
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J .A. Kaandorp

Interactive generation of fractal objects

Computer Science/Department of Interactive Systems Report CS-R8706 January

-----·-----------------------------------

Bibliothook
Centrum voor W~W'ldG en lnfermal:icil

Am$fll!tfdan>

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is spcnsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright ;r Stichting Mathematisch Centrum, Amsterdam

Interactive Generation of Fractal Objects

J. A. Kaandorp
Centre for Mathematics and Computer Science

P.O. Box4079, 1009 AB Amsterdam, The Netherlands

In this paper a description is given of the development of data structures by which a large class of fractal objects can
be represented using production rules, together with an algorithm to generate these obj.:<:ts. These .data structures and
algorithm can be used to produce many of the classical examples of self-similar sets, mentioned for example by Man­
delbrot [13] . The algorithm and data structures are part of a fractal system by which production rules can be
designed; production rules can be retrieved from and stored in a fractal library.
1980 Math. Subject Classification : 58Fl3, 69K30, 69K34
Key Words & Phrases: fractals, self-similar sets, computer graphics, graphics utilities
Note : This report will be submitted for publication elsewhere.

1. INTRODUCTION

1

Fractals have received much attention recently; a large number of articles on the application of fractals in all
kinds of different areas of science, are an indication of this. Some examples of those applications are: (19]

(physical geography), (12] (biochemistry), (15] (biology), (16] (physics).
A description of fractals can be found in Mandelbrot (13] and in Barnsley and Demko [4] . Fractals are
defined by Mandelbrot as sets whose Hausdorff-Besicovitch dimension exceeds its topological dimension.
Instead of the Hausdorff dimension another dimension definition, the capacity [7] can be used. Fractals may
be defined as sets with, in most cases, a fractional dimension. The definitions Hausdorff-Besicovitch dimen­
sion, capacity and fractional (fractal) dimension will be used as synonyms in this paper. Fractals show a
self-similar structure, this phenomenon may be used as the guiding principle for a more general definition (8]
A mathematical description of fractals is gtven by [3] .
Fractals form a powerful tool for creating "objects", which may look quite c0mplicated at first sight, but can
be defined and computated in a relatively simple way. This technique is especially important for creating
objects which show a high resemblance with objects from nature like trees, clouds, mountains etc. The frac­
tal dimension can be demonstrated for several objects from nature, for example the length of a coastline, sur­
face of the brain, lung, vascular system (all examples from Mandelbrot [13]). Fractals seem to serve quite
well as models of natural objects, an example of a study from mathematical biology in which fractals are
used for modelling is Meakin (14] . Many processes, for example growth processes in biology, may be
described as feed-back processes in which the output of one iteration is the input for the next one. The same
feed-back process can be used for creating fractal objects.
The purpose of this paper is to present an interactive method for the generation of a large class of fractal
objects. This method will only deal with self-similar sets [3] , this class of fractals is also known as linear
fractals (13] . The fractals of this class, which contains many of the classical fractals, are self-similar and
are built from pieces which are geometrically similar to the entire set but on a smaller scale. This property of
self-similarity will be disturbed slightly, or in some cases almost completely, in the fractals which will be
shown in this paper. One advantage of self-similar sets is that production rules, by which fractal objects can
be created, may be formulated in a simple way. It is relatively easy to enter those production rules in an
interactive fractal system. The property of self-similarity is a very important one, because it often can be
related to the physical or mathematical prooerties of the objects being modelled by fractals. The importance
of using an interactive system partly lies fo the possibility to find the "right kind of self-similarity for acer­
tain modelling problem.
Other studies in which methods are described for generating fractal objects from the class of self-similar sets
are: Demko [6] , in this study fractal objeds are generated using Iterated Function Systems and Smith (18] ,
in which formal languages are used for creating fractals. Many examples of self-similar sets can be found in
Mandelbrot [13] , a mathematical description of these sets can be found in Dekking [1] , Falconer [3] and ,,

Report CS-R8706
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 methods

Hata [8] .
The fractal system, discussed in this paper, was implemented using 2D C-GKS [9] ,[5] ; 3D C-GKS [10] and
C as programming language. The data structures used for representing the components of production rules
for fractals refer to data structures defined in C-GKS.

2.METHODS

2.1 Production rules and data structures necessary for representing fractals
In Mandelbrot [13] many examples are given of production rules for self-similar sets. The production rules
in Mandelbrot are frequently augmented by non-grammatical rules (18] . A number of self-similar sets can
be represented by an initial polygon (the initiator) and a polygon (the generator), which replaces sides of the
initiator. One of the quadric Koch curves is represented by the production rule in fig. 1. The data structure
necessary for representing the initiator (and all succeeding iteration steps) and the generator is very simple
and consists only of two fields: the number of world coordinates and a pointer to the world coordinates.

initiator

I D

generator

SU-

Figure 1. Production rule of a quadric Koch curve. 'The resulting

fractal is shown in fig. 2.

base element

-

The self-similar sets can be classified on the basis of the data structures minimally necessary for representing
all components of the production rule. In fig. 2 a possible classification is shown of some self-similar sets. In
the classification diagram of fig. 2 the quadric Koch curve is the most primitive fractal.
An additional rule may be introduced in the production rule. By defining some of the sides of the initiator
"fertile" or "not-fertile", this rule controls which of the sides participate in the next iteration. In the produc­
tion rule for a simple tree (fig. 3) it is necessary to define the fertilisation state of the sides of the initiator and
generator. In the diagram (fig. 2) the data structure for representing the simple ramiform fractal is extended
with a new field: a pointer to booleans values, which determine the fertilisation state of the sides of the two
components of the production rule.
A new class of ramiform fractals may be created by introducing functions, which randomize the original gen­
erator in the production rule. A random processing function which will generate a ramiform fractal with a
more irregular appearance is, for exampk a function which allows the ori~inal generator to make random
movements between two limits (see fig. 4). The data structure of the generator is extended by a field for a
random processing function.
Another class of self-similar sets are the fractals (more accurately: approxi111ants of fractals), which are able
to seed new fractals. The data structure of the generator has to be extended to an array of different parts of
the generator. The data structure of the initiator and next iteration steps is an array of fractals. The production
rule for a self seeding square is shown in fig. 5.
The possibilities of the ramiform fractal from fig. 4 may be enlarged by using an array of generators, consist­
ing of an array of parts of the generator. A selection function is used to determine which generator should
be used for replacing line-pieces of the preceding fractal approximant by a new set of line-pieces. In this
example the growing generator (genO) is chosen as long as the "age" of the fractal approximant doesn't
equate 3 iterations. On the third iteration the fractal starts seeding a new set of fractals (age equals 0) using
the seeding generator (genl). The production rule for a self reproducing ramiform fractal (see fig. 2 and fig.
7), in which two generators are used is shown in fig. 6. The original ramiform fractal has changed into a
vegetation of fractals.

Production rules and data structures necessary for representing fractals

irregular ramiform'Seeding fractals

genuak!n:
Site

~:. .. r· .. '"' t Pgen

ng;
sel_func:
npg;
gm_runc:
np1s;
•pis;
•rer:

irrtgularramifurmfr;u:1ab

frac1als:
Size

Fract [Size
tSize

w,

"""'

nr:
npts:
age;
•pts:
•rer:

?Drrac1alsdil><:~wdinthispaper

generaron;:
~ire ng:
Boo! ccmnect:
Im set_rum::
Gener r,. .. npg:

"' gen_runc:
* Pgen ["" •nbels:

l
Base el •!Jels;

" BODI- •fer:

'" •dirtt;

allernalheSierpinsklarrowhead

fractals: baweh:ml'"nl:
Siu nf; Site npl\:
Boo! connect: W< •pi.:
Fract

[""
nbels:

Size a~;

f. B:i~_el •be!s:
Boo! ,,, •dire<:;

Sierpinskiarrowhead

generator: fractal:
Size
W<
Boo!

'"'

Size
w,
Boo!

reiularn1mirormfr:actals

generalor:
Si1.e nbeb:
Dool
Ba~_el

fractal:

"'" Boo!
BaM_d

buedemtat: ge!'lffalor:
nbels: Size npl5
ronnecr; We *pts
•tieis:

SI~ nbels;
Btied ·be~
Im - •cfirec:

1.>cru:n1tur: f;actal: ... Site npts; Sin
\\c •pt\: We
Dool •fer: BjlOI

ltf"Rtral/Jr:
'iilt npl':
\\c *pi\:

npls:
"pi\!
•"fer;

rract;il:
~izc np1~;
\\c •pt§:

"'!•

.+ .•.. ~·.
·~·1!11·~· ·~-~-~-

·~· -~· .•.

rractal:
Size
Frm: .[Size

LWc

nf;
npis;
•pt1:

~eratnr. fractal:
siu nbe-Js; Siu nbels:
Ba~_el •tie•~: Base_el •twis;

Figure 2. Classification diagram of self similar sets based on

minimal data structures necessary for representing all components

of the production rules. The data structure on top of the

classification can be used for representing all fractals discussed in

this paper. The resulting fractal is shown in fig. 2.

3

baseelemmt:
Size npts;
We •pts;

base element:
Sitt npts;
We •pts;

4

initiator

D

mitiator

D

initiator

D

genera.tor

f\
Figure 3. Production rule for a simple tree (Pythagoras tree). Fer­
tile sides (sides of the preceding fractal approximant which will
replaced in next iteration steps, are marked with asterisks. The
resulting fractal is shown in fig. 2.

generator

I
I
I

I

~
: --. }t .--. I \ I I
l t ~ I t.- _

1
1 ,--J ' J I : ,_ -... ' ' , , , ,. --
1 ', ,... ,'
I ' ,
I

I

I

Figure 4. Production rule for a tree in which the original genera­
tor is processed by a function which allows random movements of
the generator between two limits. 1be generator processing func­
tion is described in the right part of the generator component. lbe
resulting fractal is shown in fig. 2.

generator

D

Figure 5. Production rule for a self-seeding square. The genera­
tor consists of two parts and is seeding new fractals during each
iteration. The resulting fractal is shown in fig. 2.

methods

base element

--

base element

--

base element

--

Production rules and data structures necessary for representing fractals

initiator

0

initiator

+
iniliator

I

/\

,,,

gencmtor

if(age--3)

gen I

else

: genO

I }f-1 --, ' ... ,
I I I I
J t \, I &.- _ 1
I ,... .., -A ' I f

I 1_'"" "" , ,. - -
I - ', ";{ ,' . ' ,
I ' , .

0 I
I 0
r----------------~----------------

' gen! I

• •

••

Figure 6. Production rule for a vegetation of fractals. The grow­

ing generator (genO) is chosen by the selection function (left part

of the generator component) as the age of the fractal doesn't equal

3 iterations, on the third iteration the fractal starts seeding (genl).

The resulting fractal is shown in fig. 7.

gencmtor

v
Figure 8. Production rule for a simple base element fractal. The

resulting fractal is shown in fig. 2.

gencta1or

J(_
Figure 9. Production rule for a Sierpinski arrowhead. The direc­

tion of the base elements is denoted in the first two components

with numbers: direction 1, normal base element; direction 2, y­

coordinate has been reflected. The resulting fractal is shown in

fig. 2.

5

base elemcnl

base clement

~

base clement

/\

6

Figure 7. Vegetation of fractals, resulting from the production rule

shown in fig. 6.

methods

Production rules and data structures necessary for representing fractals

Figure 10. Monkeys tree (Mandelbrot, 1982), the production rule

of this fractal can be found in fig. 11.

7

8

imtmtor

initiator

•
initiator

1

_Jl

generator

Figure 11. Production rule for the Monkeys tree shown in fig. 10.
The direction of the base elements is denoted in the first two com­

ponents with numbers: direction 1, normal base clement; direction

2, y-coordinate has been reflected; direction 3, x-coordinate has
been reflected; direction 4, x- and y-coordinate has been reflected.

generator

A
Figure 12. Production rule for an alternative way of constructing a
Sierpinski arrowhead. The resulting fractal is shown in fig. 2.

generator

: genO

'
'
'
' '
'

if odd(i) '

IL '
' genO '
'

else '
'
'

base element

base element

•
base element

I
gen! ,---------------------------------

: gent

'
'
'
'
'
'
'
_nl

'
'
'
'
'
'
'

Figure 13. Production rule for constructing the Dragon sweep,

odd base elements of the preceding fractal approximant are
replaced by gcnO, even base elements by gen I. 1be resulting
fractal is shown in fig. 2.

methods

An algorithm for the generation of fractal objects 9

In all fractals discussed so far fertile sides, consisting of one line piece, of the preceding approximant of the
fractal were replaced by a new set of line pieces. It is possible to create a new class of fractals by the replace­
ment of a polygon by a set of polygons. This polygon is called a "base element". The production rule for a
simple fractal, built from base elements, is shown in fig. 8. The data structures for representing the produc­
tion rule for this class of fractals have to be enlarged by base elements as new component
The next step in creating new fractal objects is to add a new field in the data structure of the generator and
fractal approximants, which defines the direction of the base elements in both components. In this paper for
the 2D fractals four different directions have been used: direction 1, normal base element; direction 2, y­
coordinate of base element is reflected; direction 3, x-coordinate of base element is reflected; direction 4, x­
and y-coordinate of base element are reflected. As a result it is possible to construct, for example, the Sier­
pinski arrowhead (see diagram fig. 2, the production rule is given in fig. 9). Another example of a fractal
which may be described with a production rule using base elements with different directions is the Monkeys
tree of Mandelbrot [13] shown in fig. 10 (the production rule is given in fig. 11).
So far all base elements or line pieces of the fractals were connected. It is easy to define fractals with discon­
nected base elements by adding a boolean to the data structure of the generator and initiator, which indicates
whether the base elements are connected or not. An example of a fractal using disconnected base elements is
the alternative way to construct a Sierpinski arrowhead, using triangles as base elements. It is shown in fig. 2
(production rule is given in fig. 12).
When all different rules to generate fractal objects are put together in three data structures, it is possible to
cover all production rules given above. The resulting data structures are shown in the top of fig. 2. With the
resulting data structures it is possible to describe all, interactively defined, production rules in the fractal sys­
tem. With these data structures, production rules of still more complex fractal objects can be defined. For
example the components of the production rule (fig 13) of the Dragon sweep [13] may be represented by
these data structures. The Dragon sweep (see fractal in top of fig. 2) is created by using an array of two gen­
erators which are alternating. The odd base elements of the preceding fractal approximant are replaced by
genO, the even base elements by genl.

2.2 An algorithm for the generation of fractal objects
The algorithm described in this paper is suitable for generating all classes of fractals shown in fig. 2. This
algorithm is suitable for 2D fractals, the extension to 3D will be discussed below. In order to allow dynami­
cally growing fractal objects, during calculation, a dynamic data structure is used. The dynamic data struc­
ture allows random growth and seeding of fractal objects and consists of a list of pointers (the "entrances" to
the fractals) to fractal objects. The fractal objects are represented by lists consisting of elements. Each ele­
ment is a set of base elements together with the parameters (fertilisation, direction). The diagram of fig. 14
shows the dynamic data structure used in the fractal algorithm. The algorithm itself is described in a summar­
ized form using pseudo code below:

10 methods

fractal(old _fractals, new_ fractals, generator, base_ element) {

}

A: if ((no random generator is used) && (no selection function is used))
a local copie of the generator is made and the translation vectors are deri.ved from the generator;

B: next fractal from old fractals is taken {

}

C: next base_ element from current old fractal is taken {

}

D 1: if (current old base_ element is fertile) {

}

Dla: first point is taken from the current old base element and temporarily stored, this value is
the initial value used in G;
Dlb: if ((random function is used) II (selection function is used))

In case a selection function is used a generator is selected from the array of generators, in
case a random processing function is used a local copie (randomly changed by a function)
is made of the original generator, translation vectors are derived from the local copie;

Dlc: the distance between the last and the first point of the current old base_ element is calcu­
lated;
Dld: the orientation of the line through last and first point of the current old base_element is
calculated;
E: next part is taken from the generator {

}

F: next base_ element is taken from the generator {

}

G: next point is taken from base_ element of the generator {

}

Gl: translation is performed using the vectors from A I Dlb and the result ofDlc;
G2: Rotation is performed using results ofDld;
G3: if (fractal is seeding)

calculated valL~ is used for jumping to new poin.;
else

new point is added to the dynamic list<;;

F1: if (fractal is not seeding)
fertilisation status of new base_ element (equal to fertilisation status of current
base_element generator) is added to the dynamic lists, direction of the new
base_ element is evaluated from direction current base_ element generator and
current old base_ element and added to the dynamic lists.

El: if (fractal is seeding)
a new entrance for a new fractal is added to the dynamic lists, the value from Dla is
used as initial value;

02: if (current old base_ element is not fertile)
old base_element and its fertilisation and direction state is added to the dynamic lists;

H: the new fractal stored in the dynamic lists is copied into the static data structure of the new fractal;

Description of the fractal system

start list '-""

end list ,....,,.

I
nels

i--'i be ls fers dirs --ii> be ls fers dirs
nbels -1=H .. 11

I
nels

-+·1'"1 .. 1 H+·l .. I I nbels

I
nels

i----.. be ls fers dirs
nbels

c--;. be ls fers dirs · · .. · · · · · · · · __,,. bels fers dirs

: · · · · · · · ·ereirieiic · · · · · :

entrance to
fractal object

list of elements (fractal object)

Figure 14. Diagram of the dynamic data structure used in the
algorithm for calculating fractals. The first column of the diagram
contains a list with pointers to the fractal objects (the entrances to
the fractals), together with two parameters (nbels = total number
of base elements, nels = number of elements in the connected
list). The other colums consists of elements which may contain
different sets of base elements (bels), together with the fertilisa­
tion (fers) and direction (dirs) state of the base elements.

2.3 Description of the fractal system

11

The fractal system is described in a diagram in fig. 15. Jn this diagram the fractal system is enclosed by a
dotted rectangle. As discussed above, it is necessary to make production rules, built up from three com­
ponents: initiator (which could also be denoted as the 0-approximant of the fractal), generators, and base ele­
ments. The three components can be designed interactively in the fractal system (the first interactive state in
the system) or taken from an external st ·rage. This external storage con~ists of files, which contain the
parameters of the data structures, which describe the three components. Newly designed components can be
added to these three library files.
The generators may contain fields which refer to a special function which processes the original generator or
to a selection function which selects, during the calculation of the fractal, a generator from an array of gen­
erators. Both the generator processing and the generator selection function are described internally in the
fractal system.
The three components may be visualized using a special part of the fractal system for showing production
rules. The main part of the fractal system is the fractal algorithm, which uses the output of one iteration as
input for the next one. The fractal generation is the second interactive state in the system. After a production
rule has been defined, next fractal approximants may be calculated. Interactively, within certain physical
limits, is decided which fractal approximant yields a satisfying result.

12 methods

plotter storage on
workstation GKS metafile

r---------~~---~~----------- ..,

I

I
I

. I

L----

visualization on
interactive workstation

,,,

fractal approximant

'~

fiactal algorithm

' ' '
generator selection

functions

I production rule
generator processmg

'~ functions

i
base element initiator generator

i '~ ~ .j '

interactive interactive interactive
designing of designing of designing of

base elements initiators generators

----------- ----------------- -----------------
external storage external storage external storage
of parameters of parameters of parameters
base elements initiators generators

Figure 15. Diagrnm of the frnctal system, the fractal system is
enclosed by a dolled rectangle.

-

1-oE--

- -

Fractal dimension and self-similarity 13

The third interactive state is the fractal manipulation. The visualization of the fractal may be influenced
interactively by changing GKS attributes (colour, fill area interior style etc.) and by performing transforma­
tions on the fractal object. Except for the visualization of the fractal on the interactive workstation, the
resulting fractal can be externally stored on a GKS metafile or send to a plotter workstation.
The three interactive states may be freely interleaved. It is possible to define new production rules during the
generation of fractal objects, so the ultimatt: fractal object can be influenced interactively.

2.4 Extension to 3D GKS
For the extension to 3D GKS the fractal system is simplified partly. The part in the fractal system (fig. 15) in
which the three components are designed interactively is skipped. The only way to introduce new production
rules in the fractal system, so far, is to change the externally stored library files.
The data structure ,necessary for representing production rules is extended by a new level. Instead of Wc­
coordinates in the base element a new component called "surface" is introduced. The surface consists of four
fields: the number of Wc3 coordinates used in the surface, a pointer to the Wc3 coordinates, a field with the
normal vector of the surface and a field with the colour index of the surface.
The algorithm for the generation of fractal objects (see above) is extended by a new level in part G in which
the points are taken from the surfaces. Part Dld is changed into the calculation of the orientation of the sur­
face and the necessary axis of rotation. The transformations in 01 and 02 are changed into 3D transforma­
tions.
The visualization in the fractal system (fig. 15) is less trivial for 30 objects. The fractal object has to be pro­
cessed in several stages before it can actually be visualized in a proper way. In this 3D version the visualiza­
tion is performed in about the most simple way. First all surfaces, with a normal vector indicating that they
will never be visible, are removed. The next step is to colour the surfaces, which may be visible. The inten­
sity of the colour of the surfaces is determined by the cosine of the angle between the normal vector of the
surface and the ray from the light source on the surface (see for shading models Foley and van Dam [2]).
After this a hidden surface removal is performed using a z-buffer algorithm [2] After this the surfaces are
ready to be visualized by the 3D GKS system; all projections are done by 3D GKS.
Examples of 3D fractals, generated with t~e 3D extension of the fractal sy~tem, are shown in fig. 161 and
fig. 17.

2.5 Fractal dimension and self-similarity
So far all "objects" created by the fractal system were called fractals. It is rather doubtful whether all
"objects" satisfy the definitions mentioned in the introduction. The fractal dimension (D) may be calculated
for a complete self-similar set made up of N equal sides of length r. (r is the similarity ratio between the
length of a side of a fractal approximant and the preceding fractal approximant) using the formula from Man­
delbrot (13] :

1) D =log N ! log (llr)

This formula may be applied for the objects defined by the production rules described in, for example, fig. 1
(D = 3/2); fig. 5 (D = log 7 /log 3), when the fractal dimension of the complete fractal is considered; fig. 9 (D
=log 3 /log 2); fig. 13 (D = 2).
The set described in fig. 3 is nearly self-sirJiar, because in addition to the r~tn.ifying parts it includes a trunk.
For this set, which is not composed of equal sides, the fractal dimension should be calculated in a different
way. For a mathematical description oframifying fractals, which are basically the same as Pythagoras trees,
see Lauwerier (11) .
The fractal dimension can be determined analytically in a few special cases only. A method for estimating D
is given by Mandelbrot (13) (see also: [17)). D of fractals in a plane can be estimated using the following
method: Let E be the length of the side of a small square and cover the set by a grid of such meshes. If N (e)
is the number of squares needed for covering the set, then D can be calculated using formula 2:

2) D = lim log N (e)
do logl/e

With the fraotal system objects may be created, which satisfy the similarity condition, but do not have a frac­
tal dimension. In fig. 18 the production rule of a spiral object shown in fig. 19 is given. This object is

I. Fig. 16 and fig. 17 are coloured photographs and are not shown in this report.

14 methods

obviously not of a fractal dimension.
Self-similarity may be easily disturbed in the objects created by the fractal system, by using randomizing
functions (see for example fig. 4). Objects generated in this way do not completely satisfy the self-similarity
condition. In these cases, when the object is modified randomly during the generation, D must be determined
in the experimental way. In [3) a definition is given of the dimension of statistically self-similar sets.
Many different objects may have an equal fractal dimension. In applications a fractal dimension is only use­
ful in comparing objects from the same class. An example of this can be given from the class of ramifying
fractals. When all proportions in the branches (see fig. 3) remain constant except for the value of r, which
varies between 0.5 and 1.0, a series of fractals may be generated with an increasing D (see fig 20). In this
example the ramifying fractal becomes more plane-filling, D may be used as a measure of plane-filling pro­
perties of the fractal. In other examples it is possible to use D as a measure of irregularity or fragmentation
(in the class of seeding fractals).

initiator

c::::=:i

generator

n
Fig. 18: Production rule for a spiral, the resulting spiral is shown
in fig.19.

Fig. 19: Spiral resulting from the production rule shown in fig. 18.

base element

--

Fractal dimension and self-similarity

Fig. 20: Series of ramifying fractals in which D is increasing from

the right to the left. On the right D is almost 1.0, at the left D is

nearly 2.0. The production rule for those fractals is related to the

one shown in fig. 3.

15

16 Future plans

To summarize fractals and other objects generated by the fractal system may be characterized by their
mathematical properties:
a) The fractal dimension and the topological dimension.
b) The degree of self-similarity and the transformations like dilation, rotation, translation and reflection; to
attain this self-similarity.
In addition those objects are characterized by a production rule necessary for generating the object and the
data structures for representing it.

3. CONCLUSIONS

With the fractal system presented in this paper it is possible to create a large number of self-similar sets. The
data structures necessary for representing different fractal objects are put together in three base data struc­
tures. These data structures, combined with an algorithm suitable for several different types of fractals,
offers also new combinations, like self-reproducing fractals. One consequence of these attempts to cover a
large class of fractals is that the algorithm becomes less efficient for more "primitive" fractals, as for exam­
ple the quadric Koch curves.
Fractals may be stored in an efficient way using the parameters from the 3 components of the production
rule. In this way a library of fractals can be created. These library files may form a useful tool for entering
production rules from outside the fractal system.

4. FUTURE PLANS

The purpose of the fractal system is to develop a tool for modelling objects from nature. One important aim
in the future is to make the system suitable for developing mathematical models for biological objects.

ACKNOWLEDGEMENTS

Drs. P.J.W. ten Hagen (Centre for mathematics and Computer Science (Amsterdam), department of Interac­
tive Systems); prof. dr. H.A. Lauwerier and dr. J.B.T.M. Roerdink (both from the department of Applied
Mathematics of the Centre for mathematics and Computer Science) are thanked for reviewing the first drafts
of this paper.

REFERENCES
1. F.M. DEKKING (1982). Recurrent sets, Advances in Mathematics, 44, pp 78-104.
2. J.D. FOLEY and A. VAN DAM (1982). Fundamentals of interactive computer graphics, 664pp, Addison­

Wesley publishing company, London.
3. K.J. FALCONER (1985). The geometry of fractal sets, 162pp, Camebridge University Press, Cambridge.
4. M.F. BARNSLEY and S.G. DEMKO (1986). Chaotic dynamics and fractals, 292pp, Academic Press, New

York,.
5. P.J.W. TEN HAGEN and M.M. DE RUITER (1986). C-GKS the C implementation of GKS, the graphical

Kernel System user guide, 88pp, Centre for Mathematics and Computer science, Amsterdam.
6. S. DEMKO, L. HODGES, and B. NAYLOR (1985). Construction of fractal objects with iterated function sys-

tems, Computer Graphics, 19.3, pp 271-278, SIGGRAPH '85 proceedings ..
7. FARMER, KAPLAN, and YORKE (1983). The dimension of chaotic attractors, Physica 7D, pp 153-180.
8. M. HATA (1985). On the structure of self-similar sets, Japan.!. Appl. Math., 2, pp 381-414.
9. F.R.A. HOPGOOD, D.A. DUCE, J.R. GALLOP, and D.C. SUTCLIFFE (1983). Introduction to the Graphical

Kernel system (GKS), Academic, 200pp, Academic Press, London.
10. ISO (1986). Information processing systems - computer graphics- Graphical Kernel System for three

dimensions (GKS-3D) functional description, ISO/TC 97/SC21/DP8605.
11. H.A. LAUWERIER (1985). The Pythagoras tree as a Julia set, CW/ News111tter, 6, pp 2-18.
12. M. LEWIS and D.C. REES (1985). Fractal surfaces of proteins, Science, 230, pp 1163-1165.
13. B.B. MANDELBROT (1982). The fractal geometry of nature, 460pp, Freeman, San Francisco.
14. P. MEAKIN (1986). A new model for Liological pattern formation, J. tfu.Jr. Biol., 118, pp 101-113.
15. D.R. MORSE, J.H. LAWTON, M.M. DODSON, and M.H. WILLIAMSON (1985). Fractal dimension of vege­

tation find the distribution of arthropod body length, Nature, 314, pp 731-733.
16. J. NITTMAN, G. DACCORD, and G. H.E. STANLEY (1985). Fractal growth of viscous fingers: quantitative

chararacterization of a fluid instability phenomenon, Nature, 314, pp 141-144.
17. C.A. PICKOVER (1986). A Monte Carlo approach fore placement in fractal-dimension calculations for

Fractal dimension and self-similarity 17

waveform graphs, Computer Graphics Forum, 5, pp 203-210.
18. A.R. SMITH (1984). Plants, fractals and formal languages, Computer graphics, 18.3, pp 1-10, SIG­

GRAPH '84 proceedings.
19. D.L. TURCOTIE, R.F. SMALLEY JR, and S.A. SOLLA (1985). Collapse of loaded fractal trees, Nature,

313, pp 671-672.

