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1. INTRODUCTION

Discrete-event (dynamical) systems (DES) can be
studied using coalgebraic techniques. DES are of-
ten represented by automata viewed as a partic-
ular algebraic structure. However, they may be
also viewed as partial automata, which are coal-
gebras of a simple functor of the category of sets.
Coalgebras are categorial duals of algebras (the
corresponding functor operates from a given set
rather than to a given set).

This paper presents a formulation of the decen-
tralized control of DES in terms of coalgebra. The
basic formalism is the one that has been developed
in Rutten (1999) and in Komenda (2002), i.e.
partial automata as models for DES and partial
automaton of (partial) languages as the final coal-
gebra. The main advantage of the use of coalge-
bra is the naturally algorithmic character of the
results, there is a canonical way how to check the
properties like decomposability or coobservability
by constructing corresponding relations. As an

1 Partially supported by the Grant 201/03/D77 of GACR

application, the exact relationship between C&P
coobservability and decomposability is derived.

The paper is organized as follows. Section 2 re-
calls the partial automata from Rutten (1999) as
the coalgebraic framework for DES represented
by automata. In Section 3 after introducing local
weak transition structures on partial automata
we present an introduction to the decentralized
supervisory control. We give an alternative defini-
tion of coobservability, which is equivalent to C&P
coobservability of and coincides with the original
definition of coobservability in the case of two
local supervisors. In section 4 relational character-
izations of coobservability are given. Section 5 is
devoted to the coalgebraic study of decomposabil-
ity and strong decomposability, that are described
by the corresponding relations and compared to
coobservability. We show in particular the exact
relationship between C&P coobservability and de-
composability.



2. PARTIAL AUTOMATA

In this section we recall partial automata as coal-
gebras with a special emphasis on the final coal-
gebra of partial automata, i.e. partial automaton
of partial languages. Let A be an arbitrary set
(usually finite and referred to as the set of inputs
or events). The empty string will be denoted by
ε. Denote by 1 = {∅} the one element set and
by 2 = {0, 1} the set of Booleans. A partial
automaton is a pair S = (S, 〈o, t〉), where S is a set
of states, and a pair of functions 〈o, t〉 : S → 2 ×
(1+S)A, consists of an output function o : S → 2
and a transition function S → (1 + S)A. The
output function o indicates whether a state s ∈ S
is accepting (or terminating) : o(s) = 1, denoted
also by s ↓, or not: o(s) = 0, denoted by s ↑. The
transition function t associates to each state s in
S a function t(s) : A → (1 + S). The set 1 + S
is the disjoint union of S and 1. The meaning of
the state transition function is that t(s)(a) = ∅
iff t(s)(a) is undefined, which means that there is
no a−transition from the state s ∈ S. t(s)(a) ∈ S
means that a−transition from s is possible and we
define in this case t(s)(a) = sa, which is denoted
mostly by s

a→ sa. This notation can be extended
by induction to arbitrary strings in A∗. Assuming
that s

w→ sw has been defined, define s
wa→ iff

t(sw)(a) ∈ S, in which case swa = t(sw)(a) and
s

wa→ swa.

2.1 Final automaton of partial languages

Below we define a partial automaton of partial
languages over an alphabet (input set) A, denoted
by L = (L, 〈oL, tL〉). More formally, L = {Φ :
A∗ → (1 + 2) | dom(Φ) �= ∅ is prefix-closed}.
To each partial language Φ a pair 〈V, W 〉 can
be assigned: W = dom(Φ) and V = {w ∈
A∗ | Φ(w) = 1(∈ 2)}. Conversely, to a pair
〈V, W 〉 ∈ L, a function Φ can be assigned :
Φ(w) = 1 if w ∈ V , Φ(w) = 0 if w ∈ W and
w �∈ V and Φ(w) is undefined if w �∈ W. Therefore
we can write :

L = {(V, W )| V ⊆ W ⊆ A∗, W �= ∅, and W̄ = W}.

Transition function tL : L → (1 + L)A is defined
using input derivatives. Recall that for any partial
language L = (L1, L2) ∈ L, La = (L1

a, L2
a), where

Li
a = {w ∈ A∗ | aw ∈ Li}, i = 1, 2. If a �∈ L2 then

La is undefined. Given any L = (L1, L2) ∈ L, the
partial automaton structure of L is given by:

oL(L) =

{
1 if ε ∈ L1

0 if ε �∈ L1

and

tL(L)(a) =

{
La if La is defined
∅ otherwise

.

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a �=

∅, and L2
a is prefix-closed. The following nota-

tional conventions will be used: L ↓ iff ε ∈ L1

and L
w→ Lw iff Lw is defined iff w ∈ L2.

Recall from that L = (L, 〈oL, tL〉) is final among
all partial automata: for any partial automaton
S = (S, 〈o, t〉) there exists a unique homomor-
phism l : S → L. Recall that the unique homo-
morphism l given by finality of L maps a state
s ∈ S to the partial language l(s) = (L1

s, L
2
s) =

({w ∈ A∗ | s
w→ and sw ↓}, {w ∈ A∗ | s

w→}).
Denote the minimal representation of a partial
language L by 〈L〉, i.e. 〈L〉 = (DL, 〈o〈L〉, t〈L〉〉) is
a subautomaton of L generated by L. This means
that o〈L〉 and t〈L〉 are uniquely determined by the
corresponding structure of L. The carrier set of
this minimal representation of L is denoted by
DL, where DL = {Lu | u ∈ L2}. Let us call
this set the set of derivatives of L. Inclusion of
partial languages that corresponds to a simulation
relation is always meant componentwise.

3. INTRODUCTION TO DECENTRALIZED
SUPERVISORY CONTROL

Decentralized supervisory control is mostly ap-
plied because the system has two or more local
controllers each receiving different partial obser-
vations of the system. Since communication of
the local observations is either not possible or
possible but costly, the partial observations of the
local controllers differ. Decentralized supervisory
control consists in considering local controllers
S1, . . . , Sn and breaking the set of controllable
and observable events into locally controllable and
locally observable events, denoted by Ac,i, and
Ao,i, i = 1, . . . , n respectively. The natural pro-
jections to locally observable events are denoted
by Pi : A∗ → A∗

o,i. The action of Pi is simply to
delete events that are not observable by Si.

The following notation will be used: {1, . . . , n} =
Zn, for any a ∈ A: Za

c = {i ∈ Zn : a ∈ Ac,i}
and similarly Za

o = {i ∈ Zn : a ∈ Ao,i}.
Furthermore, we denote Ac = ∪i∈Zn

Ac,i, Ao =
∪i∈Zn

Ao,i, Auc = ∩i∈Zn
(A \ Ac,i), and finally

Auo = ∩i∈Zn
(A \ Ao,i).

In the following definition we introduce the notion
of weak derivative (transition). Roughly speaking
it disregards locally unobservable events.

Definition 3.1. For an event a ∈ A define L
Pi(a)⇒

if ∃s ∈ A∗ : Pi(s) = Pi(a) and L
s→ Ls. Denote

in this case L
Pi(a)⇒ Ls.

Remark 1. Let us introduce the notation for lo-
cally unobservable events L

ε⇒i as an abbreviation



for ∃τ ∈ A∗ such that Pi(τ ) = ε and L
τ→.

We admit τ = ε, hence L
ε⇒i is always true.

For a ∈ Ao,i our notation means that there exist

τ, τ ′ ∈ (A \ Ao,i)∗ such that L
τaτ ′
→ Lτaτ ′ . This

definition can be extended to strings (words in
A∗) in the following way:

L
Pi(s)⇒ iff ∃t ∈ A∗ : Pi(s) = Pi(t) and L

t→ .

Denote in this case L
Pi(s)⇒ Lt.

3.1 Coobservability

There are two control architectures for the decen-
tralized supervisory control . The original control
architecture is called conjunctive and permissive (
C&P). The local supervisor Si is then represented
as a mapping γC&P (Si, .) : Pi(L(G)) → Γi, where
Γi = {C ⊆ A : C ⊇ (A \ Ac,i)} is the set of local
control patterns and γC&P (Si, s) represents the
set of locally enabled events after Si has observed
string s ∈ A∗

o,i. The associated control law of the
local supervisor Si is

γC&P (Si, s) = (A \ Ac,i)∪
{a ∈ Ac,i : ∃s′ ∈ K2 ∩P−1

i Pi(s) and s′a ∈ K2 }.
The control law of the conjunction of local super-
visors Si, i = 1, . . . , n is given by :

(
∧
i

γC&P Si)(w) = ∩n
i=1γC&P (Si, Pi(w)), w ∈ A∗.

The necessary and sufficient conditions for a given
language to be achieved by a joint action of local
supervisors are controllability, Lm(G)−closedness,
and coobservability. The definition of coobserv-
ability from Rudie and Wonham (1992) can be
extended to n supervisors.

Definition 3.2. (Coobservability.) K ⊆ L is called
co-observable with respect to L and Ao,i, i =
1, . . . , n if (∀s ∈ K2), (∀a ∈ Ac: sa ∈ L2) (∃i ∈
Za

c ) such that the following implication holds true:

(s′ ∈ K2 and Pi(s) = Pi(s′) and s′a ∈ K2) ⇒
sa ∈ K2.

Note that the definition of coobservability has
been originally formulated for two local supervi-
sors in Rudie and Wonham (1992). This notion of
coobservability is needed for the existence of local
supervisors that jointly achieve a given language.

The control policy of local supervisors associated
to C&P architecture is permissive, since the de-
fault action is to enable an event whenever a local
supervisor has an ambiguity what to do with this
event. It should be clear that with the permissive
local policy we always achieve all strings in the

specification language K, i.e. K is always con-
tained in the language of the closed-loop system.
The only concern is the safety, which is expressed
by the following definition of C&P coobservability,
which states that there always exists a local super-
visor that is sure to disable an event resulting in
an illegal string. Thus, the following definition of
C&P coobservability - Yoo and Lafortune (2002)
is much more intuitive then the original definition
of coobservability Rudie and Wonham (1992).

Definition 3.3. (C&P coobservability.) K ⊆ L is
said to be C&P co-observable with respect to L
and Ao,i, i = 1, . . . , n if for all s ∈ K2, a ∈ Ac

such that sa ∈ L2 \ K2

∃i ∈ Za
c with (P−1

i (Pi(s))a ∩ K2 = ∅.

It has been shown in Barrett and Lafortune (2000)
that C&P-coobservability coincides for two super-
visors with the ’classical’ definition of coobserv-
ability introduced in Rudie and Wonham (1992).
We will show that the definition of coobservabil-
ity above (definition 3.2) is equivalent to C&P-
coobservability and can thus be considered as an
extension of the definition given in Rudie and
Wonham (1992) to an arbitrary number of local
supervisors.

Lemma 2. Coobservability is equivalent to C&P
coobservability.

4. DECENTRALIZED SUPERVISORY
CONTROL AND COALGEBRA

We have presented in Komenda (2002) a coal-
gebraic approach to the supervisory control of
discrete-event systems with partial observations.
It is possible to formulate the basic concepts of
decentralized supervisory control using coalgebra.
First observe that the concept of observational in-
distinguishability relation can be easily extended
to the family of observation indistinguishability
relations associated to local observers. For partial
automaton S with initial state so we define:

Definition 4.1. (Observational indistinguishabil-
ity relation on S.) A binary relation Auxi(S), i ∈
Zn on S, called an observational indistinguishabil-
ity relation, is the smallest relation such that:

(i) 〈s0, s0〉 ∈ Auxi(S)
(ii) If 〈s, t〉 ∈ Auxi(S) then : (s ε⇒i s′ for some

s′ ∈ S and t
ε⇒i t′ for some t′ ∈ S) ⇒

〈s′, t′〉 ∈ Auxi(S)
(iii) If 〈s, t〉 ∈ Auxi(S) then ∀a ∈ Ao,i : (s a→

sa and t
a→ ta ) ⇒ 〈sa, ta)〉 ∈ Auxi(S).



Since we need to work with the final automaton
of partial languages, and for K ⊆ L, it is not in
general true then 〈K〉 is a subautomaton of 〈L〉,
we need also the following concept.

Definition 4.2. A binary relation Auxi(K, L) ⊆
(DK × DL)2, i ∈ Zn, called an observational in-
distinguishability relation, is the smallest relation
such that:

(i) 〈(K, L), (K, L)〉 ∈ Auxi(K, L)
(ii) If 〈(M, N), (Q, R)〉 ∈ Auxi(K, L) then :

((M, N) ε⇒i (M ′, N ′) for some (M ′, N ′) ∈
DK × DL and (Q, R) ε⇒i (Q′, R′) for some
(Q′, R′) ∈ DK×DL) ⇒ 〈(M ′, N ′), (Q′, R′)〉 ∈
Auxi(K, L)

(iii) If 〈(M, N), (Q, R)〉 ∈ Auxi(K, L) then ∀a ∈
Ao,i : ((M, N) a→ (Ma, Na) and (Q, R) a→
(Qa, Ra)) ⇒ 〈(Ma, Na), (Qa, Ra)〉 ∈ Auxi(K, L).

For 〈(M, N), (Q, R)〉 ∈ DK × DL we write
(M, N) ≈K,L

Aux(i) (Q, R) whenever
〈(M, N), (Q, R)〉 ∈ Auxi(K, L). Similarly as for
the centralized Aux(K) we have:

Lemma 3. For given partial languages K, L:
〈(M, N), (Q, R)〉 ∈ Auxi(K, L) iff there exist two
strings s, s′ ∈ K2 such that Pi(s) = Pi(s′) and
M = Ks, N = Ls, Q = Ks′ , and R = Ls′ .

Now the C&P coobservability can be formulated
within the coalgebraic framework of partial au-
tomata.

Definition 4.3. (C&P Coobservability relation.)
Given two (partial) languages K and L, a bi-
nary relation CO(K, L) ⊆ DK × DL is called a
C&P coobservability relation if for any 〈M, N〉 ∈
CO(K, L) the following items hold:

(i) ∀a ∈ A : M
a→ ⇒ N

a→ and 〈Ma, Na〉 ∈
CO(K, L)

(ii) ∀a ∈ Ac : N
a→ ⇒ [

(∃i ∈ Za
c ) such that

(M ′ ∈ DK, N ′ ∈ DL: (M ′, N ′) ≈K,L
Aux(i) (M, N)

and M ′ a→) ⇒ M
a→]

.

For M ∈ DK and N ∈ DL we write M ≈CO(K,L)

N whenever there exists a C&P coobservabil-
ity relation CO(K, L) on DK × DL such that
〈M, N〉 ∈ CO(K, L). In order to check whether
for a given pair of (partial) languages (K and L),
K is C&P coobservable with respect to L and
Ao,i, i = 1, . . . , n, it is sufficient to establish a
C&P coobservability relation O(K, L) on DK ×
DL such that 〈K, L〉 ∈ O(K, L). Indeed, we have:

Theorem 4. A (partial) language K is C&P coob-
servable with respect to L (where K ⊆ L) and
Ao,i, i = 1, . . . , n iff K ≈CO(K,L) L.

PROOF. (⇒) Let K be C&P coobservable with
respect to L. Denote

CO(K, L) = {〈Ku, Lu〉 ∈ DK × DL | u ∈ K2 }.
Let us show that CO(K, L) is a C&P coobserv-
ability relation.
Let 〈M, N〉 ∈ CO(K, L). We can assume that
M = Ks and N = Ls for s ∈ K2. We must show
that conditions (i) and (ii) are safisfied.
(i) Let M

a→ for a ∈ A. Notice that K ⊆ L
implies that for any u ∈ K2, Ku ⊆ Lu. In par-
ticular N

a→, because M = Ks ⊆ Ls = N and
it follows from the definition of CO(K, L) that
〈Ma, Na〉 ∈ CO(K, L).
(ii) Let N

a→ for a ∈ Ac. Then we have sa ∈ L2

and recall that s ∈ K2. Then by C&P coobserv-
ability of K with respect to L there exists i ∈ Za

c

such that whenever there is a string s′a ∈ K2

with Pi(s′) = Pi(s), then also sa ∈ K2. Using
Lemma 3 this means that there exists i ∈ Za

c such
that whenever (M ′, N ′) ≈K,L

Aux(i) (M, N) : M ′ a→,

then M
a→. Indeed this means that there exist

s′, s′′ ∈ A∗: M ′ = Ks′ , N ′ = Ls′ , M = Ks′′ = Ks,
N = Ls′′ = Ls, and Pi(s′′) = Pi(s′). Note that
it can be that s = s′′. We have s′′ ∈ K2 and
s′′a ∈ L2. By applying the coobservability of
K, where s′′ plays the role of s, it follows that
s′′a ∈ K, i.e. Ks′′ = M

a→. Hence CO(K, L) is a
C&P coobservability relation.

(⇐) Let K ≈CO(K,L) L. Let us show that K is
C&P coobservable with respect to L. For this
purpose, let s ∈ K2 and a ∈ Ac such that
sa ∈ L2. Then s ∈ K2 ∩ L2, i.e. L

s→ and K
s→,

whence from (i) of definition 4.3 inductively ap-
plied Ks ≈CO(K,L) Ls. Now, sa ∈ L2 means
that Ls

a→, hence by definition of 4.3 there exists
i ∈ Za

c such that whenever (M ′, N ′) ≈K,L
Aux(i)

(Ks, Ls) : M ′ a→, then Ks
a→. According

to Lemma 3 we have for Pi(s′) = Pi(s) that
(Ks′ , Ls′) ≈K,L

Aux(i) (Ks, Ls). Also notice that s′a ∈
K2 is equivalent to Ks′

a→. But this means that
there exists i ∈ Za

c such that whenever there is
a string s′a ∈ K2 with Pi(s′) = Pi(s), then also
sa ∈ K2, i.e. K is C&P coobservable with respect
to L and Ao,i, i = 1, . . . , n. �

5. DECOMPOSABILITY AND STRONG
DECOMPOSABILITY

It is known that coobservability is not preserved
under unions. Therefore the existence of supremal
coobservable sublanguages cannot be guaranted.
For this reason, stronger notions of decomposable



and strongly decomposable languages have been
studied in Rudie and Wonham (1992).

Definition 5.1. (Decomposability.) Let K ⊆ L be
given partial languages. K is said to be decom-
posable with respect to L and Ao,i, i = 1, . . . , n if
K2 = L2 ∩ ⋂n

i=1 P−1
i (Pi(K2)).

Let us introduce now a binary relation that cor-
responds to the decomposability.

Definition 5.2. (Decomposability relation.) Given
two languages K, L with K ⊆ L, a binary relation
D(K, L) on DK × DL is said to be a decompos-
ability relation if for any 〈M, N〉 ∈ D(K, L) the
following items hold:

(i) ∀a ∈ A : M
a→ Ma ⇒ N

a→ Na and 〈Ma, Na〉 ∈
D(K, L)

(ii) ∀u ∈ Auo : N
u→ ⇒ M

u→
(iii) ∀a ∈ Ao : N

a→ and
[∀i ∈ Zn : ∃M (i) ∈

DK and N (i) ∈ DL: (M (i), N (i)) ≈K,L
Aux(i)

(M, N) and M (i) a→)
] ⇒ M

a→ .

Using strong and weak transitions, we obtain:

Lemma 5. K is decomposable with respect to L
and Ao,i, i = 1, . . . , n iff ∀w ∈ A∗ :

{ L
w→ and (∀i = 1, . . . , n : K

Pi(w)⇒ )} ⇒ K
w→ .

Theorem 6. A (partial) language K is decompos-
able with respect to L and Ao,i, i = 1, . . . , n (with
K ⊆ L) iff there exists a decomposability relation
D(K, L) ⊆ DK×DL such that 〈K, L〉 ∈ D(K, L).

PROOF. (⇒) Let K be decomposable with re-
spect to L and Ao,i, i = 1, . . . , n. Denote

R = {〈Ku, Lu〉 | u ∈ K2 } ⊆ DK × DL.

Let us show that R is indeed a decomposability re-
lation. Assume that 〈M, N〉 ∈ R. We can assume
that M = Ks and N = Ls for s ∈ K2. We must
show that conditions (i)-(iii) of decomposability
relations are satisfied.
(i) If for a ∈ A we have M

a→ (i.e. a ∈ M2) then
a ∈ N2, i.e. N

a→, because K ⊆ L implies that
M = Ks ⊆ Ls = N . Moreover, it follows from the
definition of R that 〈Ma, Na〉 ∈ R.
(ii) Let u ∈ Auo such that N

u→. Then L
su→, and

since K
s→ and ∀i = 1, . . . , n : Pi(su) = Pi(s),

trivially ∀i = 1, . . . , n we have K
Pi(su)⇒ . Therefore

by Lemma 5 K
su→, i.e. M

u→.
(iii) If for a ∈ Ao : N

a→ and
[∀i ∈ {1, . . . , n} :

∃M (i) ∈ DK and N (i) ∈ DL: (M (i), N (i)) ≈K,L
Aux(i)

(M, N) and M (i) a→)
]

then L
sa→ and ∀i =

1, . . . , n ∃si, s
′
i ∈ K2 such that Ks = Ksi

,
Ls = Lsi

, M i = Ks′
i
, N i = Ls′

i
, where Pi(si) =

Pi(s′i) and Ks′
i

a→, hence K
Pi(sia)⇒ . Recall that

Lsi
= Ls

sa→. By Lemma 5 we obtain K
sia→, i.e.

M = Ksi

a→.

(⇐) Let there exists a decomposability relation
D(K, L) such that 〈K, L〉 ∈ D(K, L). We show by
induction on the structure of the string w ∈ A∗

that the implication of Lemma 5 holds true. For
w = ε it is trivially true, because K2 is closed (i.e.
K

ε→). Suppose now that for w ∈ A∗: L
w→ and

(K
Pi(w)⇒ ∀i = 1, . . . , n) imply that K

w→.

Let L
wa→ and K

Pi(wa)⇒ ∀i = 1, . . . , n. This implies

in particular that L
w→ and K

Pi(w)⇒ ∀i = 1, . . . , n,
hence by the induction hypothesis K

w→. Since
〈K, L〉 ∈ D(K, L), by inductive application of (i)
of the definition of decomposability relation we
obtain that 〈Kw, Lw〉 ∈ D(K, L). Now suppose
first a ∈ Auo and Lw

a→, then we obtain by
(ii) of the definition of decomposability relation

Kw
a→, i.e. K

wa→. If a ∈ Ao, then ∀i : K
Pi(wa)⇒

means that for all i = 1, . . . , n there exist si ∈
A∗: (Ksi

, Lsi
) ≈K,L

Aux(i) (Kw, Lw) and Ksi

a→. By
application of (iii) of decomposability relation we
have Kw

a→, i.e. K
wa→. �

Decomposability is related to C&P coobservabil-
ity. The following theorem holds.

Theorem 7. Let Ac ⊆ Ao, for i ∈ Zn: Ao,i ∩
Ac ⊆ Ac,i, and K ⊆ L be decomposable wrt L and
Ao,i, i = 1, . . . , n. Then K is C&P-coobservable
wrt L and Ao,i, i ∈ Zn.

PROOF. Let K be decomposable wrt L and
Ao,i, i = 1, . . . , n. We show that if

R = {〈Ku, Lu〉 | u ∈ K2}
is a decomposability relation, it is also a C&P-
coobservability relation. Take M = Ks and N =
Ls for a s ∈ K2. Then (i) of coobservability
relations trivially holds. Assume by contradiction
that (ii) does not hold, i.e. there exists a ∈ Ac

such that N
a→ and (∀i ∈ Zn : a ∈ Ac,i)

∃(M (i), N (i)) ≈K,L
Aux(i) (M, N) such that M (i) a→,

while M � a→. Recall that K
s→ M . The last

condition means that (∀i ∈ Zn : a ∈ Ac,i) :

K
Pi(sa)⇒ , because by Lemma 3 there exist si, s

′
i ∈

K2 not all necessarily different such that M =
Ksi

, N = Lsi
, M i = Ks′

i
, N i = Ls′

i
, with

Pi(si) = Pi(s) and Ksi
a→. Now, if a �∈ Ac,i, then

a �∈ Ac∩Ao,i. Since a ∈ Ac, there must be a �∈ Ao,i.

This means that K
si→ M and K

Pi(sia)⇒ (because
M (i) a→). Furthermore, Pi(sa) = Pi(a) for i ∈
Zn a �∈ Ao,i. We conclude that for a ∈ Ac ⊆ Ao

we have L
sia→ and ∀i ∈ Zn: K

Pi(sia)⇒ , i.e. from



decomposability of K we have M = Ksi

a→ . This
is a contradiction. Therefore, we conclude that K
is C&P−coobservable. �

Theorem 8. Let Ac ⊆ Ao, K ⊆ L is controllable,
and C&P−coobservable wrt L and Ao,i, i ∈ Zn.
Then K is decomposable wrt L and Ao,i, i ∈ Zn.

PROOF. Let K be C&P-coobservable wrt L and
Ao,i, i ∈ Zn. We show that

R = {〈Ku, Lu〉 | u ∈ K2}

is a decomposability relation. Take M = Ks

and N = Ls for s ∈ K2. First of all, (i)
of decomposability relations is trivial. Also (ii)
easily follows from controllability of K with re-
spect to L and Auc. Indeed, it is sufficient to
notice that Auo = A \ Ao ⊆ A \ Ac = Auc.
Then (ii) follows from controllability of K. As-
sume by contradiction that (iii) does not hold,
i.e. there exists a ∈ Ao such that N

a→ and
∀i ∈ Zn ∃(M (i), N (i)) ≈K,L

Aux(i) (M, N) such that

M (i) a→, while M � a→. We have also a ∈ Ac, be-
cause otherwise by controllability we would have
M

a→. This means there exists at least one j ∈ Zn

such that a ∈ Ac,j . Since the above condition
holds for all i ∈ Zn, in particular it holds for all
i ∈ Zn such that a ∈ Ac,i. But this is a contra-
diction with C&P−coobservability. Therefore, we
conclude that K is decomposable. �

The set of decomposable sublanguages is not
closed with respect to unions either. There is yet a
stronger condition, called strong decomposability,
which is preserved by arbitrary unions.

Definition 5.3. (Strong Decomposability.) Let
K ⊆ L be given partial languages. K is said to
be strongly decomposable with respect to L and
Ao,i, i = 1, . . . , n if K2 = L2 ∩ ∪n

i=1P
−1
i (Pi(K2)).

Now we introduce a binary relation that corre-
sponds to strong decomposability.

Definition 5.4. (Strong decomposability relation.)
Given two languages K, L with K ⊆ L, a binary
relation SD(K, L) on DK × DL is said to be a
strong decomposability relation if for any 〈M, N〉 ∈
SD(K, L) the following items hold:

(i) ∀a ∈ A : M
a→ Ma ⇒ N

a→ Na

and 〈Ma, Na〉 ∈ D(K, L)
(ii) ∀u ∈ ∪n

i=1(A \ Ao,i) : N
u→ ⇒ M

u→
(iii) ∀a ∈ ∩n

i=1Ao,i : N
a→ and

[∃i ∈
Zn and (∃M ′ ∈ DK, N ′ ∈ DL :
(M ′, N ′) ≈K,L

Aux(i) (M, N) and M ′ a→)
] ⇒

M
a→ .

We have the following theorem:

Theorem 9. A (partial) language K is strongly
decomposable with respect to L and Ao,i, i =
1, . . . , n (with K ⊆ L) iff there exists a strong
decomposability relation SD(K, L) ⊆ DK × DL
such that 〈K, L〉 ∈ SD(K, L).

6. CONCLUSION

Decentralized supervisory control of DES has
been treated by coalgebraic techniques. Coob-
servability, decomposability, and strong decom-
posability have been characterized by appropriate
relations in this framework. Exact relationships
between properties like C&P coobservability and
decomposability have been derived using these
relational characterizations.
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