslash R| \leqslant 1$.
Now first assume that v belongs to $V_{\text {even }}$, as in Fig. 131. For the face values β^{\prime} and γ^{\prime} one has $\beta^{\prime}>\gamma^{\prime}$ (near to $\pi(w)$), and hence (near to v) one has $\beta>\gamma$. (Possible points in $\pi[U]$ in between do not invalidate the fact that left to d the face value below $\pi[K]$ is larger than that above $\pi[K]$.) Hence $\alpha>\delta$ and $\omega(v)=\alpha$. Let a, b, c, d be the edges of H^{\prime} as given in Fig. 131. Let R^{\prime} be the component of $R_{\omega(v)}$ with a, v, b on its boundary. Note that R has c and d on its boundary. So $R^{\prime} \subseteq R$.

Suppose $V G \cap R^{\prime} \neq\{v\}$. Then by Claim $16,\left|V G \backslash R^{\prime}\right| \leqslant 1$. If $\left|V G \backslash R^{\prime}\right|=1$, let $\left\{v_{0}\right\}=V G \backslash R^{\prime}$. Since both e and e^{\prime} leave R^{\prime}, one should have $v_{0}=v$, contradicting the fact that v belongs to R^{\prime}. So $V G \subseteq R^{\prime}$. Hence e and e^{\prime} leave R^{\prime} as in Fig. 132. But in that case R cannot contain R^{\prime} (cf. Fig. 130).

So we know $V G \cap R^{\prime}=\{v\}$. Hence by Claim 14, R^{\prime} is the shaded region in Fig. 133, with $w^{\prime}, w^{\prime \prime} \in W^{+}$(since $W_{\text {odd }}^{-}=\varnothing$). We can, by an isotopy in S^{3}, switch the component C in \mathscr{C} with $B(C)$ having w^{\prime} and $w^{\prime \prime}$ as turning points, to the other side of v. That is, Fig. 133 becomes Fig. 134. However, now \tilde{w}^{\prime} belongs to W^{+}while $w \in W^{-}$, so they can be cancelled as

Figure 129

Figure 130

Figure 131

Figure 132

Figure 133

Figure 134
in Claim 2. This contradicts the minimality assumption (23)(iv). (The operations described do not change $\omega(v)$ but reduce $|W|$.)

Next assume that v belongs to $V_{\text {odd }}$. Let a, b, c, d be the edges of H^{\prime} as in Fig. 135. We have $\alpha>\gamma$ (by the same argument as above for the case $\left.v \in V_{\text {even }}\right)$. Hence $\beta>\delta$, and therefore $\omega(v)=\alpha$. So there are no points in $\pi[U]$ on part r. It follows that a, b, c, d all are on the boundary of R. Since e is fully contained in R, we know that v and v^{\prime} belong to R, and hence $|V G \backslash R| \leqslant 1$ by Claim 16 .

Let $e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime}$ be the edges of G as indicated in Fig. 135. We show that $e^{\prime \prime}$ is fully contained in R. To see this, we first consider, in Fig. 136, p_{v}^{\dagger} and p_{v}^{\downarrow} as seen from F (see (25)). By Claim 5, ε_{1} and ε_{2} should lead to each other as in Fig. 137. Hence Σ does not intersect the vertical segment connecting p_{v}^{\dagger} and p_{v}^{\downarrow}; that is, $\phi_{v}+\zeta_{v}=0$. So there are no points in U near to v.

Now v forms a "cut point" in R. That is, we can split R into two regions as in Fig. 138. Since $\delta(R)=4$, we know $\delta\left(R_{1}\right)+\delta\left(R_{2}\right)=8$. As e and $e^{\prime \prime \prime}$ leave R_{1} at least once, we know $\delta\left(R_{1}\right) \geqslant 4$. Similarly, as e^{\prime} and $e^{\prime \prime}$ leave R_{2} at least once, we know $\delta\left(R_{2}\right) \geqslant 4$. Hence $\delta\left(R_{1}\right)=\delta\left(R_{2}\right)=4$.

As e and $e^{\prime \prime \prime}$ leave R_{1} and as $v_{1} \in R_{1}$ (so e leaves R_{1} exactly once), we know that $V G \backslash R_{1}=\{v\}$. As $R_{1} \cap R_{2}=\varnothing$ and as $v \notin R_{2}, V G \cap R_{2}=\varnothing$. So each of e^{\prime} and $e^{\prime \prime}$ leaves R_{2} exactly twice. Since there are no points in U near to v, it follows that there exist points $w^{\prime}, w^{\prime \prime}, w^{\prime \prime \prime} \in W$ as in Fig. 139. As $W_{\text {odd }}^{-}=\varnothing($ Claim 16 $), w^{\prime \prime \prime}$ belongs to $W_{\text {odd }}^{+}$. Hence $w^{\prime \prime} \in W_{\text {even }}^{+}$. Now e

Figure 135

Figure 136

Figure 137

Figure 138

(a)

(b)

Figure 139

Figure 140
should be like in Figs. 70-72. So Fig. 139(a) does not apply. Moreover, since $v \in V_{\text {odd }}$, Fig. 139(b) does not apply. So we have a contradiction.

Concluding, there cannot exist a point $w \in W_{\text {even }}^{-}$; so $W^{-}=\varnothing$. Now by Subclaims 10 e and 10 d (recalling that $\eta=0$ by Claim 16),

$$
\begin{align*}
& \left|W_{\text {odd }}^{+}\right|-\left|W_{\text {even }}^{+}\right|=2|V|+2 \varphi, \\
& \left|W_{\text {odd }}^{+}\right|+\left|W_{\text {even }}^{+}\right|=2|V| . \tag{96}
\end{align*}
$$

Hence $W_{\text {even }}^{+}=\varnothing$ and $\varphi=0$.
It follows that Figs. 102(a), (c) do not occur, since they involve points in $W_{\text {even }}$.

Since $\phi=0$, this implies that Figs. 78 and 80 do not occur. In fact, Fig. 82 does not occur either, since:

Claim 19. $U=\varnothing$.
Proof. Suppose $U \neq \varnothing$. By Claim 18 this implies that $\zeta_{v} \neq 0$ for some vertex v. If $v \in V_{\text {odd }}$ consider Fig. 140, where $\alpha=\omega(v)$ and $u, u^{\prime} \in U$, such that $\pi(u)$ is the point in $\pi[U]$ on e nearest to v and $\pi\left(u^{\prime}\right)$ is the point in $\pi[U]$ on e^{\prime} nearest to v. Let R be the component of R_{x-1} containing v (on its boundary). Since $\pi(u)$ and $\pi\left(u^{\prime}\right)$ are on the boundary of R, each of e and e^{\prime} leaves R at least once. Moreover, e and e^{\prime} do not both belong to the

Figure 141
boundary of the unbounded face F_{0}. Now there is no vertex v^{\prime} such that $V G \backslash R=\left\{v^{\prime}\right\}$, since there are two edges incident with v that leave R at least once, implying $v^{\prime}=v$, contradicting the fact that v belongs to R. So by Claim 16, VG $\cap R=\{v\}$, that is (by Claim 17), $\operatorname{bd}(R)$ is of type (a) in Fig. 105-a contradiction since $v \in V_{\text {odd }}$.

If $v \in V_{\text {even }}$ consider Fig. 141, where $\alpha=\omega(v)$ and $u, u^{\prime} \in U$, such that $\pi(u)$ is the point in $\pi[U]$ on e nearest to v and $\pi\left(u^{\prime}\right)$ is the point in $\pi[U]$ on e^{\prime} nearest to v. Let R be the component of $R_{\alpha-2}$ containing v. Since $\pi(u)$ and $\pi\left(u^{\prime}\right)$ are on the boundary of R, each of e and e^{\prime} leaves R at least once. Moreover, e and e^{\prime} do not both belong to the boundary of the unbounded face F_{0} (since there are no Z-type curves seen from the unbounded face F_{0}, as $\pi^{-1}\left[F_{0}\right]$ does not contain any component in \mathscr{C}_{1}). So by Claim 16, $V G \cap R=\{v\}$, that is (by Claim 17), bd (R) is of type (a) in Fig. 105-a contradiction with (73) since there are points in $\pi[U]$ near to v.

As a consequence we have that each vertex of H^{\prime} has indegree one and outdegree one. That is:

Each component of H^{\prime} is a directed circuit.
Claim 20. Each vertex $v \in V_{\text {even }}$ is in a component of type (a) in Fig. 105.

Proof. Let $v \in V_{\text {even }}$ and let $\alpha:=\omega(v)$ as in Fig. 142. Let R be the component of R_{α} containing v (on its boundary). Then each of e and e^{\prime} leaves R at least once. If $V G \cap R=\{v\}$ then $\operatorname{bd}(R)$ is of type (a) in Fig. 105 (Claims 14 and 17). If $V G \backslash R=\left\{v^{\prime}\right\}$, then $v^{\prime}=v$, since e and e^{\prime} are incident with v^{\prime} and G is well-connected, contradicting the fact that v belongs to R. So by Claim 16 we may assume that $V G \subseteq R$, and that each of e and e^{\prime} leaves R exactly twice. Moreover, e and e^{\prime} both are on the boundary of the unbounded face F_{0} of G.

Now R can only be left by edges incident with a point $v^{\prime} \in V_{\text {even }}$ traversed by $\mathrm{bd}(R)$ and by edges containing a point $w \in W$ traversed by $\operatorname{bd}(R)$. (If $\operatorname{bd}(R)$ contains a point $v^{\prime} \in V_{\text {odd }}$ then we have Fig. 143, where the shaded region is contained in R-so no edge is leaving R at v^{\prime}.)

Since e and e^{\prime} leave R, e and e^{\prime} should be on the boundary of F_{0} and e

Figure 142

Figure 143

Figure 144

Figure 145

Figure 146

Figure 147

Figure 148

Figure 149

Figure 150

Figure 151

Figure 152

Figure 153

Figure 154

Figure 155
and e^{\prime} should leave R exactly twice. So $\operatorname{bd}(R)$ does not contain any other vertex in $V_{\text {even }}$ than v, and it should contain a point $\pi(w)$ on e and a point $\pi\left(w^{\prime}\right)$ on e^{\prime} (with $w, w^{\prime} \in W$), and a curve l in F_{0} connecting $\pi(w)$ and $\pi\left(w^{\prime}\right)$ as in Fig. 144. Seen from F_{0} we have Fig. 145 (by Claim 5). (Note that on e and e^{\prime} there are no points in W near to v : if $\pi\left(w^{\prime}\right)$ would be a point on e near to v, with $w^{\prime} \in W$, then we would have Fig. 146, assuming without loss of generality that w^{\prime} is the nearest such point to v (since $W_{\text {even }}=\varnothing$); this implies that we have the given values for μ.) Applying an isotopy we first obtain Fig. 147, and next Fig. 148 (after a shift as in Claim 5). This, however, decreases

$$
\begin{equation*}
\sum_{v \in V G \cap \operatorname{bd}\left(F_{0}\right)} \omega(v), \tag{98}
\end{equation*}
$$

contradicting the minimality assumption (23)(ii).
Claim 21. $\quad V_{\text {odd }}=\varnothing$.
Proof. Let $v \in V_{\text {odd }}$. Consider the component D of H^{\prime} containing v. This component consists of a number of edges e of H^{\prime} each of one of the types (99)-(102):
e runs from v^{\prime} to $v^{\prime \prime}$ for some $v^{\prime}, v^{\prime \prime} \in V_{\text {odd }}$ as in Fig. 149;
e runs from $\pi(w)$ to $\pi\left(w^{\prime}\right)$ for some $w, w^{\prime} \in \pi[W]$ as in
Fig. 150 (note that $W_{\text {even }}=\varnothing$);
e runs from v^{\prime} to $\pi\left(w^{\prime}\right)$ for some $v^{\prime} \in V_{\text {odd }}$ and $w \in \pi[W]$ as in
Fig. 151;
e runs from $\pi\left(w^{\prime}\right)$ to v^{\prime} for some $w \in \pi[W]$ and $v^{\prime} \in V_{\text {odd }}$ as in
Fig. 152.
For any $x \in \mathbb{R}^{3}$ let $\lambda(x)$ denote the number of points in Σ strictly above x. Then for any edge of type (99), $\lambda\left(p_{v^{\prime \prime}}^{\dagger}\right)=\lambda\left(p_{v^{\prime}}^{\dagger}\right)$, since seen from F we have Fig. 153 (by Claim 5). For any edge of type (100), $\lambda\left(w^{\prime}\right)=\lambda(w)$, since $\lambda(x)$ is invariant on e. For any edge of type (101), $\lambda(w)=\lambda\left(p_{r^{\prime}}^{\dagger}\right)$, since seen from F we have Fig. 154. For any edge of type (102), $\lambda\left(p_{v^{\prime}}^{\dagger}\right)=\lambda(w)+1$, since seen from F we have Fig. 155. Now D traverses at least one point in $\pi[W]$ (since if it would consist only of edges of type (99) then D follows the boundary of an odd face counter-clockwise, contradicting Claim 16). So adding up all changes of $\lambda(x)$ over all edges of H^{\prime} traversed by D would give a positive number-a contradiction.

It follows that $V=V_{\text {even }}$ and that each $v \in V$ occurs in a component of type (a) in Fig. 105. As $|W|=2|V|$ (Subclaim 10d), this implies that Fig. 102(b) does not occur. So all components of D are of type (a) in Fig. 105. Hence there exists an isotopy of \mathbb{R}^{3} bringing Σ to Σ_{K}.

5. Theorem B

We finally show:
Theorem B. Let K and K^{\prime} be links with well-connected alternating diagrams, such that the unbounded faces of $\pi[K]$ and $\pi\left[K^{\prime}\right]$ are even. If there is an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{K^{\prime}}$, then the diagrams of K and K^{\prime} are equivalent.

Proof. Let Φ be an isotopy of S^{3} bringing Σ_{K} to $\Sigma_{K^{\prime}}$. Let $\psi(x):=\Phi(1, x)$ for all $x \in S^{3}$. So $\psi\left[\Sigma_{K}\right]=\Sigma_{K^{\prime}}$.

Again, let H_{K} be the planar graph obtained by putting a vertex in each odd face of $\pi[K]$, joining any two such vertices by an edge if the corresponding odd faces have a crossing in common. So for each vertex v of $\pi[K]$ there is an edge, denoted by ε_{r}, of H_{K}. (Recall that e_{r} denotes the edge on Σ_{K} connecting p_{v}^{\dagger} and p_{v}^{\dagger}.)
The graph $H_{K^{\prime}}$ is derived similarly from K^{\prime}. Now ε_{v}^{\prime} denotes the edge of $H_{K^{\prime}}$ corresponding to vertex v of $\pi\left[K^{\prime}\right]$. Let e_{v}^{\prime} denote the edge in $\Sigma_{K^{\prime}}$ corresponding to vertex v of $\pi\left[K^{\prime}\right]$.
We may assume that any two even faces of $\pi[K]$ have at most one vertex in common. (For suppose that each of $\pi[K], \pi\left[K^{\prime}\right]$ has two even faces with at least two vertices in common. Then H_{K} contains two edges forming a two-edge cut set. By the 3 -vertex connectedness of H_{K} it follows that H_{K} is a digon or a triangle. It similarly follows that $H_{K^{\prime}}$ is a digon or a triangle. Then Σ_{K} and $\Sigma_{K^{\prime}}$ being isotopic directly implies that K and K^{\prime} are equivalent.)
For each even face F of $\pi[K]$, we fix a simple closed curve C_{F} on Σ_{K} as follows. Let F_{1}, \ldots, F_{t} be the odd faces incident with F, and let v_{1}, \ldots, v_{t}, be the vertices of $\pi[K]$ incident with F. Then C_{F} is a closed curve on Σ_{K} traversing the faces $D_{F_{1}}, \ldots, D_{F_{t}}$ of Σ_{K} and crossing each of the edges $e_{v_{1}}, \ldots, e_{v_{t}}$ exactly once, and not traversing any other face of Σ_{K} or crossing any other edge of Σ_{K}. (Recall that $D_{F}=\pi^{-1}[F] \cap \Sigma_{K}$ for each odd face F of $\pi[K]$.)
Since any two even faces of $\pi[K]$ have at most one vertex in common, we can take the curves C_{F} in such a way that, for any two even faces F_{1}, F_{2} of $\pi[K], C_{F_{1}}$ and $C_{F_{2}}$ have at most one crossing. In fact $C_{F_{1}}$ and $C_{F_{2}}$ have exactly one crossing, if and only if \bar{F}_{1} and \bar{F}_{2} intersect, viz. in a vertex v of $\pi[K]$. (That is, if and only if F_{1} and F_{2} are contained in adjacent faces of H_{K}.) We may assume that this crossing occurs on e_{r}.
For any even face F of $\pi[K]$, let B_{F} denote the circuit in H_{K} bounding the face of H_{K} containing F.

Now for each even face F of $\pi[K], \psi\left[C_{F}\right]$ is a closed curve on $\Sigma_{K^{\prime}}$. We may assume that each edge e_{v}^{\prime} in $\Sigma_{K^{\prime}}$ is crossed only a finite number of
times by $\psi\left[C_{F}\right]$. For each even face F of $\pi[K]$ and each edge $e=\varepsilon_{v}^{\prime}$ of H_{K}, let

$$
\begin{equation*}
x(F, e):=\text { number of times } \psi\left[C_{F}\right] \text { crosses } e_{v}^{\prime} . \tag{103}
\end{equation*}
$$

Define for each even face F of $\pi[K]$:

$$
\begin{equation*}
B_{F}^{\prime}:=\left\{e \in E H_{K^{\prime}} \mid x(F, e) \text { is odd }\right\} . \tag{104}
\end{equation*}
$$

Since $\psi\left[C_{F}\right]$ is a closed curve, it crosses $\operatorname{bd}\left(D_{F^{\prime}}\right)$ an even number of times for each odd face F^{\prime} of $\pi\left[K^{\prime}\right]$, and hence B_{F}^{\prime} is a cycle ($=$ edge-disjoint union of circuits) in $H_{K^{\prime}}$.

We show:
CLaim 22. For each edge e of $H_{K^{\prime}}$ there exist even faces $F_{1} \neq F_{2}$ of $\pi[K]$ such that $e \in B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}$.

Proof. Consider the homology space over \mathbb{Z}_{2} of Σ_{K}. It is generated by the curves C_{F}, where F ranges over the even faces of $\pi[K]$. To see this, let C be any closed curve on Σ_{K}. Let A be the set of edges $e=\varepsilon_{v}$ of H_{K} with the property that C crosses e_{v} an odd number of times. Then each vertex of H_{K} is incident with an even number of edges in A. So A is the symmetric difference ($=\bmod 2 \mathrm{sum}$) of the boundaries of a collection \mathscr{F}^{\prime} of faces of H_{K}. Let \mathscr{F} be the collection of even faces of $\pi[K]$ that are contained in the faces in \mathscr{F}^{\prime}. Then C is homologous over \mathbb{Z}_{2} to $\sum_{F \in \mathscr{F}} C_{F}$. To prove this, we may assume that C and the C_{F} have only a finite number of crossings. Moreover, by slightly shifting we may assume that C and the C_{F} do not intersect $\operatorname{bd}\left(\Sigma_{K}\right)$. Now $C \cup \bigcup_{F \in \mathscr{F}} C_{F}$ crosses each e_{v} an even number of times. Hence we can color, for each odd face F^{\prime} of $\pi[K]$, the components of $\overline{D_{F}} \backslash\left(C \cup \bigcup_{F \in \mathscr{F}} C_{F}\right)$ red and blue so that adjacent components have different colors and such that $\operatorname{bd}\left(D_{F^{\prime}}\right) \cap \mathrm{bd}\left(\Sigma_{K}\right)$ is colored red. Doing this for each $D_{F^{\prime}}$ we obtain a coloring of the components of $\Sigma_{K} \backslash$ $\left(C \cup \bigcup_{F \in \mathscr{F}} C_{F}\right.$) such that $C \cup \bigcup_{F \in \mathscr{F}} C_{F}$ separates red and blue. So C and $\bigcup_{F \in \mathscr{F}} C_{F}$ are homologous over \mathbb{Z}_{2}.

One similarly shows that $\sum_{F} C_{F}$ is nullhomologous over \mathbb{Z}_{2} where F ranges over all even faces of $\pi[K]$.

Now choose an edge e of $H_{K^{\prime}}$, say $e=\varepsilon_{v}^{\prime}$, where v is a vertex of $\pi\left[K^{\prime}\right]$. Then $\sum_{F} x(F, e)$ is even, since $\sum_{F} C_{F}$ is nullhomologous on Σ_{K}, and hence $\sum_{F} \psi\left(C_{F}\right)$ is nullhomologous on $\psi\left(\Sigma_{K}\right)=\Sigma_{K^{\prime}}$ (sums ranging over even faces F of $\pi[K]$). So it suffices to show that there exists one even face F of $\pi[K]$ such that $e \in B_{F}^{\prime}$.

Let F^{\prime} be one of the two even faces of $\pi\left[K^{\prime}\right]$ incident with vertex v of $\pi\left[K^{\prime}\right]$. Then $C_{F^{\prime}}$ crosses e_{v}^{\prime} exactly once. Now $\psi^{-1}\left[C_{F^{\prime}}\right]$ is a closed curve on Σ_{K}, and hence it is homologous to $\sum_{F \in \mathscr{F}} C_{F}$ for some collection \mathscr{F} of
even faces of $\pi[K]$. Hence $C_{F^{\prime}}$ is homologous to $\psi\left[\sum_{F \in \mathscr{F}} C_{F}\right]$. Hence there exists an $F \in \mathscr{F}$ such that $\psi\left[C_{F}\right]$ crosses e_{r}^{\prime} an odd number of times. So e belongs to B_{F}^{\prime}.

Next:
Claim 23. For each even face F of $\pi[K]$ one has $\left|B_{F}\right|=\left|B_{F}^{\prime}\right|$. Moreover, each edge of $H_{K^{\prime}}$ is contained in exactly two of the cycles B_{F}^{\prime}.

Proof. For any simple closed curve C^{\prime} on $\Sigma_{K^{\prime}}$ and any $e=e_{v}^{\prime}$ on $\Sigma_{K^{\prime}}$ define
$\gamma\left(C^{\prime}, e\right):=$ [(number of times C^{\prime} crosses e in one direction)

- (number of times C^{\prime} crosses e in the other direction) $]^{2}$.
(So here we choose, temporarily, a "left hand side" and a "right hand side" of e. Clearly, the definition is independent of this choice.)

Then

$$
\begin{equation*}
\tau\left(C^{\prime}, \Sigma_{K^{\prime}}\right)=\sum_{v} \gamma\left(C^{\prime}, e_{v}^{\prime}\right), \tag{106}
\end{equation*}
$$

where v ranges over all vertices of $\pi\left[K^{\prime}\right]$. We shall show (106) when C^{\prime} is orientation-preserving (the extension to the general case is immediate). Consider a crossing of part α (say) of C^{\prime} with e_{v}^{\prime}. Let $\tilde{\alpha}$ be close and parallel to α. Then $\tilde{\alpha}$ makes a positive crossing with α as in Fig. 156. Consider also two crossings of parts α and β (say) of C^{\prime} with e_{v}^{\prime} in the same direction. So part of $\Sigma_{K^{\prime}}$ looks like Fig. 157. (In Fig. 157 we have displayed only the part of $\Sigma_{K^{\prime}}$ "in between" α and β.) Let $\tilde{\alpha}$ and $\widetilde{\beta}$ be parallel and close to α and β, respectively. Then $\tilde{\alpha}$ and β make a positive crossing, and α and $\tilde{\beta}$ make a positive crossing. Similarly, if α and β cross e_{v}^{\prime} in opposite directions we obtain two negative crossings.

Figure 156

Figure 157

Now let λ be the number of times C^{\prime} crosses e_{v}^{\prime} in one direction, and let μ be the number of times C^{\prime} crosses e_{v}^{\prime} in the other direction. Then the number of positive crossings counted in the contribution of v to $\tau\left(C^{\prime}, \Sigma_{K^{\prime}}\right)$ is equal to

$$
\begin{equation*}
\lambda+\mu+2\binom{\lambda}{2}+2\binom{\mu}{2}=\lambda^{2}+\mu^{2} \tag{107}
\end{equation*}
$$

while the number of negative crossings is $2 \lambda \mu$. So the contribution of v to $\tau\left(C^{\prime}, \Sigma_{K^{\prime}}\right)$ is equal to $\lambda^{2}+\mu^{2}-2 \lambda \mu=(\lambda-\mu)^{2}$. This shows (106).

Moreover, by definitions (103) and (105), for each even face F of $\pi[K]$ and each vertex v of $\pi\left[K^{\prime}\right], x\left(F, \varepsilon_{v}^{\prime}\right)$ is odd if and only if $\gamma\left(\psi\left[C_{F}\right], e_{v}^{\prime}\right)$ is odd. In particular, if $\varepsilon_{v}^{\prime} \in B_{F}^{\prime}$ then $\gamma\left(\psi\left[C_{F}\right], e_{v}^{\prime}\right) \geqslant 1$. Hence for each even face F of $\pi[K]$,

$$
\begin{equation*}
\left|B_{F}^{\prime}\right| \leqslant \sum_{v} \gamma\left(\psi\left[C_{F}\right], e_{v}^{\prime}\right)=\tau\left(\psi\left[C_{F}\right], \Sigma_{K^{\prime}}\right)=\tau\left(C_{F}, \Sigma_{K}\right)=\left|B_{F}\right| \tag{108}
\end{equation*}
$$

(where again v ranges over vertices of $\pi\left[K^{\prime}\right]$). Moreover, since by Claim 22 each edge e of $H_{K^{\prime}}$ is contained in at least two cycles of the form B_{F}^{\prime} :

$$
\begin{equation*}
\sum_{F}\left|B_{F}^{\prime}\right| \geqslant 2 v\left(K^{\prime}\right)=2 v(K)=\sum_{F}\left|B_{F}\right|, \tag{109}
\end{equation*}
$$

where F ranges over all even faces of $\pi[K]$.
Combining (108) and (109) gives the claim.
Next we show:
Claim 24. Let F_{1} and F_{2} be two even faces of $\pi[K]$. Then $\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|$ is odd, if and only if F_{1} and F_{2} are in adjacent faces of H_{K}.

Proof. First assume that F_{1} and F_{2} are not in adjacent faces of H_{K}. So by assumption, $C_{F_{1}}$ and $C_{F_{2}}$ are disjoint. Then also $\psi\left[C_{F_{1}}\right]$ and $\psi\left[C_{F_{2}}\right]$ are disjoint. We may assume that the projections $\pi\left[\psi\left[C_{F_{1}}\right]\right]$ and $\pi\left[\psi\left[C_{F_{2}}\right]\right]$ are closed curves in \mathbb{R}^{2} such that they only cross at vertices of $\pi\left[K^{\prime}\right]$, in such a way that near a vertex v of $\pi\left[K^{\prime}\right]$ there are

$$
\begin{equation*}
x\left(F_{1}, \varepsilon_{v}^{\prime}\right) \cdot x\left(F_{2}, \varepsilon_{v}^{\prime}\right) \tag{110}
\end{equation*}
$$

crossings of $\pi\left[\psi\left[C_{F_{1}}\right]\right]$ with $\pi\left[\psi\left[C_{F_{2}}\right]\right]$.
Since the total number of crossings of $\pi\left[\psi\left[C_{F_{1}}\right]\right]$ with $\pi\left[\psi\left[C_{F_{2}}\right]\right]$ is even, we know that

$$
\begin{equation*}
\sum_{v} x\left(F_{1}, \varepsilon_{v}^{\prime}\right) \cdot x\left(F_{2}, \varepsilon_{v}^{\prime}\right) \tag{111}
\end{equation*}
$$

is even. Since (111) has the same parity as $\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|$, we know that $\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|$ is even.
If F_{1} and F_{2} are in adjacent faces, one similarly shows that $\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|$ is odd.

In fact we have:
Claim 25. For any two even faces F_{1} and F_{2} of $\pi[K],\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|=1$ if F_{1} and F_{2} are contained in adjacent faces of H_{K}, and $\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|=0$ otherwise.

Proof. By Claims 23 and 24 and by the well-connectedness of K,

$$
2 v(K)=\text { number of pairs }\left(F_{1}, F_{2}\right) \text { of two even faces of } \pi[K]
$$ contained in adjacent faces of H_{K}

$$
\begin{align*}
& \leqslant \sum_{\left(F_{1}, F_{2}\right), F_{1} \neq F_{2}}\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|=\sum_{F_{1}}\left(\sum_{F_{2} \neq F_{1}}\left|B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}\right|\right) \\
& =\sum_{F_{1}}\left|B_{F_{1}}^{\prime}\right|=\sum_{F_{1}}\left|B_{F_{1}}\right|=2 v(K) . \tag{112}
\end{align*}
$$

So the inequality is attained with equality, and the claim follows.
We can now define a function

$$
\begin{equation*}
\vartheta: E H_{K} \rightarrow E H_{K^{\prime}} \tag{113}
\end{equation*}
$$

as follows. For $e \in E H_{K}$, let F_{1} and F_{2} be the two even faces of $\pi[K]$ contained in the faces of H_{K} incident with e. Let

$$
\begin{equation*}
B_{F_{1}}^{\prime} \cap B_{F_{2}}^{\prime}=\left\{e^{\prime}\right\} . \tag{114}
\end{equation*}
$$

Then define $\vartheta(e):=e^{\prime}$. By Claim 23, this function is one-to-one, and hence onto (since $\left|E H_{K}\right|=\left|E H_{K^{\prime}}\right|$).

Moreover, for each even face F of $\pi[K], \vartheta\left[B_{F}\right]=B_{F}^{\prime}$, since

$$
\begin{equation*}
\vartheta\left[B_{F}\right]=\bigcup_{F^{\prime} \neq F} \vartheta\left[B_{F} \cap B_{F^{\prime}}\right]=\bigcup_{F^{\prime} \neq F}\left(B_{F}^{\prime} \cap B_{F^{\prime}}^{\prime}\right)=B_{F}^{\prime} . \tag{115}
\end{equation*}
$$

So for each cycle B in H_{K} the set $\vartheta[B]$ is a cycle in $H_{K^{\prime}}$ (since B is a binary sum of circuits B_{F}, and hence $\vartheta[B]$ is a binary sum of cycles B_{F}^{\prime}).

Now both H_{K} and $H_{K^{\prime}}$ are 3 -vertex-connected planar graphs (by the well-connectedness of K and K^{\prime}), with $\left|V H_{K}\right|=b(K)=b\left(K^{\prime}\right)=\left|V H_{K^{\prime}}\right|$ and $\left|E H_{K}\right|=v(K)=v\left(K^{\prime}\right)=\left|E H_{K^{\prime}}\right|$. Hence, by Whitney's theorem [14], H_{K} and $H_{K^{\prime}}$ are the same plane graph, up to rerouting edges through the unbounded face, and up to turning the graph upside down. This implies that the diagrams of K and K^{\prime} can be obtained from each other by the operations (1). That is, K and K^{\prime} have equivalent diagrams.

Acknowledgments

I am very grateful to François Jaeger for extremely carefully reading the manuscript, giving several helpful suggestions improving the presentation, and above all for pointing out to me some flaws in previous versions of this paper.

Moreover, I thank Neil Robertson and Paul Seymour for stimulating discussions.

References

1. G. Burde and H. Zieschang, "Knots," de Gruyter, Berlin, 1985.
2. L. H. Kauffman, "Formal Knot Theory," Princeton Univ. Press, Princeton, 1983.
3. L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407.
4. L. H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), 195-242.
5. K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194.
6. K. Murasugi, Jones polynomials and classical conjectures in knot theory, II, Math. Proc. Cambridge Philos. Soc. 102 (1987), 317-318.
7. K. Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1926-1927), 24-32.
8. P. G. Tair, On knots, Trans. Roy. Soc. Edinburgh 28 (1877), 145-190.
9. P. G. Tait, Listing's "Topologie," The London, Edinburgh, and Dublin Philosophical Magazine 17 (1884), 30-46.
10. M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), 297-309.
11. M. B. Thistlethwaite, Kauffman's polynomial and alternating links, Topology 27 (1988), 311-318.
12. M. B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), 285-296.
13. V. G. Turaev, A simple proof of the Murasugi and Kauffman theorems on alternating links, Enseign. Math. 33 (1987), 203-225.
14. H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.

[^0]: ${ }^{1}$ Meantime, W. W. Menasco and M. B. Thistlethwaite (The Tait flyping conjecture, Bull. Amer. Math. Soc. 25 (1991), 403-412) have announced a proof of the full Tait flyping conjecture.

